Abstract

The transmission characteristics of a Raman-amplified atomic filter that can be used to detect fairly weak signals in free-space quantum-key distribution or laser communications are analyzed and discussed in the coherent and incoherent pump fields respectively. The theoretical model for the calculation of the transmission characteristics of a ground-state Raman-amplified Faraday dispersion atomic optical filter based on Raman gain and Faraday rotation is presented. The results show that the filter in a coherent pump field can achieve higher transmission and larger tunability than that in an incoherent pump field due to elimination of pumping detuning. In addition, the filter has a large scale tunability over 3.5 GHz via the Faraday transmission peak adjusted while its bandwidth is only 66 MHz, which is useful for free-space laser communication and lidar systems.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P.  Yeh, “Dispersive magnetooptic filters,” Appl. Opt. 21, No. 11, 2069 (1982).
    [CrossRef]
  2. B.  Yin, T. M.  Shay, “Theoretical model for a Faraday anomalous dispersion optical filter,” Opt. Lett. 16, No. 20, 1617–1619 (1991).
    [CrossRef]
  3. J.  Menders, K.  Benson, S. H.  Bloom, C. S.  Liu, E.  Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852  nm,” Opt. Lett. 16, No. 11, 846–848 (1991).
    [CrossRef]
  4. H.  Chen, C. Y.  She, P.  Searcy, E.  Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett. 18, No. 12, 1019–1021 (1993).
    [CrossRef]
  5. Z.  Hu, X.  Sun, Y.  Liu, L.  Fu, X.  Zeng, “Temperature properties of Na dispersive Faraday optical filter at D1 and D2 line,” Opt. Commun. 156, No. 4–6, 289–293 (1998).
    [CrossRef]
  6. Y.  Zhang, X.  Jia, Z.  Ma, Q.  Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, No. 1–3, 147–150 (2001).
    [CrossRef]
  7. D. J.  Dick, T. M.  Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett. 16, No. 11, 867–869 (1991).
    [CrossRef]
  8. E. T.  Dressler, A. E.  Laux, R. I.  Billmers, “Theory and experiment for the anomalous Faraday effect in potassium,” J. Opt. Soc. Am. B. 13, No. 9, 1849–1858 (1996).
  9. Z.  Hu, X.  Sun, X.  Zeng, Y.  Peng, J.  Tang, L.  Zhang, Q.  Wang, L.  Zheng, “Rb 780  nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun. 101, No. 3–4, 175–178 (1993).
    [CrossRef]
  10. J.  Tang, Q.  Wang, Y.  Li, L.  Zhang, J.  Gan, M.  Duan, J.  Kong, L.  Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, No. 15, 2619–2622 (1995).
    [CrossRef]
  11. C.  Fricke-Begemann, M.  Alpers, J.  Höffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, No. 21, 1932–1934 (2002).
    [CrossRef]
  12. J.  Höffner, C.  Fricke-Begemann, “Accurate lidar temperatures with narrowband filters,” Opt. Lett. 30, No. 8, 890–892 (2005).
    [CrossRef]
  13. A.  Popescu, D.  Walldorf, K.  Schorstein, T.  Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264, No. 2, 475–481 (2006).
