Abstract

An analysis of the con.nement losses in photonic crystal fibers due to the finite numbers of air holes is performed by means of the finite element method. The high flexibility of the numerical method allows us to consider fibers with regular lattices, like the triangular and the honeycomb ones, and circular holes, but also fibers with more complicated cross sections like the cobweb fiber. Numerical results show that by increasing the number of air hole rings the attenuation constant decreases. This dependence is very strong for triangular and cobweb fibers, whereas it is very weak for the honeycomb one.

© 2002 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. T. P. White, R. C. McPhedram, C. M. de Sterke, L. C. Botten, and M. J. Steel, �??Confinement losses in microstructured optical fibers,�?? Opt. Lett. 26, 1660-1662 (2001).
  2. V. Finazzi, T. M. Monro, and D. J. Richardson, �??Confinement losses in highly nonlinear holey optical fibers,�?? in Optical Fiber Communication 2002, vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C. 2002), paper ThS4.
  3. K. Saitoh, and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,�?? IEEE J. Quantum Electron. 38, 927-933 (2002).
    [CrossRef]
  4. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, �??Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method,�?? J. Lightwave Technol. 20, (2002).
  5. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, �??Holey fiber analysis through the finite element method,�?? IEEE Photon. Technol. Lett. 14, 1530-1532 2002.
    [CrossRef]
  6. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, �??Complex FEM modal solver of optical waveguides with PML boundary conditions,�?? Opt. Quantum Electron. 33, 359-371(2001).
    [CrossRef]
  7. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth and P. St. Russell, �??Anomalous dispersion in photonic crystal fiber,�?? IEEE Photon. Technol. Lett. 12, 807-809 (2000).
    [CrossRef]
  8. S. E. Barkou, J. Broeng, and A. Bjarklev, �??Dispersion properties of photonic bandgap guiding fibers,�?? in Optical Fiber Communication Conference , OSA Technical Digest (Optical Society of America, Washington DC, 1998), FG5.
  9. A. Ferrando, E. Silvestre, P.Andres, J. J. Miret, and M. V. Andres, �??Designing the properties of dispersion-.attend photonic crystal fibers,�?? Opt. Express 9, 687-697 (2001). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687</a>

IEEE J. Quantum Electron. (1)

K. Saitoh, and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,�?? IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, �??Holey fiber analysis through the finite element method,�?? IEEE Photon. Technol. Lett. 14, 1530-1532 2002.
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth and P. St. Russell, �??Anomalous dispersion in photonic crystal fiber,�?? IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

J. Lightwave Technol. (1)

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, �??Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method,�?? J. Lightwave Technol. 20, (2002).

Opt. Express (1)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, �??Complex FEM modal solver of optical waveguides with PML boundary conditions,�?? Opt. Quantum Electron. 33, 359-371(2001).
[CrossRef]

OSA Technical Digest (1)

S. E. Barkou, J. Broeng, and A. Bjarklev, �??Dispersion properties of photonic bandgap guiding fibers,�?? in Optical Fiber Communication Conference , OSA Technical Digest (Optical Society of America, Washington DC, 1998), FG5.

OSA Trends Optics and Photonics Serie (1)

V. Finazzi, T. M. Monro, and D. J. Richardson, �??Confinement losses in highly nonlinear holey optical fibers,�?? in Optical Fiber Communication 2002, vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C. 2002), paper ThS4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics