Abstract

An ultra-high-speed spectral domain optical Doppler tomography (SD-ODT) system is used to acquire images of blood flow in a human retina in vivo, at 29,000 depth profiles (A-lines) per second and with data acquisition over 99% of the measurement time. The phase stability of the system is examined and image processing algorithms are presented that allow accurate determination of bi-directional Doppler shifts. Movies are presented of human retinal flow acquired at 29 frames per second with 1000 A-lines per frame over a time period of 3.28 seconds, showing accurate determination of vessel boundaries and time-dependent bi-directional flow dynamics in artery-vein pairs. The ultra-high-speed SD-ODT system allows visualization of the pulsatile nature of retinal blood flow, detects blood flow within the choroid and retinal capillaries, and provides information on the cardiac cycle. In summary, accurate video rate imaging of retinal blood flow dynamics is demonstrated at ocular exposure levels below 600 µW.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Candido, T. J. Allen, "Haemodynamics in microvascular complications in type 1 diabetes," Diabetes Metab. Res. Rev. 18, 286-304 (2002).
    [CrossRef] [PubMed]
  2. O. Arend, M. Ruffer, A. Remky, "Macular circulation in patients with diabetes mellitus with and without arterial hypertension," Br. J. Ophthalmol. 84, 1392-1396 (2000).
    [CrossRef] [PubMed]
  3. A. Mistlberger, M. Gruchmann, W. Hitzl, G. Grabner, "Pulsatile ocular blood flow in patients with pseudoexfoliation," Int. Ophthalmol. 23, 337-42 (2001).
    [CrossRef]
  4. G. A. Cioffi, "Three common assumptions about ocular blood flow and glaucoma," Surv. Ophthalmol. 45, S325-S331 (2001).
    [CrossRef] [PubMed]
  5. Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000).
    [CrossRef]
  6. Y. H. Zhao, Z. P. Chen, C. Saxer, Q. M. Shen, S. H. Xiang, J. F. de Boer, J. S. Nelson, "Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow," Opt. Lett. 25, 1358-1360 (2000).
    [CrossRef]
  7. A. M. Rollins, S. Yazdanfar, J. K. Barton, J. A. Izatt, "Real-time in vivo color Doppler optical coherence tomography," J. Biomed. Opt. 7, 123-129 (2002).
    [CrossRef] [PubMed]
  8. V. Westphal, S. Yazdanfar, A. M. Rollins, J. A. Izatt, "Real-time, high velocity-resolution color Doppler optical coherence tomography," Opt. Lett. 27, 34-36 (2002).
    [CrossRef]
  9. Z. H. Ding, Y. H. Zhao, H. W. Ren, J. S. Nelson, Z. P. Chen, "Real-time phase-resolved optical coherence tomography and optical Doppler tomography," Opt. Express 10, 236-245 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-5-236">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-5-236</a>
    [CrossRef] [PubMed]
  10. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance," Opt. Express 11, 794-809 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-794">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-794</a>
    [CrossRef] [PubMed]
  11. S. Yazdanfar, A. M. Rollins, J. A. Izatt, "Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography," Opt. Lett. 25, 1448-1450 (2000).
    [CrossRef]
  12. S. Yazdanfar, A. M. Rollins, J. A. Izatt, "In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography," Arch. Ophthalmol. 121, 235-239 (2003).
    [CrossRef] [PubMed]
  13. R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>
    [CrossRef] [PubMed]
  14. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett 28, 2067- 2069 (2003)
    [CrossRef] [PubMed]
  15. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, J. F. de Boer, "In-vivo human retinal imaging by ultra high-speed spectral domain optical coherence tomography," Opt. Lett. 29, in press (2004
    [CrossRef] [PubMed]
  16. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002
    [CrossRef]
  17. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002
    [CrossRef] [PubMed]
  18. M. Wojtkowski, T. Bajraszewski, P. Targowski, A. Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745-1747 (2003).
    [CrossRef] [PubMed]
  19. R. Leitgeb, L. F. Schmetterer, M. Wojtkowski, C. K. Hitzenberger, M. Sticker, A. F. Fercher, "Flow velocity measurements by frequency domain short coherence interferometry," in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE 4619, 16-21 (2002).
    [CrossRef]
  20. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, "In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, in press (2004).
    [CrossRef] [PubMed]
  21. American National Standard for Safe Use of Lasers, (American National Standards Institute, Z136.1, Orlando, 2000).
  22. J. F. de Boer, C. E. Saxer, J. S. Nelson, "Stable carrier generation and phase-resolved digital data processing in optical coherence tomography," Appl. Opt. 40, 5787-5790 (2001).
    [CrossRef]
  23. W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, A. F. Fercher, "Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography," Arch. Ophthalmol. 121, 695-706 (2003).
    [CrossRef] [PubMed]

Appl. Opt. (1)

Arch. Ophthalmol (2)

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, A. F. Fercher, "Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography," Arch. Ophthalmol. 121, 695-706 (2003).
[CrossRef] [PubMed]

S. Yazdanfar, A. M. Rollins, J. A. Izatt, "In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography," Arch. Ophthalmol. 121, 235-239 (2003).
[CrossRef] [PubMed]