    [CrossRef]
  14. W. T.  Buttler, R. J.  Hughes, P. G.  Kwiat, S. K.  Lamoreaux, G. G.  Luther, G. L.  Morgan, J. E.  Nordholt, C. G.  Peterson, C. M.  Simmons, “Practical free-space quantum key distribution over 1  km,” Phys. Rev. Lett. 81, No. 15, 3283–3286 (1998).
    [CrossRef]
  15. X.  Shan, X.  Sun, J.  Luo, Z.  Tan, M.  Zhan, “Free-space quantum key distribution with Rb vapor filters,” Appl. Phys. Lett. 89, No. 19, 191121 (2006).
    [CrossRef]
  16. Y.  Ohman, “On some new auxiliary instruments in astrophysical research VI. A tentative monochromator for solar work based on the principle of selective magnetic rotation,” Stockholms Obs. Ann. 19, No. 4, 9–11 (1956).
  17. S. D.  Harrell, C. Y.  She, T.  Yuan, D. A.  Krueger, H.  Chen, S. S.  Chen, Z. L.  Hu, “Sodium and potassium vapor Faraday filters revisited: theory and applications,” J. Opt. Soc. Am. B 26, No. 4, 659–670 (2009).
    [CrossRef]
  18. Y. F.  Peng, J. X.  Tang, Q. J.  Wang, “Study of Faraday anomalous dispersion spectra of the hyperfine structure of Rb D2 lines,” Acta Phys. Sin. (Overseas Edn). 2, No. 1, 1–8 (1993).
  19. J. A.  Zielińska, F. A.  Beduini, N.  Godbout, M. W.  Mitchell, “Ultranarrow Faraday rotation filter at the Rb D1 line,” Opt. Lett. 37, No. 4, 524–526 (2012).
    [CrossRef]
  20. G. S.  Agarwal, “Origin of gain in systems without inversion in bare or dressed states,” Phys. Rev. A 44, No. 1, R28–R30 (1991).
    [CrossRef]
  21. A. S.  Zibrov, M. D.  Lukin, D. E.  Nikonov, L.  Hollberg, M. O.  Scully, V. L.  Velichansky, H. G.  Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, No. 8, 1499–1502 (1995).
    [CrossRef]
  22. Y.  Zhu, J.  Lin, “Sub-Doppler light amplification in a coherently pumped atomic system,” Phys. Rev. A 53, No. 3, 1767–1774 (1996).
    [CrossRef]
  23. Y.  Zhu, “Light amplification mechanisms in a coherently coupled atomic system,” Phys. Rev. A 55, No. 6, 4568–4575 (1997).
    [CrossRef]
  24. H.  Wanare, “Gain without population inversion in V-type systems driven by a frequency-modulated field,” Phys. Rev. A 65, No. 3, 033417 (2002).
    [CrossRef]
  25. H.  Kang, L.  Wen, Y.  Zhu, “Normal or anomalous dispersion and gain in a resonant coherent medium,” Phys. Rev. A 68, No. 6, 063806 (2003).
    [CrossRef]
  26. S. Y.  Kilin, K. T.  Kapale, M. O.  Scully, “Lasing without inversion: counterintuitive population dynamics in the transient regime,” Phys. Rev. Lett. 100, No. 17, 173601 (2008).
    [CrossRef]
  27. X.  Shan, X.  Sun, J.  Luo, M.  Zhan, “Ultranarrow-bandwidth atomic filter with Raman light amplification,” Opt. Lett. 33, No. 16, 1842–1844 (2008).
    [CrossRef]
  28. Y.  Peng, W.  Zhang, L.  Zhang, J.  Tang, “Analyses of transmission characteristics of Rb, 85Rb and 87Rb Faraday optical filters at 532  nm,” Opt. Commun. 282, No. 2, 236–241 (2009).
    [CrossRef]

