Abstract

This paper describes a spectrometer system for carrying out intraoperation studies by the methods of fluorescence and reflection spectroscopy, including two specialized devices: for dynamic fixation of a fiber-optic probe on a functioning heart and automatic rinsing of blood from its surface. An example is given of using the system in fluorescence studies of experimental ischemia of the rat myocardium under in vivo conditions.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R.  Richards-Kortum, E.  Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555 (1996).
  2. G. V.  Papayan, V. B.  Berezin, N. N.  Petrishchev, M. M.  Galagudza, K.  Uk, “Spectrometer for fluorescence–reflection biomedical research,” Opt. Zh. 80, No. 1, 56 (2013) [J. Opt. Technol. 80, 40 (2013)].
  3. G. V.  Papayan, V. M.  Zhurba, A. A.  Kishalov, M. M.  Galagudza, “Fiber fluorescence–reflection spectrometer with multiwave excitation,” Opt. Zh. 81, No. 1, 45 (2014) [J. Opt. Technol. 81, 29 (2014)].
  4. U.  Utzinger, R.  Richards-Kortum, “Fiber-optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121 (2003).
    [CrossRef]
  5. V. B.  Loschenov, V. I.  Konov, A. M.  Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188 (2000).
  6. K. A.  Horvath, K. T.  Schomacker, C. C.  Lee, L. H.  Cohn, “Intraoperative myocardial ischemia detection with laser-induced fluorescence,” J. Thorac. Cardiovasc. Surg. 107, 220 (1994).
  7. M.  Galagudza, I. O.  Blokhin, A. A.  Shmonin, K. A.  Mischenko, “Reduction of myocardial ischemia-reperfusion injury with pre- and postconditioning: molecular mechanisms and therapeutic targets,” Cardiovasc. Hematol. Disord. Drug Targets 8, No. 1, 47 (2008).

2014 (1)

G. V.  Papayan, V. M.  Zhurba, A. A.  Kishalov, M. M.  Galagudza, “Fiber fluorescence–reflection spectrometer with multiwave excitation,” Opt. Zh. 81, No. 1, 45 (2014) [J. Opt. Technol. 81, 29 (2014)].

2013 (1)

G. V.  Papayan, V. B.  Berezin, N. N.  Petrishchev, M. M.  Galagudza, K.  Uk, “Spectrometer for fluorescence–reflection biomedical research,” Opt. Zh. 80, No. 1, 56 (2013) [J. Opt. Technol. 80, 40 (2013)].

2008 (1)

M.  Galagudza, I. O.  Blokhin, A. A.  Shmonin, K. A.  Mischenko, “Reduction of myocardial ischemia-reperfusion injury with pre- and postconditioning: molecular mechanisms and therapeutic targets,” Cardiovasc. Hematol. Disord. Drug Targets 8, No. 1, 47 (2008).

2003 (1)

U.  Utzinger, R.  Richards-Kortum, “Fiber-optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121 (2003).
[CrossRef]

2000 (1)

V. B.  Loschenov, V. I.  Konov, A. M.  Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188 (2000).

1996 (1)

R.  Richards-Kortum, E.  Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555 (1996).

1994 (1)

K. A.  Horvath, K. T.  Schomacker, C. C.  Lee, L. H.  Cohn, “Intraoperative myocardial ischemia detection with laser-induced fluorescence,” J. Thorac. Cardiovasc. Surg. 107, 220 (1994).

Berezin, V. B.

G. V.  Papayan, V. B.  Berezin, N. N.  Petrishchev, M. M.  Galagudza, K.  Uk, “Spectrometer for fluorescence–reflection biomedical research,” Opt. Zh. 80, No. 1, 56 (2013) [J. Opt. Technol. 80, 40 (2013)].

Blokhin, I. O.

M.  Galagudza, I. O.  Blokhin, A. A.  Shmonin, K. A.  Mischenko, “Reduction of myocardial ischemia-reperfusion injury with pre- and postconditioning: molecular mechanisms and therapeutic targets,” Cardiovasc. Hematol. Disord. Drug Targets 8, No. 1, 47 (2008).

Cohn, L. H.

K. A.  Horvath, K. T.  Schomacker, C. C.  Lee, L. H.  Cohn, “Intraoperative myocardial ischemia detection with laser-induced fluorescence,” J. Thorac. Cardiovasc. Surg. 107, 220 (1994).

Galagudza, M.

M.  Galagudza, I. O.  Blokhin, A. A.  Shmonin, K. A.  Mischenko, “Reduction of myocardial ischemia-reperfusion injury with pre- and postconditioning: molecular mechanisms and therapeutic targets,” Cardiovasc. Hematol. Disord. Drug Targets 8, No. 1, 47 (2008).

Galagudza, M. M.

G. V.  Papayan, V. M.  Zhurba, A. A.  Kishalov, M. M.  Galagudza, “Fiber fluorescence–reflection spectrometer with multiwave excitation,” Opt. Zh. 81, No. 1, 45 (2014) [J. Opt. Technol. 81, 29 (2014)].

G. V.  Papayan, V. B.  Berezin, N. N.  Petrishchev, M. M.  Galagudza, K.  Uk, “Spectrometer for fluorescence–reflection biomedical research,” Opt. Zh. 80, No. 1, 56 (2013) [J. Opt. Technol. 80, 40 (2013)].

Horvath, K. A.

K. A.  Horvath, K. T.  Schomacker, C. C.  Lee, L. H.  Cohn, “Intraoperative myocardial ischemia detection with laser-induced fluorescence,” J. Thorac. Cardiovasc. Surg. 107, 220 (1994).

Kishalov, A. A.