Br. J. Ophthalmol (1)

O. Arend, M. Ruffer, A. Remky, "Macular circulation in patients with diabetes mellitus with and without arterial hypertension," Br. J. Ophthalmol. 84, 1392-1396 (2000).
[CrossRef] [PubMed]

Coherence Domain Optical Methods in Biom (1)

R. Leitgeb, L. F. Schmetterer, M. Wojtkowski, C. K. Hitzenberger, M. Sticker, A. F. Fercher, "Flow velocity measurements by frequency domain short coherence interferometry," in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE 4619, 16-21 (2002).
[CrossRef]

Diabetes Metab. Res. Rev. (1)

R. Candido, T. J. Allen, "Haemodynamics in microvascular complications in type 1 diabetes," Diabetes Metab. Res. Rev. 18, 286-304 (2002).
[CrossRef] [PubMed]

Int. Ophthalmol (1)

A. Mistlberger, M. Gruchmann, W. Hitzl, G. Grabner, "Pulsatile ocular blood flow in patients with pseudoexfoliation," Int. Ophthalmol. 23, 337-42 (2001).
[CrossRef]

J. Biomed. Opt (1)

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, "In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, in press (2004).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

A. M. Rollins, S. Yazdanfar, J. K. Barton, J. A. Izatt, "Real-time in vivo color Doppler optical coherence tomography," J. Biomed. Opt. 7, 123-129 (2002).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett (1)

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett 28, 2067- 2069 (2003)
[CrossRef] [PubMed]

Opt. Lett. (7)

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, J. F. de Boer, "In-vivo human retinal imaging by ultra high-speed spectral domain optical coherence tomography," Opt. Lett. 29, in press (2004
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002
[CrossRef]

V. Westphal, S. Yazdanfar, A. M. Rollins, J. A. Izatt, "Real-time, high velocity-resolution color Doppler optical coherence tomography," Opt. Lett. 27, 34-36 (2002).
[CrossRef]

Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000).
[CrossRef]

Y. H. Zhao, Z. P. Chen, C. Saxer, Q. M. Shen, S. H. Xiang, J. F. de Boer, J. S. Nelson, "Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow," Opt. Lett. 25, 1358-1360 (2000).
[CrossRef]

S. Yazdanfar, A. M. Rollins, J. A. Izatt, "Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography," Opt. Lett. 25, 1448-1450 (2000).
[CrossRef]

M. Wojtkowski, T. Bajraszewski, P. Targowski, A. Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745-1747 (2003).
[CrossRef] [PubMed]

Surv. Ophthalmol (1)

G. A. Cioffi, "Three common assumptions about ocular blood flow and glaucoma," Surv. Ophthalmol. 45, S325-S331 (2001).
[CrossRef] [PubMed]

Other (1)

American National Standard for Safe Use of Lasers, (American National Standards Institute, Z136.1, Orlando, 2000).

Supplementary Material (3)

» Media 1: AVI (3822 KB)     
» Media 2: AVI (1611 KB)     
» Media 3: AVI (1008 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Diagram of the experimental setup. Light emitted by the broadband source (HP-SLD) passes through an optical isolator (I) and is divided by an 80/20 splitter between a rapid-scanning optical delay line (RSOD) (with stationary mirror) and a slit lamp based telecentric scanner (SL). Returning light is recombined and passed through a collimator (C), a transmission grating (TG), and a three-element air-spaced focusing lens (ASL), before being detected by a line scan camera (LSC).

Fig. 2.
Fig. 2.

Probability distribution of the measured phase difference between adjacent A-lines, with a stationary reflector in the sample arm. Bars: Counted phase difference for 9990 A-lines. Bin size=0.05°. Solid line: Gaussian fit to the distribution, with a measured standard deviation of 0.296±0.003°.

Fig. 3.
Fig. 3.

(1.61 MB) Movie of structure (top panel) and bi-directional flow (bottom panel) acquired in vivo in the human eye at a rate of 29 frames per second. The sequence contains 95 frames (totaling 3.28 seconds) played back at a rate of 10 frames per second. Image size is 1.6 mm wide by 580 µm deep. a: artery; v: vein; c: capillary; d: choroidal vessel. (3.82 MB version).

Fig. 4.
Fig. 4.

(1.01 MB) Movie of dynamic blood flow within the human retina, in vivo, corresponding to the movie presented in Fig. 3. Image width and depth are mapped onto the XY-plane, with Doppler signal [Hz] displayed on the Z-axis. Width and depth are denoted in pixels. a: artery; v: vein; d: choroidal vessel.

Fig. 5.
Fig. 5.

Integrated flow over the artery-vein pair shown in Figures 3 and 4. A total of 95 frames were acquired at 29 fps, resulting in a total imaging time of 3.28 s.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ φ i + 1 ( z ) = φ i + 1 ( z ) φ i ( z )
φ i + 1 , new ( z ) = φ i + 1 ( z ) ( z I i + 1 ( z ) Δ φ i + 1 ( z ) ) ( z I i + 1 ( z ) )

Metrics