Abstract

IR transmissive As-S glass and As-Se glass triangular photonic band gap fiber structures are theoretically modeled. The potential for propagation of air-guided modes in the defect regions of these fibers is demonstrated by the large out of plane two-dimensional photonic band gaps found in these structures. Fiber design for IR light propagation is discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. Venkataram, N.T. Gallagher, C.M. Smith, D. Muller, J.A. West, K.W. Koch and J.C. Fajardo, Proceedings of the 28th European Conference on Optical Communication, Copenhagen, Postdeadline paper PD1.1, (2002).
  2. BlazePhotonics Ltd., <a href= "http://www.blazephotonics.com">http://www.blazephotonics.com</a>
  3. Crystal Fibre A/S, <a href= "http://www.crystal-fibre.com">http://www.crystal-fibre.com</a>
  4. T.M. Monro, Y.D. West, D.W. Hewak, N.G.R. Broderick, and D.J. Richardson, �??Chalcogenide holey fibres,�?? Electron. Lett. 36, 1998-2000 (1998).
    [CrossRef]
  5. J.S. Sanghera, V.Q. Nguyen, R.E. Miklos, P.C. Pureza, F.H. Kung, and I.D. Aggarwal, �??Fabrication of long lengths of low-loss As40S(60-x)Sex glass fibers,�?? J. Lightwave Technol. 16, 214 (1998).
    [CrossRef]
  6. J.S. Sanghera, L.B Shaw, L.E. Busse, V.Q. Nguyen, B.J. Cole, R. Mossadegh, P. Pureza, R. Miklos, F.H. Kung, D. Talley, D. Roselle, and I.D. Aggarwal, �??Infrared optical fibers and their applications,�?? in Proc. SPIE, 3849, 39 (1999).
  7. L.B. Shaw, L.E. Busse, V. Nguyen, J.S. Sanghera, I.D. Aggarwal, F.H. Kung, R. Mossadegh, D. Jansen, D. Mongin, and G.M. Peavy, �??Delivery of FEL laser energy at 6.1 µm and 6.45 µm with chalcogenide fibers,�?? in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, Washington, D.C., 2000) p. 502
  8. J. Nishii, S. Morimoto, I. Inagawa, R. Iizua, T. Yamashita, T.J. Yamagishi, Non-Cryst. Solids, 140, 199 (1992)
    [CrossRef]
  9. T.A. Birks, P.J. Roberts, P.St.J. Russell, D.M. Atkin, and T.J. Shepherd, �??Full 2-D photonic bandgaps in silica/air structures, Electron. Lett. 31, 1941 (1995).
    [CrossRef]
  10. J. Broeng, S.E. Barkou, T. Sondergaard, and A. Barklev, �??Analysis of air-guiding photonic bandgap fibers,�?? Optics Letters 25, 96-98 (2000).
    [CrossRef]
  11. Douglas C. Allan, James A. West, James C. Fajardo, Michael T. Gallegher, Karl W. Koch, and Nicholas F. Borrelli, �??Photonic crystal fibers: effective-index and band-gap guidance,�?? in Photonic Crystals and Light Localization in the 21st Century, Costas M. Soukoulis, ed., (Kulwar Academic Publishers, Netherlands, 2001).
  12. Rsoft Design Group, Inc., <a href= "http://www.rsoftdesign.com">http://www.rsoftdesign</a>
  13. K.M. Ho, C.T. Chan, and C.M. Soukoulis, �??Existance of a photonic gap in periodic dielectric structures,�?? Phys. Rev. Lett. 65, 3152 (1990).
    [CrossRef] [PubMed]
  14. R.D. Meade, A.M. Rappe, K.D. Brommer, and J.D. Joannopoulos, �??Accurate theoretical analysis of photonic band-gap materials,�?? Phys. Rev. B 48, 8434 (1993).
    [CrossRef]
  15. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, P.J. Roberts, D.C. Allen, �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]

Conference on Lasers and Electro-Optics (1)

L.B. Shaw, L.E. Busse, V. Nguyen, J.S. Sanghera, I.D. Aggarwal, F.H. Kung, R. Mossadegh, D. Jansen, D. Mongin, and G.M. Peavy, �??Delivery of FEL laser energy at 6.1 µm and 6.45 µm with chalcogenide fibers,�?? in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, Washington, D.C., 2000) p. 502

ECOC, Copenhagen (1)

N. Venkataram, N.T. Gallagher, C.M. Smith, D. Muller, J.A. West, K.W. Koch and J.C. Fajardo, Proceedings of the 28th European Conference on Optical Communication, Copenhagen, Postdeadline paper PD1.1, (2002).

