Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Analysis of pulse propagation through multilayer plasmonic waveguides in the quasi-bound mode region

Not Accessible

Your library or personal account may give you access

Abstract

We present a numerical analysis of surface plasmon dispersion and the nonlinear nature of wave propagation on different smooth waveguides with lossy noble metal films. We also analyze the effective parameters that can affect the dispersion behavior of a thin dielectric slab waveguide embedded in a symmetric metal film. Three kinds of metal (silver, gold, and copper) with Johnson–Christy constants have been utilized in waveguides. Four kinds of dielectric material (air, Teflon, FR-4, and silicon) have been employed in the insulator layer of the metal–insulator–metal waveguide. The dispersion curve of the metal–insulator–metal waveguide with different metal and dielectric arrangements has been studied numerically. By multi-nominal fitting of dispersion curves, we have derived the nonlinear properties of Gaussian (chirped) wave propagation, dispersion length, and pulse broadening through a three-layer plasmonic waveguide. A comparison of three-layered plasmonic waveguides with different guiding layers has been accomplished. Simulation results have shown that dispersion curves with a larger peak and a quasi-bound mode cause the Gaussian waves to be dispersed and broadened during longer traveling distances. The achieved results serve an impressive function in the design of optical switches and delay lines.

© 2017 Optical Society of America

PDF Article
More Like This
Mode properties in metallic and non-metallic plasmonic waveguides

Wanwan Liu, Yifu Chen, Xin Hu, Long Wen, Lin Jin, Qiang Su, and Qin Chen
Appl. Opt. 56(16) 4861-4867 (2017)

Bound modes analysis of symmetric dielectric loaded surface plasmon-polariton waveguides

Yun Binfeng, Hu Guohua, and Cui Yiping
Opt. Express 17(5) 3610-3618 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.