Abstract

We propose the hybrid integration of conventional index-guided waveguides (CWGs) and photonic crystal (PhC) regions of very limited spatial extent as a promising path toward large-scale planar lightwave circuit (PLC) integration. In CWG/PhC structures the PhC regions do not perform the function of waveguiding, but instead augment the CWGs to permit a drastic reduction in the size of photonic components. For single mode waveguides with a refractive index contrast of only 2.3%, simulation results show a 90 degree bend with 98.7% efficiency, a compact beamsplitter with 99.4% total efficiency, and a planar Mach-Zender interferometer (MZI) with 97.8% efficiency. The MZI occupies an area of only 18 μm × 18 μm.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. See for example the special issue on photonic crystals in IEEE J. Quant. Elect. 38 (2002).
  2. H. Benisty, C.Weisbuch, D. Labilloy,M. Rattier, C. J.M. Smith, T. F. Krauss, R.M. D. L. Rue, R. Houdre, U. Oesterle, C. Jouanin, D. Cassagne, �??Optical and Confinement Properties of Two-Dimensional Photonic Crystals,�?? J. Lightwave Technol. 17 2063 (1999).
    [CrossRef]
  3. S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, �??Linear waveguides in photonic-crystal slabs,�?? Phys. Rev. B 62 8212 (2000).
    [CrossRef]
  4. T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, A. Sakai, �??Light Propagation Characteristics of Straight Single-Line-Defect Waveguides in Photonic Crystal Slabs Fabricated Into a Silicon-on-Insulator Substrate,�?? IEEE J. Quantum Electron. 38, 743 (2002).
    [CrossRef]
  5. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, K. Inoue, �??AlGaAs-Based Two-Dimensional Photonic Crystal Slab With Defect Waveguides for Planar Lightwave Circuit Applications,�?? IEEE J. Quantum Electron. 38, 760 (2002).
    [CrossRef]
  6. A. Adibi, Y. Xu, R. K. Lee, A. Yariv, A. Scherer, �??Properties of the Slab Modes in Photonic Crystal Optical Waveguides,�?? J. Lightwave Technol. 18, 1554 (2000).
    [CrossRef]
  7. M. Loncar, T. Doll, J. Vuckovic, A. Scherer, �??Design and fabrication of silicon photonic crystal optical waveguides,�?? J. Lightwave Technol. 18, 1402 (2000).
    [CrossRef]
  8. A. Chutinan, S. Noda, �??Waveguides and Waveguide Bends in Two-Dimensional Photonic Crystal Slabs,�?? Phys. Rev. B Condens. Matter 62, 4488 (2000).
    [CrossRef]
  9. S. Y. Lin, E. Chow, S. G. Johnson, J. D. Joannopoulos, �??Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5- m wavelength,�?? Opt. Lett. 25, 1297 (2000).
    [CrossRef]
  10. A. Talneau, L. L. Gouezigou, N. Bouadma, �??Quantitative measurement of low propagation losses at 1.55 m on planar photonic crystal waveguides,�?? Opt. Lett. 26, 1259 (2001).
    [CrossRef]
  11. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, �??Structural Tuning of Guiding Modes of Line-Defect Waveguides of Silicon-on-Insulator Photonic Crystal Slabs,�?? IEEE J. Quantum Electron. 38, 736 (2002).
    [CrossRef]
  12. A. Talneau, L. L. Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, M. Agio, �??Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 m,�?? Appl. Phys. Lett. 80, 547 (2002).
    [CrossRef]
  13. H. Benisty, S. Olivier, C. Weisbuch, M. Agio, M. Kafesaki, C. M. Soukoulis, M. Qiu, M. Swillo, A. Karlsson, B. Jaskorzynska, A. Talneau, J. Moosburger, M. Kamp, A. Forchel, R. Ferrini, R. Houdre, U. Oesterle, �??Models and Measurements for the Transmission of Submicron- Width Waveguide Bends Defined in Two-Dimensional Photonic Crystals,�?? IEEE J. Quantum Electron. 38, 770 (2002).
    [CrossRef]
  14. S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdre, U. Oesterle., �??Improved 60° Bend Transmission of Submicron-Width Waveguides Defined in Two-Dimensional Photonic Crystals,�?? J. Lightwave Technol. 20, 1198 (2002).
    [CrossRef]
  15. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, K. Inoue, �??Light-propagation characteristics of Y-branch defect waveguides in AlGaAs-based air-bridge-type two-dimensional photonic crystal slabs,�?? Opt. Lett. 27, 388 (2002).
    [CrossRef]
  16. S. Boscolo, M. Midrio, T. F. Krauss, �??Y junctions in photonic crystal channel waveguides: high transmission and impedance matching,�?? Opt. Lett. 27, 1001 (2002).
    [CrossRef]
  17. O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O�??Brien, P. D. Dapkus, �??Lithographic Tuning of a Two-Dimensional Photonic Crystal Laser Array,�?? IEEE Photon. Technol. Lett. 12, 1126 (2000).
    [CrossRef]
  18. S. Y. Lin, E. Chow, S. G. Johnson, J. D. Joannopoulos, �??Direct measurement of the quality factor in a twodimensional photonic-crystal microcavity,�?? Opt. Lett. 26, 1903 (2001).
    [CrossRef]
  19. H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, C. Jouanin, �??Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate,�?? Appl. Phys. Lett. 76, 532 (2000).
    [CrossRef]
  20. W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, D. D. Zutter, �??Out-of-plane Scattering in Photonic Crystal Slabs,�?? IEEE Photon. Technol. Lett. 13, 565 (2001).
    [CrossRef]
  21. P. Lalanne, H. Benisty, �??Out-of-plane losses of two-dimensional photonic crystals waveguides: Electromagnetic analysis,�?? J. Appl. Phys. 89, 1512 (2001).
    [CrossRef]
  22. P. Lalanne, �??Electromagnetic Analysis of Photonic Crystal Waveguides Operating Above the Light Cone,�?? IEEE J. Quantum Electron. 38, 800 (2002).
    [CrossRef]
  23. M. Tokushima, H. Yamada, �??Light Propagation in a Photonic-Crystal-Slab Line-Defect Waveguide,�?? IEEE J. Quantum Electron. 38, 753 (2002).
    [CrossRef]
  24. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, �??High Transmission through Sharp Bends in Photonic Crystal Waveguides,�?? Phys. Rev. Lett. 77, 3787 (1996).
    [CrossRef] [PubMed]
  25. A. Sharkawy, S. Shi, D. W. Prather, �??Multichannel wavelength division multiplexing with photonic crystals,�?? Appl. Opt. 40, 2247 (2001).
    [CrossRef]
  26. S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdre, U. Oesterle, �??Miniband transmission in a photonic crystal coupled-resonator optical waveguide,�?? Opt. Lett. 26, 1019 (2001).
    [CrossRef]
  27. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Boston, Mass.,1995).
  28. J. P. Berenger, �??A perfectly matched layer for the absorption of electromagnetic waves,�?? J. Comput. Phys. 114, 185-200 (1994).
    [CrossRef]
  29. P. S. J. Russell, T. A. Birks, F. D. L. Lucas, �??Photonic bloch waves and photonic band gaps,�?? in Confined Electrons and Photonics: New Physics and Applications, E. Burstein, C. Weisbuch, eds. (Plenum Press, New York, 1995).
    [CrossRef]
  30. M. Notomi, �??Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,�?? Phys. Rev. B 62, 10,696 (2000).
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. Talneau, L. L. Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, M. Agio, �??Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 m,�?? Appl. Phys. Lett. 80, 547 (2002).
[CrossRef]

