Abstract

Multi-segment liquid crystal spatial light modulators have received much attention recently for use as high-precision wavefront control devices for use in astronomical and non-astronomical applications. They act much like piston only segmented deformable mirrors. In this paper we investigate the use of these devices in conjunction with a Shack-Hartmann wave-front sensor. Previous investigators have considered Zernike modal control algorithms. In this paper we consider a zonal algorithm in order to take advantage of high speed matrix multiply hardware which we have in hand.

© 1997 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics

David C. Dayton, Stephen L. Browne, Steven P. Sandven, John D. Gonglewski, and Alexis V. Kudryashov
Appl. Opt. 37(24) 5579-5589 (1998)

Wave-front reconstruction using a Shack–Hartmann sensor

R. G. Lane and M. Tallon
Appl. Opt. 31(32) 6902-6908 (1992)

Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique

Rui Liu, Daniel E. Milkie, Aaron Kerlin, Bryan MacLennan, and Na Ji
Opt. Express 22(2) 1619-1628 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G.D. Love, “Wavefront correction and production of Zernike modes with a liquid crystal SLM”, Appl. Opt.,  36, 1517–1524 (1997).
    [Crossref] [PubMed]
  2. J. Gourlay, G.D. Love, P.M. Birch, R.M. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results”, Opt. Commun. 137, 17–21 (1997).
    [Crossref]
  3. A. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization”, Opt. Commun. 141, 247–253 (1997).
    [Crossref]
  4. W. Wild, E. Kibblewhite, and R. Vuilleumier, “Sparse matrix wave-front estimators for adaptive-optics system for large ground-based telescopes,” Opt. Lett. 20 (9), 995–957 (1995).
    [Crossref]

1997 (3)

J. Gourlay, G.D. Love, P.M. Birch, R.M. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results”, Opt. Commun. 137, 17–21 (1997).
[Crossref]

A. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization”, Opt. Commun. 141, 247–253 (1997).
[Crossref]

G.D. Love, “Wavefront correction and production of Zernike modes with a liquid crystal SLM”, Appl. Opt.,  36, 1517–1524 (1997).
[Crossref] [PubMed]

1995 (1)

W. Wild, E. Kibblewhite, and R. Vuilleumier, “Sparse matrix wave-front estimators for adaptive-optics system for large ground-based telescopes,” Opt. Lett. 20 (9), 995–957 (1995).
[Crossref]

Birch, P.M.

J. Gourlay, G.D. Love, P.M. Birch, R.M. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results”, Opt. Commun. 137, 17–21 (1997).
[Crossref]

Browne, S.

A. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization”, Opt. Commun. 141, 247–253 (1997).
[Crossref]

Gonglewski, J.

A. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization”, Opt. Commun. 141, 247–253 (1997).
[Crossref]

Gourlay, J.

J. Gourlay, G.D. Love, P.M. Birch, R.M. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results”, Opt. Commun. 137, 17–21 (1997).
[Crossref]

Highland, R.

A. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization”, Opt. Commun. 141, 247–253 (1997).
[Crossref]

Kibblewhite, E.

W. Wild, E. Kibblewhite, and R. Vuilleumier, “Sparse matrix wave-front estimators for adaptive-optics system for large ground-based telescopes,” Opt. Lett. 20 (9), 995–957 (1995).
[Crossref]

Kudryashov, A.

A. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization”, Opt. Commun. 141, 247–253 (1997).
[Crossref]

Love, G.D.

J. Gourlay, G.D. Love, P.M. Birch, R.M. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results”, Opt. Commun. 137, 17–21 (1997).
[Crossref]

G.D. Love, “Wavefront correction and production of Zernike modes with a liquid crystal SLM”, Appl. Opt.,  36, 1517–1524 (1997).
[Crossref] [PubMed]

Purvis, A.

J. Gourlay, G.D. Love, P.M. Birch, R.M. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results”, Opt. Commun. 137, 17–21 (1997).
[Crossref]

Sharples, R.M.

J. Gourlay, G.D. Love, P.M. Birch, R.M. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results”, Opt. Commun. 137, 17–21 (1997).
[Crossref]

Vuilleumier, R.

W. Wild, E. Kibblewhite, and R. Vuilleumier, “Sparse matrix wave-front estimators for adaptive-optics system for large ground-based telescopes,” Opt. Lett. 20 (9), 995–957 (1995).
[Crossref]

Wild, W.

W. Wild, E. Kibblewhite, and R. Vuilleumier, “Sparse matrix wave-front estimators for adaptive-optics system for large ground-based telescopes,” Opt. Lett. 20 (9), 995–957 (1995).
[Crossref]

Appl. Opt. (1)

Opt. Commun. (2)

J. Gourlay, G.D. Love, P.M. Birch, R.M. Sharples, and A. Purvis, “A real-time closed-loop liquid crystal adaptive optics system: first results”, Opt. Commun. 137, 17–21 (1997).
[Crossref]

A. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization”, Opt. Commun. 141, 247–253 (1997).
[Crossref]

Opt. Lett. (1)

W. Wild, E. Kibblewhite, and R. Vuilleumier, “Sparse matrix wave-front estimators for adaptive-optics system for large ground-based telescopes,” Opt. Lett. 20 (9), 995–957 (1995).
[Crossref]

Supplementary Material (1)

» Media 1: MOV (248 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simulated one dimensional cross sections of Shack-Hartmann spot

Fig. 2
Fig. 2

Shack-Hartmann centroid error as a function of segment displacement

Fig. 3
Fig. 3

Arrangement of SLM Elements With Respect to Shack-Hartmann Sub-Apertures

Fig. 4
Fig. 4

Effect of SLM segment displacement on Shack-Hartmann Spots

Fig. 5
Fig. 5

Block Diagram Zonal Control of Spatial Light Modulator

Fig. 6
Fig. 6

Experimental Layout for Closed Loop Tests

Fig. 7
Fig. 7

Open and Closed Loop results with a Static Aberration

Fig. 8
Fig. 8

Dynamic Closed Loop Control [Media 1]

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ϕ x = 3 2 ( a b )
ϕ y = c a + b 2
Φ = ΓX
Φ = [ ϕ x 11 ϕ x 12 · · ϕ y 11 ϕ y 12 · · ]
X = [ x 11 x 12 · · x 21 x 22 · · ]
Γ = [ 3 2 3 2 0 0 0 · 0 3 2 3 2 0 0 · · · · · · · 1 2 1 2 · 1 0 · 0 1 2 1 2 · 1 · ]
H = Γ T ( Γ T Γ ) 1
C k = C k 1 gH ( Φ Φ 0 )

Metrics