2012 (1)

2009 (2)

S. D.  Harrell, C. Y.  She, T.  Yuan, D. A.  Krueger, H.  Chen, S. S.  Chen, Z. L.  Hu, “Sodium and potassium vapor Faraday filters revisited: theory and applications,” J. Opt. Soc. Am. B 26, No. 4, 659–670 (2009).
[CrossRef]

Y.  Peng, W.  Zhang, L.  Zhang, J.  Tang, “Analyses of transmission characteristics of Rb, 85Rb and 87Rb Faraday optical filters at 532  nm,” Opt. Commun. 282, No. 2, 236–241 (2009).
[CrossRef]

2008 (2)

X.  Shan, X.  Sun, J.  Luo, M.  Zhan, “Ultranarrow-bandwidth atomic filter with Raman light amplification,” Opt. Lett. 33, No. 16, 1842–1844 (2008).
[CrossRef]

S. Y.  Kilin, K. T.  Kapale, M. O.  Scully, “Lasing without inversion: counterintuitive population dynamics in the transient regime,” Phys. Rev. Lett. 100, No. 17, 173601 (2008).
[CrossRef]

2006 (2)

A.  Popescu, D.  Walldorf, K.  Schorstein, T.  Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264, No. 2, 475–481 (2006).
[CrossRef]

X.  Shan, X.  Sun, J.  Luo, Z.  Tan, M.  Zhan, “Free-space quantum key distribution with Rb vapor filters,” Appl. Phys. Lett. 89, No. 19, 191121 (2006).
[CrossRef]

2005 (1)

2003 (1)

H.  Kang, L.  Wen, Y.  Zhu, “Normal or anomalous dispersion and gain in a resonant coherent medium,” Phys. Rev. A 68, No. 6, 063806 (2003).
[CrossRef]

2002 (2)

H.  Wanare, “Gain without population inversion in V-type systems driven by a frequency-modulated field,” Phys. Rev. A 65, No. 3, 033417 (2002).
[CrossRef]

C.  Fricke-Begemann, M.  Alpers, J.  Höffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, No. 21, 1932–1934 (2002).
[CrossRef]

2001 (1)

Y.  Zhang, X.  Jia, Z.  Ma, Q.  Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, No. 1–3, 147–150 (2001).
[CrossRef]

1998 (2)

W. T.  Buttler, R. J.  Hughes, P. G.  Kwiat, S. K.  Lamoreaux, G. G.  Luther, G. L.  Morgan, J. E.  Nordholt, C. G.  Peterson, C. M.  Simmons, “Practical free-space quantum key distribution over 1  km,” Phys. Rev. Lett. 81, No. 15, 3283–3286 (1998).
[CrossRef]

Z.  Hu, X.  Sun, Y.  Liu, L.  Fu, X.  Zeng, “Temperature properties of Na dispersive Faraday optical filter at D1 and D2 line,” Opt. Commun. 156, No. 4–6, 289–293 (1998).
[CrossRef]

1997 (1)

Y.  Zhu, “Light amplification mechanisms in a coherently coupled atomic system,” Phys. Rev. A 55, No. 6, 4568–4575 (1997).
[CrossRef]

1996 (2)

Y.  Zhu, J.  Lin, “Sub-Doppler light amplification in a coherently pumped atomic system,” Phys. Rev. A 53, No. 3, 1767–1774 (1996).
[CrossRef]

E. T.  Dressler, A. E.  Laux, R. I.  Billmers, “Theory and experiment for the anomalous Faraday effect in potassium,” J. Opt. Soc. Am. B. 13, No. 9, 1849–1858 (1996).

1995 (2)

A. S.  Zibrov, M. D.  Lukin, D. E.  Nikonov, L.  Hollberg, M. O.  Scully, V. L.  Velichansky, H. G.  Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, No. 8, 1499–1502 (1995).
[CrossRef]

J.  Tang, Q.  Wang, Y.  Li, L.  Zhang, J.  Gan, M.  Duan, J.  Kong, L.  Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, No. 15, 2619–2622 (1995).
[CrossRef]

1993 (3)

H.  Chen, C. Y.  She, P.  Searcy, E.  Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett. 18, No. 12, 1019–1021 (1993).
[CrossRef]

Z.  Hu, X.  Sun, X.  Zeng, Y.  Peng, J.  Tang, L.  Zhang, Q.  Wang, L.  Zheng, “Rb 780  nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun. 101, No. 3–4, 175–178 (1993).
[CrossRef]

Y. F.  Peng, J. X.  Tang, Q. J.  Wang, “Study of Faraday anomalous dispersion spectra of the hyperfine structure of Rb D2 lines,” Acta Phys. Sin. (Overseas Edn). 2, No. 1, 1–8 (1993).

1991 (4)

1982 (1)

1956 (1)

Y.  Ohman, “On some new auxiliary instruments in astrophysical research VI. A tentative monochromator for solar work based on the principle of selective magnetic rotation,” Stockholms Obs. Ann. 19, No. 4, 9–11 (1956).

Agarwal, G. S.

G. S.  Agarwal, “Origin of gain in systems without inversion in bare or dressed states,” Phys. Rev. A 44, No. 1, R28–R30 (1991).
[CrossRef]

Alpers, M.

Beduini, F. A.

Benson, K.

