M. Skorobogatiy, Steven A. Jacobs, Steven G. Johnson, and Yoel Fink, “Dielectric profile variations in high index-contrast waveguides, coupled mode theory and perturbation expansions,” to be published in J. Opt. Soc. Am. B, 2003.
Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, J. D. Joannopoulos, and Yoel Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 66611 (2002).
[Crossref]
M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
[Crossref]
Steven G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos “The adiabatic theorem and a continuous coupled-mode theory for efficient taper transitions in photonic crystals,” to be published in Phys. Rev. E, 2002.
[Crossref]
Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
[Crossref]
[PubMed]
M. Lohmeyer, N. Bahlmann, and P. Hertel, “Geometry tolerance estimation for rectangular dielectric waveguide devices by means of perturbation theory,” Opt. Communications 163, pp. 86–94 (1999).
[Crossref]
F.L. Teixeira and W.C. Chew, “Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves,” Microwave Opt. Technol. Lett. 17, 231 (1998).
[Crossref]
J.P. Plumey, G. Granet, and J. Chandezon, “Differential covariant formalism for solving Maxwell’s equations in curvilinear coordinates: oblique scattering from lossy periodic surfaces,” IEEE Trans. on Antennas Propag. 43, 835 (1995).
[Crossref]
R. Holland, “Finite-difference solution of Maxell’s equation in generalized nonorhogonal coordinates,” IEEE Trans. Nucl. Sci. 30, 4589 (1983).
[Crossref]
N. R. Hill,“Integral-equation perturbative approach to optical scattering from rough surfaces,” Phys. Rev. B 24, p. 7112 (1981).
[Crossref]
M. Lohmeyer, N. Bahlmann, and P. Hertel, “Geometry tolerance estimation for rectangular dielectric waveguide devices by means of perturbation theory,” Opt. Communications 163, pp. 86–94 (1999).
[Crossref]
Steven G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos “The adiabatic theorem and a continuous coupled-mode theory for efficient taper transitions in photonic crystals,” to be published in Phys. Rev. E, 2002.
[Crossref]
P. Bienstman, software at http://camfr.sf.net.
J.P. Plumey, G. Granet, and J. Chandezon, “Differential covariant formalism for solving Maxwell’s equations in curvilinear coordinates: oblique scattering from lossy periodic surfaces,” IEEE Trans. on Antennas Propag. 43, 835 (1995).
[Crossref]
L. Lewin , D. C. Chang, and E. F. Kuester, Electromagnetic waves and curved structures (IEE Press, Peter Peregrinus Ltd., Stevenage1977).
F.L. Teixeira and W.C. Chew, “Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves,” Microwave Opt. Technol. Lett. 17, 231 (1998).
[Crossref]
M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
[Crossref]
Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
[Crossref]
[PubMed]
M. Skorobogatiy, Steven A. Jacobs, Steven G. Johnson, and Yoel Fink, “Dielectric profile variations in high index-contrast waveguides, coupled mode theory and perturbation expansions,” to be published in J. Opt. Soc. Am. B, 2003.
M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
[Crossref]
Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, J. D. Joannopoulos, and Yoel Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 66611 (2002).
[Crossref]
Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
[Crossref]
[PubMed]
J.P. Plumey, G. Granet, and J. Chandezon, “Differential covariant formalism for solving Maxwell’s equations in curvilinear coordinates: oblique scattering from lossy periodic surfaces,” IEEE Trans. on Antennas Propag. 43, 835 (1995).
[Crossref]
M. Lohmeyer, N. Bahlmann, and P. Hertel, “Geometry tolerance estimation for rectangular dielectric waveguide devices by means of perturbation theory,” Opt. Communications 163, pp. 86–94 (1999).
[Crossref]
N. R. Hill,“Integral-equation perturbative approach to optical scattering from rough surfaces,” Phys. Rev. B 24, p. 7112 (1981).
[Crossref]
R. Holland, “Finite-difference solution of Maxell’s equation in generalized nonorhogonal coordinates,” IEEE Trans. Nucl. Sci. 30, 4589 (1983).