G. V.  Papayan, V. M.  Zhurba, A. A.  Kishalov, M. M.  Galagudza, “Fiber fluorescence–reflection spectrometer with multiwave excitation,” Opt. Zh. 81, No. 1, 45 (2014) [J. Opt. Technol. 81, 29 (2014)].

Konov, V. I.

V. B.  Loschenov, V. I.  Konov, A. M.  Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188 (2000).

Lee, C. C.

K. A.  Horvath, K. T.  Schomacker, C. C.  Lee, L. H.  Cohn, “Intraoperative myocardial ischemia detection with laser-induced fluorescence,” J. Thorac. Cardiovasc. Surg. 107, 220 (1994).

Loschenov, V. B.

V. B.  Loschenov, V. I.  Konov, A. M.  Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188 (2000).

Mischenko, K. A.

M.  Galagudza, I. O.  Blokhin, A. A.  Shmonin, K. A.  Mischenko, “Reduction of myocardial ischemia-reperfusion injury with pre- and postconditioning: molecular mechanisms and therapeutic targets,” Cardiovasc. Hematol. Disord. Drug Targets 8, No. 1, 47 (2008).

Papayan, G. V.

G. V.  Papayan, V. M.  Zhurba, A. A.  Kishalov, M. M.  Galagudza, “Fiber fluorescence–reflection spectrometer with multiwave excitation,” Opt. Zh. 81, No. 1, 45 (2014) [J. Opt. Technol. 81, 29 (2014)].

G. V.  Papayan, V. B.  Berezin, N. N.  Petrishchev, M. M.  Galagudza, K.  Uk, “Spectrometer for fluorescence–reflection biomedical research,” Opt. Zh. 80, No. 1, 56 (2013) [J. Opt. Technol. 80, 40 (2013)].

Petrishchev, N. N.

G. V.  Papayan, V. B.  Berezin, N. N.  Petrishchev, M. M.  Galagudza, K.  Uk, “Spectrometer for fluorescence–reflection biomedical research,” Opt. Zh. 80, No. 1, 56 (2013) [J. Opt. Technol. 80, 40 (2013)].

Prokhorov, A. M.

V. B.  Loschenov, V. I.  Konov, A. M.  Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188 (2000).

Richards-Kortum, R.

U.  Utzinger, R.  Richards-Kortum, “Fiber-optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121 (2003).
[CrossRef]

R.  Richards-Kortum, E.  Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555 (1996).

Schomacker, K. T.

K. A.  Horvath, K. T.  Schomacker, C. C.  Lee, L. H.  Cohn, “Intraoperative myocardial ischemia detection with laser-induced fluorescence,” J. Thorac. Cardiovasc. Surg. 107, 220 (1994).

Sevick-Muraca, E.

R.  Richards-Kortum, E.  Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555 (1996).

Shmonin, A. A.

M.  Galagudza, I. O.  Blokhin, A. A.  Shmonin, K. A.  Mischenko, “Reduction of myocardial ischemia-reperfusion injury with pre- and postconditioning: molecular mechanisms and therapeutic targets,” Cardiovasc. Hematol. Disord. Drug Targets 8, No. 1, 47 (2008).

Uk, K.

G. V.  Papayan, V. B.  Berezin, N. N.  Petrishchev, M. M.  Galagudza, K.  Uk, “Spectrometer for fluorescence–reflection biomedical research,” Opt. Zh. 80, No. 1, 56 (2013) [J. Opt. Technol. 80, 40 (2013)].

Utzinger, U.

U.  Utzinger, R.  Richards-Kortum, “Fiber-optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121 (2003).
[CrossRef]

Zhurba, V. M.

G. V.  Papayan, V. M.  Zhurba, A. A.  Kishalov, M. M.  Galagudza, “Fiber fluorescence–reflection spectrometer with multiwave excitation,” Opt. Zh. 81, No. 1, 45 (2014) [J. Opt. Technol. 81, 29 (2014)].

Annu. Rev. Phys. Chem. (1)

R.  Richards-Kortum, E.  Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555 (1996).

Cardiovasc. Hematol. Disord. Drug Targets (1)

M.  Galagudza, I. O.  Blokhin, A. A.  Shmonin, K. A.  Mischenko, “Reduction of myocardial ischemia-reperfusion injury with pre- and postconditioning: molecular mechanisms and therapeutic targets,” Cardiovasc. Hematol. Disord. Drug Targets 8, No. 1, 47 (2008).

J. Biomed. Opt. (1)

U.  Utzinger, R.  Richards-Kortum, “Fiber-optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, 121 (2003).
[CrossRef]

J. Thorac. Cardiovasc. Surg. (1)

K. A.  Horvath, K. T.  Schomacker, C. C.  Lee, L. H.  Cohn, “Intraoperative myocardial ischemia detection with laser-induced fluorescence,” J. Thorac. Cardiovasc. Surg. 107, 220 (1994).

Laser Phys. (1)

V. B.  Loschenov, V. I.  Konov, A. M.  Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188 (2000).

Opt. Zh. (2)

G. V.  Papayan, V. B.  Berezin, N. N.  Petrishchev, M. M.  Galagudza, K.  Uk, “Spectrometer for fluorescence–reflection biomedical research,” Opt. Zh. 80, No. 1, 56 (2013) [J. Opt. Technol. 80, 40 (2013)].

G. V.  Papayan, V. M.  Zhurba, A. A.  Kishalov, M. M.  Galagudza, “Fiber fluorescence–reflection spectrometer with multiwave excitation,” Opt. Zh. 81, No. 1, 45 (2014) [J. Opt. Technol. 81, 29 (2014)].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.