Billmers, R. I.

E. T.  Dressler, A. E.  Laux, R. I.  Billmers, “Theory and experiment for the anomalous Faraday effect in potassium,” J. Opt. Soc. Am. B. 13, No. 9, 1849–1858 (1996).

Bloom, S. H.

Buttler, W. T.

W. T.  Buttler, R. J.  Hughes, P. G.  Kwiat, S. K.  Lamoreaux, G. G.  Luther, G. L.  Morgan, J. E.  Nordholt, C. G.  Peterson, C. M.  Simmons, “Practical free-space quantum key distribution over 1  km,” Phys. Rev. Lett. 81, No. 15, 3283–3286 (1998).
[CrossRef]

Chen, H.

Chen, S. S.

Dick, D. J.

Dressler, E. T.

E. T.  Dressler, A. E.  Laux, R. I.  Billmers, “Theory and experiment for the anomalous Faraday effect in potassium,” J. Opt. Soc. Am. B. 13, No. 9, 1849–1858 (1996).

Duan, M.

Fricke-Begemann, C.

Fu, L.

Z.  Hu, X.  Sun, Y.  Liu, L.  Fu, X.  Zeng, “Temperature properties of Na dispersive Faraday optical filter at D1 and D2 line,” Opt. Commun. 156, No. 4–6, 289–293 (1998).
[CrossRef]

Gan, J.

Godbout, N.

Harrell, S. D.

Höffner, J.

Hollberg, L.

A. S.  Zibrov, M. D.  Lukin, D. E.  Nikonov, L.  Hollberg, M. O.  Scully, V. L.  Velichansky, H. G.  Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, No. 8, 1499–1502 (1995).
[CrossRef]

Hu, Z.

Z.  Hu, X.  Sun, Y.  Liu, L.  Fu, X.  Zeng, “Temperature properties of Na dispersive Faraday optical filter at D1 and D2 line,” Opt. Commun. 156, No. 4–6, 289–293 (1998).
[CrossRef]

Z.  Hu, X.  Sun, X.  Zeng, Y.  Peng, J.  Tang, L.  Zhang, Q.  Wang, L.  Zheng, “Rb 780  nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun. 101, No. 3–4, 175–178 (1993).
[CrossRef]

Hu, Z. L.

Hughes, R. J.

W. T.  Buttler, R. J.  Hughes, P. G.  Kwiat, S. K.  Lamoreaux, G. G.  Luther, G. L.  Morgan, J. E.  Nordholt, C. G.  Peterson, C. M.  Simmons, “Practical free-space quantum key distribution over 1  km,” Phys. Rev. Lett. 81, No. 15, 3283–3286 (1998).
[CrossRef]

Jia, X.

Y.  Zhang, X.  Jia, Z.  Ma, Q.  Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, No. 1–3, 147–150 (2001).
[CrossRef]

Kang, H.

H.  Kang, L.  Wen, Y.  Zhu, “Normal or anomalous dispersion and gain in a resonant coherent medium,” Phys. Rev. A 68, No. 6, 063806 (2003).
[CrossRef]

Kapale, K. T.

S. Y.  Kilin, K. T.  Kapale, M. O.  Scully, “Lasing without inversion: counterintuitive population dynamics in the transient regime,” Phys. Rev. Lett. 100, No. 17, 173601 (2008).
[CrossRef]

Kilin, S. Y.

S. Y.  Kilin, K. T.  Kapale, M. O.  Scully, “Lasing without inversion: counterintuitive population dynamics in the transient regime,” Phys. Rev. Lett. 100, No. 17, 173601 (2008).
[CrossRef]

Kong, J.

Korevaar, E.

Krueger, D. A.

Kwiat, P. G.

W. T.  Buttler, R. J.  Hughes, P. G.  Kwiat, S. K.  Lamoreaux, G. G.  Luther, G. L.  Morgan, J. E.  Nordholt, C. G.  Peterson, C. M.  Simmons, “Practical free-space quantum key distribution over 1  km,” Phys. Rev. Lett. 81, No. 15, 3283–3286 (1998).
[CrossRef]

Lamoreaux, S. K.