[Crossref]
H. Hung-Chia, Coupled mode theory as applied to microwave and optical transmission (VNU Science Press, Utrecht1984).
Steven G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos “The adiabatic theorem and a continuous coupled-mode theory for efficient taper transitions in photonic crystals,” to be published in Phys. Rev. E, 2002.
[Crossref]
M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
[Crossref]
Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, J. D. Joannopoulos, and Yoel Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 66611 (2002).
[Crossref]
Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
[Crossref]
[PubMed]
M. Skorobogatiy, Steven A. Jacobs, Steven G. Johnson, and Yoel Fink, “Dielectric profile variations in high index-contrast waveguides, coupled mode theory and perturbation expansions,” to be published in J. Opt. Soc. Am. B, 2003.
M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
[Crossref]
Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
[Crossref]
[PubMed]
Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, J. D. Joannopoulos, and Yoel Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 66611 (2002).
[Crossref]
Steven G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos “The adiabatic theorem and a continuous coupled-mode theory for efficient taper transitions in photonic crystals,” to be published in Phys. Rev. E, 2002.
[Crossref]
Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
[Crossref]
[PubMed]
M. Skorobogatiy, Steven A. Jacobs, Steven G. Johnson, and Yoel Fink, “Dielectric profile variations in high index-contrast waveguides, coupled mode theory and perturbation expansions,” to be published in J. Opt. Soc. Am. B, 2003.
Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, J. D. Joannopoulos, and Yoel Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 66611 (2002).
[Crossref]
M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
[Crossref]
Steven G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos “The adiabatic theorem and a continuous coupled-mode theory for efficient taper transitions in photonic crystals,” to be published in Phys. Rev. E, 2002.
[Crossref]
Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
[Crossref]
[PubMed]
B. Z. Katsenelenbaum, L. Mercader del Río, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Inst. of Electrical Engineers, London, 1998).
[Crossref]
L. Lewin , D. C. Chang, and E. F. Kuester, Electromagnetic waves and curved structures (IEE Press, Peter Peregrinus Ltd., Stevenage1977).
L. D. Landau and E. M. Lifshitz, Quantum mechanics (non-relativistic theory) (Butterworth Heinemann, 2000).
L. Lewin , D. C. Chang, and E. F. Kuester, Electromagnetic waves and curved structures (IEE Press, Peter Peregrinus Ltd., Stevenage1977).
Steven G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos “The adiabatic theorem and a continuous coupled-mode theory for efficient taper transitions in photonic crystals,” to be published in Phys. Rev. E, 2002.
[Crossref]
L. D. Landau and E. M. Lifshitz, Quantum mechanics (non-relativistic theory) (Butterworth Heinemann, 2000).
M. Lohmeyer, N. Bahlmann, and P. Hertel, “Geometry tolerance estimation for rectangular dielectric waveguide devices by means of perturbation theory,” Opt. Communications 163, pp. 86–94 (1999).
[Crossref]
A. W. Snyder and J. D. Love, Optical waveguide theory (Chapman and Hall, London, 1983).
D. Marcuse, Theory of dielectric optical waveguides (Academic Press, 2nd ed., 1991).
B. Z. Katsenelenbaum, L. Mercader del Río, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Inst. of Electrical Engineers, London, 1998).
[Crossref]
B. Z. Katsenelenbaum, L. Mercader del Río, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Inst. of Electrical Engineers, London, 1998).
[Crossref]
J.P. Plumey, G. Granet, and J. Chandezon, “Differential covariant formalism for solving Maxwell’s equations in curvilinear coordinates: oblique scattering from lossy periodic surfaces,” IEEE Trans. on Antennas Propag. 43, 835 (1995).
[Crossref]
E.J. Post, Formal Structure of Electromagnetics (Amsterdam: North-Holland, 1962).
M. Skorobogatiy, Steven A. Jacobs, Steven G. Johnson, and Yoel Fink, “Dielectric profile variations in high index-contrast waveguides, coupled mode theory and perturbation expansions,” to be published in J. Opt. Soc. Am. B, 2003.
Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, J. D. Joannopoulos, and Yoel Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 66611 (2002).