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, C. Jouanin, �??Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate,�?? Appl. Phys. Lett. 76, 532 (2000).
[CrossRef]

IEEE J. Quant. Elect. (1)

See for example the special issue on photonic crystals in IEEE J. Quant. Elect. 38 (2002).

IEEE J. Quantum Electron. (6)

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, A. Sakai, �??Light Propagation Characteristics of Straight Single-Line-Defect Waveguides in Photonic Crystal Slabs Fabricated Into a Silicon-on-Insulator Substrate,�?? IEEE J. Quantum Electron. 38, 743 (2002).
[CrossRef]

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, K. Inoue, �??AlGaAs-Based Two-Dimensional Photonic Crystal Slab With Defect Waveguides for Planar Lightwave Circuit Applications,�?? IEEE J. Quantum Electron. 38, 760 (2002).
[CrossRef]

H. Benisty, S. Olivier, C. Weisbuch, M. Agio, M. Kafesaki, C. M. Soukoulis, M. Qiu, M. Swillo, A. Karlsson, B. Jaskorzynska, A. Talneau, J. Moosburger, M. Kamp, A. Forchel, R. Ferrini, R. Houdre, U. Oesterle, �??Models and Measurements for the Transmission of Submicron- Width Waveguide Bends Defined in Two-Dimensional Photonic Crystals,�?? IEEE J. Quantum Electron. 38, 770 (2002).
[CrossRef]