W. T.  Buttler, R. J.  Hughes, P. G.  Kwiat, S. K.  Lamoreaux, G. G.  Luther, G. L.  Morgan, J. E.  Nordholt, C. G.  Peterson, C. M.  Simmons, “Practical free-space quantum key distribution over 1  km,” Phys. Rev. Lett. 81, No. 15, 3283–3286 (1998).
[CrossRef]

Laux, A. E.

E. T.  Dressler, A. E.  Laux, R. I.  Billmers, “Theory and experiment for the anomalous Faraday effect in potassium,” J. Opt. Soc. Am. B. 13, No. 9, 1849–1858 (1996).

Li, Y.

Lin, J.

Y.  Zhu, J.  Lin, “Sub-Doppler light amplification in a coherently pumped atomic system,” Phys. Rev. A 53, No. 3, 1767–1774 (1996).
[CrossRef]

Liu, C. S.

Liu, Y.

Z.  Hu, X.  Sun, Y.  Liu, L.  Fu, X.  Zeng, “Temperature properties of Na dispersive Faraday optical filter at D1 and D2 line,” Opt. Commun. 156, No. 4–6, 289–293 (1998).
[CrossRef]

Lukin, M. D.

A. S.  Zibrov, M. D.  Lukin, D. E.  Nikonov, L.  Hollberg, M. O.  Scully, V. L.  Velichansky, H. G.  Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, No. 8, 1499–1502 (1995).
[CrossRef]

Luo, J.

X.  Shan, X.  Sun, J.  Luo, M.  Zhan, “Ultranarrow-bandwidth atomic filter with Raman light amplification,” Opt. Lett. 33, No. 16, 1842–1844 (2008).
[CrossRef]

X.  Shan, X.  Sun, J.  Luo, Z.  Tan, M.  Zhan, “Free-space quantum key distribution with Rb vapor filters,” Appl. Phys. Lett. 89, No. 19, 191121 (2006).
[CrossRef]

Luther, G. G.

W. T.  Buttler, R. J.  Hughes, P. G.  Kwiat, S. K.  Lamoreaux, G. G.  Luther, G. L.  Morgan, J. E.  Nordholt, C. G.  Peterson, C. M.  Simmons, “Practical free-space quantum key distribution over 1  km,” Phys. Rev. Lett. 81, No. 15, 3283–3286 (1998).
[CrossRef]

Ma, Z.

Y.  Zhang, X.  Jia, Z.  Ma, Q.  Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, No. 1–3, 147–150 (2001).
[CrossRef]

Menders, J.

Mitchell, M. W.

Morgan, G. L.

W. T.  Buttler, R. J.  Hughes, P. G.  Kwiat, S. K.  Lamoreaux, G. G.  Luther, G. L.  Morgan, J. E.  Nordholt, C. G.  Peterson, C. M.  Simmons, “Practical free-space quantum key distribution over 1  km,” Phys. Rev. Lett. 81, No. 15, 3283–3286 (1998).
[CrossRef]

Nikonov, D. E.

A. S.  Zibrov, M. D.  Lukin, D. E.  Nikonov, L.  Hollberg, M. O.  Scully, V. L.  Velichansky, H. G.  Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, No. 8, 1499–1502 (1995).
[CrossRef]

Nordholt, J. E.

W. T.  Buttler, R. J.  Hughes, P. G.  Kwiat, S. K.  Lamoreaux, G. G.  Luther, G. L.  Morgan, J. E.  Nordholt, C. G.  Peterson, C. M.  Simmons, “Practical free-space quantum key distribution over 1  km,” Phys. Rev. Lett. 81, No. 15, 3283–3286 (1998).
[CrossRef]

Ohman, Y.

Y.  Ohman, “On some new auxiliary instruments in astrophysical research VI. A tentative monochromator for solar work based on the principle of selective magnetic rotation,” Stockholms Obs. Ann. 19, No. 4, 9–11 (1956).

Peng, Y.