Electron. Lett. (2)

T.M. Monro, Y.D. West, D.W. Hewak, N.G.R. Broderick, and D.J. Richardson, �??Chalcogenide holey fibres,�?? Electron. Lett. 36, 1998-2000 (1998).
[CrossRef]

T.A. Birks, P.J. Roberts, P.St.J. Russell, D.M. Atkin, and T.J. Shepherd, �??Full 2-D photonic bandgaps in silica/air structures, Electron. Lett. 31, 1941 (1995).
[CrossRef]

J. Lightwave Technol. (1)

Optics Letters (1)

J. Broeng, S.E. Barkou, T. Sondergaard, and A. Barklev, �??Analysis of air-guiding photonic bandgap fibers,�?? Optics Letters 25, 96-98 (2000).
[CrossRef]

Photonic Crystals and Light Localization (1)

Douglas C. Allan, James A. West, James C. Fajardo, Michael T. Gallegher, Karl W. Koch, and Nicholas F. Borrelli, �??Photonic crystal fibers: effective-index and band-gap guidance,�?? in Photonic Crystals and Light Localization in the 21st Century, Costas M. Soukoulis, ed., (Kulwar Academic Publishers, Netherlands, 2001).

Phys. Rev. B (1)

R.D. Meade, A.M. Rappe, K.D. Brommer, and J.D. Joannopoulos, �??Accurate theoretical analysis of photonic band-gap materials,�?? Phys. Rev. B 48, 8434 (1993).
[CrossRef]

Phys. Rev. Lett. (1)

K.M. Ho, C.T. Chan, and C.M. Soukoulis, �??Existance of a photonic gap in periodic dielectric structures,�?? Phys. Rev. Lett. 65, 3152 (1990).
[CrossRef] [PubMed]

Proc. SPIE (1)

J.S. Sanghera, L.B Shaw, L.E. Busse, V.Q. Nguyen, B.J. Cole, R. Mossadegh, P. Pureza, R. Miklos, F.H. Kung, D. Talley, D. Roselle, and I.D. Aggarwal, �??Infrared optical fibers and their applications,�?? in Proc. SPIE, 3849, 39 (1999).

Science (1)

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, P.J. Roberts, D.C. Allen, �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Other (4)

BlazePhotonics Ltd., <a href= "http://www.blazephotonics.com">http://www.blazephotonics.com</a>

Crystal Fibre A/S, <a href= "http://www.crystal-fibre.com">http://www.crystal-fibre.com</a>

J. Nishii, S. Morimoto, I. Inagawa, R. Iizua, T. Yamashita, T.J. Yamagishi, Non-Cryst. Solids, 140, 199 (1992)
[CrossRef]

Rsoft Design Group, Inc., <a href= "http://www.rsoftdesign.com">http://www.rsoftdesign</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Gap maps of (a) 40% (b) 60% (c) 75% and (d) 90% air fill As-S triangular hole pattern structure. Gap maps were generated by calculating the first 32 eigenvalues.

Fig. 2.
Fig. 2.

Gap maps of (a) 40% (b) 60% (c) 75% and (d) 90% air fill As-Se triangular hole pattern structure. Gap maps were generated by calculating the first 32 eigenvalues.

Fig. 3.
Fig. 3.

Graph of largest gap area vs. air fill % for As-S and As-Se triangular hole PBG fiber structures. Silica triangular hole PBG fiber structure gap areas are shown for comparison. Note the y-axis changes after the break at 75%-80% fill. Gap area is defined by the intersection of the air line and the band gap boundries as shown in the inset diagram.

Fig. 4.
Fig. 4.

Predicted bound fundamental mode for kΛ=10.6 in a 90% air fill As-S PBG fiber.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N PBG = ( β H 2 β L 2 ) r c 2 4
N PBG = ( k 2 n 1 2 β L 2 ) r c 2 4

Metrics