Abstract

A switchable Fresnel zone plate lens is demonstrated using a polymer-stabilized liquid crystal. The fabrication process is relatively simple and the device can be operated below 10 volts with fast response time. Such a device works well for a linearly polarized light.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. G. Williams, N. J. Powell, A. Purvis and M.G. Clark, �??Electrically controllable liquid crystal Fresnel lens,�?? Proc. SPIE 1168, 352-357 (1989)
  2. J. S. Patel and K. Rastani, �??Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays,�?? Opt. Lett. 16, 532-534 (1991).
    [CrossRef] [PubMed]
  3. M. Ferstl and A. Frisch, �??Static and dynamic Fresnel zone lenses for optical interconnections,�?? J. Mod. Opt. 43, 1451-1462 (1996)
    [CrossRef]
  4. S. Sato, �??Liquid-crystal lens-cells with variable focal length,�?? Jpn. J. Appl. Phys. 18, 1679-1684 (1979).
    [CrossRef]
  5. Nabeel A. Riza and Michael C. Dejule, �??Three-terminal adaptive Nematic liquid-crystal lens device,�?? Opt. Lett. 19, 1013-1015 (1994).
    [CrossRef] [PubMed]
  6. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, �??Liquid-crystal adaptive lenses with modal control,�?? Opt. Lett. 23, 992-994 (1998).
    [CrossRef]
  7. Werner Klaus, Masafumi Ide, Yutaka Hayano, Shigeru Morokawa, and Yoshinori Arimoto, �??Adaptive LC lens array and its application,�?? SPIE 3635, 66-69 (1999).
    [CrossRef]
  8. A. F. Naumov, G. D. Love, M. Yu. Loktev, and F. L. Vladimirov, �??Control optimization of spherical modal liquid crystal lenses,�?? Opt. Express 4, 344-352 (1999).
    [CrossRef] [PubMed]
  9. Vladimir V. Presnyakov, Karen E. Asatryan, and Tigran V. Galstian, �??Polymer-stabilized liquid crystal for tunable microlens applications,�?? Opt. Express 10, 865-870 (2002).
    [CrossRef] [PubMed]
  10. N. Kitaura, S. Ogata, and Y. Mori, �??Spectrometer employing a micro-Fresnel lens,�?? Opt. Eng. 34, 584-588 (1995).
    [CrossRef]
  11. E. Skudrzyk, The foundation of acoustics (Springer-Verlag, 1971).
    [CrossRef]
  12. F. Sobel, L. Wentworth, and J. C. Wiltse, �??Quasi-optical surface waveguide and other components for the 100-to 300-Ge region,�?? IRE Trans. Microw. Tech. 9, 512 -518 (1961).
    [CrossRef]
  13. L. Mingtao, J. Wang, L. Zhuang, and S. Y. Chou, �??Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography,�?? Appl. Phys. Lett. 76, 673-675 (2000).
    [CrossRef]
  14. J. Canning, K. Sommer, S. Huntington, and A. Carter, �??Silica-based fiber Fresnel lens,�?? Opt. Comm. 199, 375-381 (2001).
    [CrossRef]
  15. H. Dammann, �??Blazed synthetic phase-only holograms,�?? Optik 31, 95-104 (1970)
  16. H. Ren, Y. H. Fan, and S. T. Wu, �??Prism grating using polymer-stabilized nematic liquid crystal,�?? Appl. Phys. Lett. 82, 3168-3170 (2003).
    [CrossRef]

Appl. Phys. Lett.

L. Mingtao, J. Wang, L. Zhuang, and S. Y. Chou, �??Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography,�?? Appl. Phys. Lett. 76, 673-675 (2000).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, �??Prism grating using polymer-stabilized nematic liquid crystal,�?? Appl. Phys. Lett. 82, 3168-3170 (2003).
[CrossRef]

IRE Trans. Microw. Tech.

F. Sobel, L. Wentworth, and J. C. Wiltse, �??Quasi-optical surface waveguide and other components for the 100-to 300-Ge region,�?? IRE Trans. Microw. Tech. 9, 512 -518 (1961).
[CrossRef]

J. Mod. Opt.

M. Ferstl and A. Frisch, �??Static and dynamic Fresnel zone lenses for optical interconnections,�?? J. Mod. Opt. 43, 1451-1462 (1996)
[CrossRef]

Jpn. J. Appl. Phys.

S. Sato, �??Liquid-crystal lens-cells with variable focal length,�?? Jpn. J. Appl. Phys. 18, 1679-1684 (1979).
[CrossRef]

Opt. Comm.

J. Canning, K. Sommer, S. Huntington, and A. Carter, �??Silica-based fiber Fresnel lens,�?? Opt. Comm. 199, 375-381 (2001).
[CrossRef]

Opt. Eng.

N. Kitaura, S. Ogata, and Y. Mori, �??Spectrometer employing a micro-Fresnel lens,�?? Opt. Eng. 34, 584-588 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Optik

H. Dammann, �??Blazed synthetic phase-only holograms,�?? Optik 31, 95-104 (1970)

Proc. SPIE

Werner Klaus, Masafumi Ide, Yutaka Hayano, Shigeru Morokawa, and Yoshinori Arimoto, �??Adaptive LC lens array and its application,�?? SPIE 3635, 66-69 (1999).
[CrossRef]

G. Williams, N. J. Powell, A. Purvis and M.G. Clark, �??Electrically controllable liquid crystal Fresnel lens,�?? Proc. SPIE 1168, 352-357 (1989)

Other

E. Skudrzyk, The foundation of acoustics (Springer-Verlag, 1971).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic representation of the photomask patterns and the corresponding LC arrangement of the PSLC Fresnel lens.

Fig. 2.
Fig. 2.

Microscope images of the PSLC cell at (a) V=0, (b) 4 Vrms, (c) 7 Vrms, and (d) 10 Vrms. The LC cell is sandwiched between crossed polarizers.

Fig. 3.
Fig. 3.

The experimental setup for studying the focusing properties of the PSLC Fresnel lens. L1: focal length 50 mm, L2: focal length 250 mm, and P: 30 µm pinhole.

Fig. 4.
Fig. 4.

The observed laser beam images: (a) without LC sample, (b) with sample at V=0, and (c) with LC sample at 8 Vrms. λ=633 nm.

Fig. 5.
Fig. 5.

The observed laser beam images (a) at V=0 and (b) at 8 Vrms. λ=633 nm. The CCD camera was 27 cm away from the sample

Fig. 6.
Fig. 6.

Beam intensity profile measured by the CCD camera at V=8Vrms. The diameter of the Fresnel zone plate is 1 cm and the focal length is 50 cm.

Fig. 7.
Fig. 7.

Beam intensity profiles at (a) V=0, (b) 8 Vrms, and (c) 20 Vrms. The diameter of the Fresnel zone plate is 1 cm and the focal length is 50 cm.

Fig. 8.
Fig. 8.

The voltage-dependent diffraction efficiency of the PSLC Fresnel lens. LC: MLC-6252, cell gap d=5 µm, and monomer concentration 5%.

Metrics