Y.  Peng, W.  Zhang, L.  Zhang, J.  Tang, “Analyses of transmission characteristics of Rb, 85Rb and 87Rb Faraday optical filters at 532  nm,” Opt. Commun. 282, No. 2, 236–241 (2009).
[CrossRef]

Z.  Hu, X.  Sun, X.  Zeng, Y.  Peng, J.  Tang, L.  Zhang, Q.  Wang, L.  Zheng, “Rb 780  nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun. 101, No. 3–4, 175–178 (1993).
[CrossRef]

Peng, Y. F.

Y. F.  Peng, J. X.  Tang, Q. J.  Wang, “Study of Faraday anomalous dispersion spectra of the hyperfine structure of Rb D2 lines,” Acta Phys. Sin. (Overseas Edn). 2, No. 1, 1–8 (1993).

Peterson, C. G.

W. T.  Buttler, R. J.  Hughes, P. G.  Kwiat, S. K.  Lamoreaux, G. G.  Luther, G. L.  Morgan, J. E.  Nordholt, C. G.  Peterson, C. M.  Simmons, “Practical free-space quantum key distribution over 1  km,” Phys. Rev. Lett. 81, No. 15, 3283–3286 (1998).
[CrossRef]

Popescu, A.

A.  Popescu, D.  Walldorf, K.  Schorstein, T.  Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264, No. 2, 475–481 (2006).
[CrossRef]

Robinson, H. G.

A. S.  Zibrov, M. D.  Lukin, D. E.  Nikonov, L.  Hollberg, M. O.  Scully, V. L.  Velichansky, H. G.  Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, No. 8, 1499–1502 (1995).
[CrossRef]

Schorstein, K.

A.  Popescu, D.  Walldorf, K.  Schorstein, T.  Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264, No. 2, 475–481 (2006).
[CrossRef]

Scully, M. O.

S. Y.  Kilin, K. T.  Kapale, M. O.  Scully, “Lasing without inversion: counterintuitive population dynamics in the transient regime,” Phys. Rev. Lett. 100, No. 17, 173601 (2008).
[CrossRef]

A. S.  Zibrov, M. D.  Lukin, D. E.  Nikonov, L.  Hollberg, M. O.  Scully, V. L.  Velichansky, H. G.  Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, No. 8, 1499–1502 (1995).
[CrossRef]

Searcy, P.

Shan, X.

X.  Shan, X.  Sun, J.  Luo, M.  Zhan, “Ultranarrow-bandwidth atomic filter with Raman light amplification,” Opt. Lett. 33, No. 16, 1842–1844 (2008).
[CrossRef]

X.  Shan, X.  Sun, J.  Luo, Z.  Tan, M.  Zhan, “Free-space quantum key distribution with Rb vapor filters,” Appl. Phys. Lett. 89, No. 19, 191121 (2006).
[CrossRef]

Shay, T. M.

She, C. Y.

Simmons, C. M.

W. T.  Buttler, R. J.  Hughes, P. G.  Kwiat, S. K.  Lamoreaux, G. G.  Luther, G. L.  Morgan, J. E.  Nordholt, C. G.  Peterson, C. M.  Simmons, “Practical free-space quantum key distribution over 1  km,” Phys. Rev. Lett. 81, No. 15, 3283–3286 (1998).
[CrossRef]

Sun, X.

X.  Shan, X.  Sun, J.  Luo, M.  Zhan, “Ultranarrow-bandwidth atomic filter with Raman light amplification,” Opt. Lett. 33, No. 16, 1842–1844 (2008).
[CrossRef]

X.  Shan, X.  Sun, J.  Luo, Z.  Tan, M.  Zhan, “Free-space quantum key distribution with Rb vapor filters,” Appl. Phys. Lett. 89, No. 19, 191121 (2006).
[CrossRef]

Z.  Hu, X.  Sun, Y.  Liu, L.  Fu, X.  Zeng, “Temperature properties of Na dispersive Faraday optical filter at D1 and D2 line,” Opt. Commun. 156, No. 4–6, 289–293 (1998).
[CrossRef]

Z.  Hu, X.  Sun, X.  Zeng, Y.  Peng, J.  Tang, L.  Zhang, Q.  Wang, L.  Zheng, “Rb 780  nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun. 101, No. 3–4, 175–178 (1993).
[CrossRef]

Tan, Z.