[Crossref]
M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
[Crossref]
Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
[Crossref]
[PubMed]
Steven G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos “The adiabatic theorem and a continuous coupled-mode theory for efficient taper transitions in photonic crystals,” to be published in Phys. Rev. E, 2002.
[Crossref]
A. W. Snyder and J. D. Love, Optical waveguide theory (Chapman and Hall, London, 1983).
M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
[Crossref]
Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
[Crossref]
[PubMed]
B. Z. Katsenelenbaum, L. Mercader del Río, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Inst. of Electrical Engineers, London, 1998).
[Crossref]
F. Sporleder and H. G. Unger, Waveguide tapers transitions and couplers (IEE Press, Peter Peregrinus Ltd., Stevenage1979).
F.L. Teixeira and W.C. Chew, “Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves,” Microwave Opt. Technol. Lett. 17, 231 (1998).
[Crossref]
B. Z. Katsenelenbaum, L. Mercader del Río, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Inst. of Electrical Engineers, London, 1998).
[Crossref]
F. Sporleder and H. G. Unger, Waveguide tapers transitions and couplers (IEE Press, Peter Peregrinus Ltd., Stevenage1979).
C. Vassallo, Optical waveguide concepts (Elsevier, Amsterdam, 1991).
M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
[Crossref]
Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, J. D. Joannopoulos, and Yoel Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 66611 (2002).
[Crossref]
Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
[Crossref]
[PubMed]
R. Holland, “Finite-difference solution of Maxell’s equation in generalized nonorhogonal coordinates,” IEEE Trans. Nucl. Sci. 30, 4589 (1983).
[Crossref]
J.P. Plumey, G. Granet, and J. Chandezon, “Differential covariant formalism for solving Maxwell’s equations in curvilinear coordinates: oblique scattering from lossy periodic surfaces,” IEEE Trans. on Antennas Propag. 43, 835 (1995).
[Crossref]
M. Skorobogatiy, Steven A. Jacobs, Steven G. Johnson, and Yoel Fink, “Dielectric profile variations in high index-contrast waveguides, coupled mode theory and perturbation expansions,” to be published in J. Opt. Soc. Am. B, 2003.
F.L. Teixeira and W.C. Chew, “Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves,” Microwave Opt. Technol. Lett. 17, 231 (1998).
[Crossref]
M. Lohmeyer, N. Bahlmann, and P. Hertel, “Geometry tolerance estimation for rectangular dielectric waveguide devices by means of perturbation theory,” Opt. Communications 163, pp. 86–94 (1999).
[Crossref]
Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
[Crossref]
[PubMed]
M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
[Crossref]
N. R. Hill,“Integral-equation perturbative approach to optical scattering from rough surfaces,” Phys. Rev. B 24, p. 7112 (1981).
[Crossref]
Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, J. D. Joannopoulos, and Yoel Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 66611 (2002).
[Crossref]
Steven G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos “The adiabatic theorem and a continuous coupled-mode theory for efficient taper transitions in photonic crystals,” to be published in Phys. Rev. E, 2002.
[Crossref]
L. D. Landau and E. M. Lifshitz, Quantum mechanics (non-relativistic theory) (Butterworth Heinemann, 2000).
C. Vassallo, Optical waveguide concepts (Elsevier, Amsterdam, 1991).
P. Bienstman, software at http://camfr.sf.net.
E.J. Post, Formal Structure of Electromagnetics (Amsterdam: North-Holland, 1962).
D. Marcuse, Theory of dielectric optical waveguides (Academic Press, 2nd ed., 1991).
A. W. Snyder and J. D. Love, Optical waveguide theory (Chapman and Hall, London, 1983).
B. Z. Katsenelenbaum, L. Mercader del Río, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Inst. of Electrical Engineers, London, 1998).
[Crossref]
L. Lewin , D. C. Chang, and E. F. Kuester, Electromagnetic waves and curved structures (IEE Press, Peter Peregrinus Ltd., Stevenage1977).
F. Sporleder and H. G. Unger, Waveguide tapers transitions and couplers (IEE Press, Peter Peregrinus Ltd., Stevenage1979).
H. Hung-Chia, Coupled mode theory as applied to microwave and optical transmission (VNU Science Press, Utrecht1984).