Abstract

We demonstrate a high-speed spectral domain optical coherence tomography (SD-OCT) system capable of acquiring individual axial scans in 24.4 µs at a rate of 19,000 axial scans per second, using an InGaAs line scan camera and broadband light source centered at 1.31 µm. Sensitivity of >105 dB over a 2-mm depth range was obtained with a free-space axial resolution of 12–14 µm, in agreement with our signal-to-noise ratio predictions. Images of human tissue obtained in vivo with SD-OCT show similar penetration depths to those obtained with state-of-the-art time domain OCT despite the ten-fold higher image acquisition speed. These results demonstrate the potential of 1.3 µm SD-OCT for high-speed and high-sensitivity imaging in patients.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, �??High-speed optical coherence domain reflectometry,�?? Opt. Lett. 17, 151-153 (1992).
    [CrossRef] [PubMed]
  2. G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, �??Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,�?? Circulation 106, 113-119 (2003).
    [CrossRef]
  3. P. Andretzky, M. W. Lindner, J. M. Hermann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Hausler, �??Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin,�?? Proc. SPIE 3567, 78-87 (1998).
  4. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, �??In vivo human retinal imaging by Fourier domain optical coherence tomography,�?? J. Biomed. Opt. 7, 457-463 (2002).
    [CrossRef] [PubMed]
  5. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, �??Performance of Fourier domain vs. time domain optical coherence tomography,�?? Opt. Express 11, 889-894 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>.
    [CrossRef] [PubMed]
  6. J. F. de Boer, B. Cense, B.H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, �??Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,�?? Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  7. M. A. Choma, M. V. Sarunic, C. Uang, and J. A. Izatt, �??Sensitivity advantage of swept source and Fourier domain optical coherence tomography,�?? Opt. Express 11, 2183-2189 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>.
    [CrossRef] [PubMed]
  8. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, �??High-speed optical frequency domain imaging,�?? Opt. Express 11, 2953-2963 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953</a>.
    [CrossRef] [PubMed]
  9. S. R. Chinn, E. Swanson, and J. G. Fujimoto, �??Optical coherence tomography using a frequency-tunable optical source,�?? Opt. Lett. 22, 340-342 (1997).
    [CrossRef] [PubMed]
  10. B. Golubovic, B. E. Bouma, and G. J. Tearney, and J. G. Fujimoto, �??Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,�?? Opt. Lett. 22, 1704-1706 (1997).
    [CrossRef]
  11. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, �??Measurements of intraocular distances by backscattering spectral interferometry,�?? Opt. Comm. 117, 43-48 (1995).
    [CrossRef]
  12. G. Hausler and M. W. Lindner, �??Coherence radar and spectral radar - new tools for dermatological diagnosis,�?? J. Biomed. Opt. 3, 21-31 (1998).
    [CrossRef]
  13. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, �??Full range complex spectral optical coherence tomography technique in eye imaging,�?? Opt. Lett. 27, 1415-1417 (2002).
    [CrossRef]
  14. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, �??Real time in vivo imaging by high-speed spectral optical coherence tomography,�?? Opt. Lett. 28, 1745-1747 (2003).
    [CrossRef] [PubMed]
  15. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, J. F. de Boer, �??In-vivo human retinal imaging by ultra high-speed spectral domain optical coherence tomography,�?? Opt. Lett. (in press)
  16. B. E. Bouma and G. J. Tearney, �??Clinical imaging with optical coherence tomography,�?? Acad. Radiol. 9, 942-953 (2002).
    [CrossRef] [PubMed]
  17. W. V. Sorin and D. M. Baney, �??A simple intensity noise reduction technique for optical low-coherence reflectometry,�?? IEEE Photon. Technol. Lett. 4, 1404-1406 (1994).
    [CrossRef]
  18. C. Dorrer, N. Belabas, J-P Likforman, and M. Joffre, �??Spectral resolution and sampling issues in Fourier-transform spectral interferometry,�?? J. Opt. Soc. Am. B 17, 1795-1802 (2000).
    [CrossRef]

Acad. Radiol. (1)

B. E. Bouma and G. J. Tearney, �??Clinical imaging with optical coherence tomography,�?? Acad. Radiol. 9, 942-953 (2002).
[CrossRef] [PubMed]

Circulation (1)

G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, �??Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,�?? Circulation 106, 113-119 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. V. Sorin and D. M. Baney, �??A simple intensity noise reduction technique for optical low-coherence reflectometry,�?? IEEE Photon. Technol. Lett. 4, 1404-1406 (1994).
[CrossRef]

J. Biomed. Opt. (2)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, �??In vivo human retinal imaging by Fourier domain optical coherence tomography,�?? J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

G. Hausler and M. W. Lindner, �??Coherence radar and spectral radar - new tools for dermatological diagnosis,�?? J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Comm. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, �??Measurements of intraocular distances by backscattering spectral interferometry,�?? Opt. Comm. 117, 43-48 (1995).
[CrossRef]

Opt. Express (3)

Opt. Lett. (7)

Proc. SPIE (1)

P. Andretzky, M. W. Lindner, J. M. Hermann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Hausler, �??Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin,�?? Proc. SPIE 3567, 78-87 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the experimental setup. PC, polarization controller; GM, galvanometer-mounted mirror; DG, diffraction grating; FL, focusing lens; LSC, InGaAs line scan camera; DAQ, data acquisition board.

Fig. 2.
Fig. 2.

Typical point spread function obtained with a partial reflector with -55 dB reflectivity (curve A, black); noise floor measured with the reference light only (curve B, red); camera read out noise (curve C, green). All the curves were obtained by averaging over 500 consecutive measurements to facilitate comparison.

Fig. 3.
Fig. 3.

(a) Sensitivity measured as a function of depth (circles, black dotted line); theoretical fit (curve A’, green); theoretical sensitivity for shot-noise-limited SD-OCT (curve B’, red) and TD-OCT (curve C’, blue). (b) Axial resolution measured as the FWHM

Fig. 4.
Fig. 4.

(a) Image of a human finger acquired in vivo with the SD-OCT system at 38 fps (256 axial×500 transverse pixels, 2.1×5.0 mm). (b) Image of the same human finger (250 axial×500 transverse pixels, 2.5×5.0 mm) acquired at 4 fps using a state-of-the-art TD-OCT system. The scale bars represent 0.5 mm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S [ d B ] = 10 × log ( N s 1 + N el 2 N ref + α ( f Δ ν ) N ref ) ,
R ( z ) = ( sin ζ ζ ) 2 · exp [ w 2 2 ln 2 ζ 2 ] ,

Metrics