P. Lalanne, �??Electromagnetic Analysis of Photonic Crystal Waveguides Operating Above the Light Cone,�?? IEEE J. Quantum Electron. 38, 800 (2002).
[CrossRef]

M. Tokushima, H. Yamada, �??Light Propagation in a Photonic-Crystal-Slab Line-Defect Waveguide,�?? IEEE J. Quantum Electron. 38, 753 (2002).
[CrossRef]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, �??Structural Tuning of Guiding Modes of Line-Defect Waveguides of Silicon-on-Insulator Photonic Crystal Slabs,�?? IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, D. D. Zutter, �??Out-of-plane Scattering in Photonic Crystal Slabs,�?? IEEE Photon. Technol. Lett. 13, 565 (2001).
[CrossRef]

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O�??Brien, P. D. Dapkus, �??Lithographic Tuning of a Two-Dimensional Photonic Crystal Laser Array,�?? IEEE Photon. Technol. Lett. 12, 1126 (2000).
[CrossRef]

J. Appl. Phys. (1)

P. Lalanne, H. Benisty, �??Out-of-plane losses of two-dimensional photonic crystals waveguides: Electromagnetic analysis,�?? J. Appl. Phys. 89, 1512 (2001).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, �??A perfectly matched layer for the absorption of electromagnetic waves,�?? J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Lett. (6)

Phys. Rev. B (2)

M. Notomi, �??Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,�?? Phys. Rev. B 62, 10,696 (2000).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, �??Linear waveguides in photonic-crystal slabs,�?? Phys. Rev. B 62 8212 (2000).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

A. Chutinan, S. Noda, �??Waveguides and Waveguide Bends in Two-Dimensional Photonic Crystal Slabs,�?? Phys. Rev. B Condens. Matter 62, 4488 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, �??High Transmission through Sharp Bends in Photonic Crystal Waveguides,�?? Phys. Rev. Lett. 77, 3787 (1996).
[CrossRef] [PubMed]

Other (2)

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Boston, Mass.,1995).

P. S. J. Russell, T. A. Birks, F. D. L. Lucas, �??Photonic bloch waves and photonic band gaps,�?? in Confined Electrons and Photonics: New Physics and Applications, E. Burstein, C. Weisbuch, eds. (Plenum Press, New York, 1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) PhC composed of a square Si lattice embedded in a waveguide bend. The square inset is the first Brillouin zone of the PhC. Source and detector lines are described in the text. (b) Efficiency (i.e., power that crosses a given detector line divided by the incident power launched at the waveguide mode source) as a function of wavelength. (c) Image plot (λ = 1.55 μm) of the magnitude squared of the time-average electric field calculated with 2-D FDTD. Yi cell size: 12 nm (λ/130).

Fig. 2.
Fig. 2.

(a) Band diagram for the PhC lattice. (b) Wave vector diagram for three cases: λ = 1.55 μm (black curves), λ = 1.74 μm (blue curves), and λ = 1.24 μm (red curves). The green arrow denotes the primary wave vector of the guided mode incident on the PhC interface. While a single arrow is used for all three wavelengths, it should be understood that it terminates on the appropriate circle for any specific wavelength. The inset shows the first Brillouin zone to aid comparison to the PhC orientation in Fig. 1(a). (c) and (d) Image plots of 2-D FDTD simulation results for sources with wavelengths of 1.74 μm and 1.24 μm, respectively. In both cases the Yi cell size is 10 nm.

Fig. 3.
Fig. 3.

(a) Geometry for beamsplitter. (b) Simulation results for the efficiency as a function of wavelength with which incident light is directed into the horizontal (opex-10-23-1334-i001) and vertical (opex-10-23-1334-i002) waveguides for 1 layer of posts (a = 300 nm, r = 80 nm) and the horizontal (opex-10-23-1334-i003) and vertical (opex-10-23-1334-i004) waveguides for 2 layers of posts (a = 300 nm, r = 83 nm).

Fig. 4.
Fig. 4.

Geometry and simulation result for Mach-Zender interferometer (λ = 1.55 μm). The horizontal and vertical center-to-center waveguide spacing in the interferometer is 9 μm. Yi cell size: 12.9 nm (λ/120).

Metrics