Abstract

We report a new type of photonic bandgap that becomes substantial at remarkably low air-filling fractions (~60%) in triangular-lattice photonic crystal fibres (PCF) made from high index glass (n≳2.0). The ratio of inter-hole spacing to wavelength makes these new structures ideal for the experimental realisation of hollow-core PCF in the mid/far-infrared, where suitable glasses (e.g., tellurites and chalcogenides) tend to have high refractive indices.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, P.J. Roberts and D.C. Allan, �??Singlemode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  2. J. S. Wang, E. M. Vogel and E. Snitzer, �??Tellurite glass: a new candidate for fiber devices,�?? Opt. Mat. 3, 187-203 (1994).
    [CrossRef]
  3. H. Kogelnik, �??Theory of Optical Waveguides,�?? in Guided-Wave Optoelectronics, T. Tamir, ed. (Springer-Verlag, 1988).
  4. J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth and P.St.J. Russell, �??Anomalous dispersion in photonic crystal fiber,�?? IEEE Photon. Tech. Lett. 7, 807-809 (2000).
    [CrossRef]
  5. J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, N.J., 1995).
  6. S.G. Johnson and J.D Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173-190 (2001). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>
    [CrossRef] [PubMed]
  7. T.D. Hedley & D.M. Bird, to be published
  8. D.C. Sorensen, �??Numerical methods for large eigenvalue problems,�?? Acta Numerica 11, 519-584 (2002).
    [CrossRef]
  9. <a href="http://www.caam.rice.edu/software/ARPACK/">http://www.caam.rice.edu/software/ARPACK/
  10. Y. Saad and M.H. Schultz, �??GMRES: A generalised minimal residual algorithm for solving nonsymmetric linear systems,�?? SIAM J. Sci. Statist. Comput. 7, 856-869 (1986).
    [CrossRef]
  11. N.A. Nicorovici and R.C. McPhedran, �??Lattice sums for off-axis electromagnetic scattering by gratings,�?? Phys. Rev. E 50, 3143-3160 (1994).
    [CrossRef]
  12. C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan & K. W. Koch, �??Low-loss hollow-core silica/air photonic bandgap fibre,�?? Nature 424, 657-659 (2003)
    [CrossRef] [PubMed]
  13. . P.J. Roberts, T.A. Birks, P.St.J. Russell, T.J. Shepherd and D.M. Atkin, �??Two-dimensional photonic bandgap structures as quasi-metals,�?? Opt. Lett. 21, 507-509 (1996).
    [CrossRef] [PubMed]
  14. V.V. Ravi Kanth Kumar, A.K. George, W.H. Reeves, J.C. Knight, P.St.J. Russell, F.G. Omenetto, and A.J. Taylor, �??Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,�?? Opt. Express 10, 1520-1525 (2002). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1520">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1520</a>
    [CrossRef] [PubMed]
  15. V.V. Ravi Kanth Kumar, A.K. George, J.C. Knight, P.St.J. Russell, �??Tellurite photonic crystal fibre,�?? Opt. Express 10, 2641-2645 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2641">http://www.o9pticsexpress.org/abstract.cfm?URI=OPEX-11-20-2641</a>
    [CrossRef]

Acta Numerica (1)

D.C. Sorensen, �??Numerical methods for large eigenvalue problems,�?? Acta Numerica 11, 519-584 (2002).
[CrossRef]

IEEE Photon. Tech. Lett (1)

J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth and P.St.J. Russell, �??Anomalous dispersion in photonic crystal fiber,�?? IEEE Photon. Tech. Lett. 7, 807-809 (2000).
[CrossRef]

Nature (1)

C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan & K. W. Koch, �??Low-loss hollow-core silica/air photonic bandgap fibre,�?? Nature 424, 657-659 (2003)
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mat (1)

J. S. Wang, E. M. Vogel and E. Snitzer, �??Tellurite glass: a new candidate for fiber devices,�?? Opt. Mat. 3, 187-203 (1994).
[CrossRef]

Phys. Rev. E (1)

N.A. Nicorovici and R.C. McPhedran, �??Lattice sums for off-axis electromagnetic scattering by gratings,�?? Phys. Rev. E 50, 3143-3160 (1994).
[CrossRef]

Science (1)

R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, P.J. Roberts and D.C. Allan, �??Singlemode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

SIAM J. Sci. Statist. Comput. (1)

Y. Saad and M.H. Schultz, �??GMRES: A generalised minimal residual algorithm for solving nonsymmetric linear systems,�?? SIAM J. Sci. Statist. Comput. 7, 856-869 (1986).
[CrossRef]

Other (4)

H. Kogelnik, �??Theory of Optical Waveguides,�?? in Guided-Wave Optoelectronics, T. Tamir, ed. (Springer-Verlag, 1988).

J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, N.J., 1995).

T.D. Hedley & D.M. Bird, to be published

<a href="http://www.caam.rice.edu/software/ARPACK/">http://www.caam.rice.edu/software/ARPACK/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Normalised DOS maps for different hole radii, for three different glass indices: (a) 1.5, (b) 2.4, and (c) 3.3. The hole radii are (from left to right): 48%Λ, 44%Λ, 40%Λ, 36%Λ, and 32%Λ. The Roman numerals indicate the types (I, II, or III) of the most significant gaps, under our classification scheme.

Fig. 2.
Fig. 2.

(a) Schematic diagram of the quantities used in the definitions of the normalised gap width and the normalised gap depth. (b) Normalised percentage depths and (c) widths of the lowest-frequency air-line-bandgaps for a range of glass indices and hole radii.

Fig. 3.
Fig. 3.

Axial Poynting-vector profiles of selected core-guided and cladding-guided modes calculated using an 8Λ×8Λ supercell in conjunction with an FFT grid size of 512×512. The Poynting vector magnitude is normalized to unity over the supercell. The photonic crystal cladding has holes of radii 40%Λ in a glass matrix of index 2.4, the frequency k 0Λ is set to 5.4, and the hollow core has a radius of 1.0Λ.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( 2 + k 0 2 n 2 ) h + ( ln n 2 ) × ( × h ) = β 2 h
ρ ( k 0 Λ , β Λ ) = k w k i δ ( β Λ β ik Λ )

Metrics