X.  Shan, X.  Sun, J.  Luo, Z.  Tan, M.  Zhan, “Free-space quantum key distribution with Rb vapor filters,” Appl. Phys. Lett. 89, No. 19, 191121 (2006).
[CrossRef]

Tang, J.

Y.  Peng, W.  Zhang, L.  Zhang, J.  Tang, “Analyses of transmission characteristics of Rb, 85Rb and 87Rb Faraday optical filters at 532  nm,” Opt. Commun. 282, No. 2, 236–241 (2009).
[CrossRef]

J.  Tang, Q.  Wang, Y.  Li, L.  Zhang, J.  Gan, M.  Duan, J.  Kong, L.  Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, No. 15, 2619–2622 (1995).
[CrossRef]

Z.  Hu, X.  Sun, X.  Zeng, Y.  Peng, J.  Tang, L.  Zhang, Q.  Wang, L.  Zheng, “Rb 780  nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun. 101, No. 3–4, 175–178 (1993).
[CrossRef]

Tang, J. X.

Y. F.  Peng, J. X.  Tang, Q. J.  Wang, “Study of Faraday anomalous dispersion spectra of the hyperfine structure of Rb D2 lines,” Acta Phys. Sin. (Overseas Edn). 2, No. 1, 1–8 (1993).

Velichansky, V. L.

A. S.  Zibrov, M. D.  Lukin, D. E.  Nikonov, L.  Hollberg, M. O.  Scully, V. L.  Velichansky, H. G.  Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, No. 8, 1499–1502 (1995).
[CrossRef]

Walldorf, D.

A.  Popescu, D.  Walldorf, K.  Schorstein, T.  Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264, No. 2, 475–481 (2006).
[CrossRef]

Walther, T.

A.  Popescu, D.  Walldorf, K.  Schorstein, T.  Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264, No. 2, 475–481 (2006).
[CrossRef]

Wanare, H.

H.  Wanare, “Gain without population inversion in V-type systems driven by a frequency-modulated field,” Phys. Rev. A 65, No. 3, 033417 (2002).
[CrossRef]

Wang, Q.

Y.  Zhang, X.  Jia, Z.  Ma, Q.  Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, No. 1–3, 147–150 (2001).
[CrossRef]

J.  Tang, Q.  Wang, Y.  Li, L.  Zhang, J.  Gan, M.  Duan, J.  Kong, L.  Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, No. 15, 2619–2622 (1995).
[CrossRef]

Z.  Hu, X.  Sun, X.  Zeng, Y.  Peng, J.  Tang, L.  Zhang, Q.  Wang, L.  Zheng, “Rb 780  nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun. 101, No. 3–4, 175–178 (1993).
[CrossRef]

Wang, Q. J.

Y. F.  Peng, J. X.  Tang, Q. J.  Wang, “Study of Faraday anomalous dispersion spectra of the hyperfine structure of Rb D2 lines,” Acta Phys. Sin. (Overseas Edn). 2, No. 1, 1–8 (1993).

Wen, L.

H.  Kang, L.  Wen, Y.  Zhu, “Normal or anomalous dispersion and gain in a resonant coherent medium,” Phys. Rev. A 68, No. 6, 063806 (2003).
[CrossRef]

Yeh, P.

Yin, B.

Yuan, T.

Zeng, X.

Z.  Hu, X.  Sun, Y.  Liu, L.  Fu, X.  Zeng, “Temperature properties of Na dispersive Faraday optical filter at D1 and D2 line,” Opt. Commun. 156, No. 4–6, 289–293 (1998).
[CrossRef]

Z.  Hu, X.  Sun, X.  Zeng, Y.  Peng, J.  Tang, L.  Zhang, Q.  Wang, L.  Zheng, “Rb 780  nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun. 101, No. 3–4, 175–178 (1993).
[CrossRef]

Zhan, M.

X.  Shan, X.  Sun, J.  Luo, M.  Zhan, “Ultranarrow-bandwidth atomic filter with Raman light amplification,” Opt. Lett. 33, No. 16, 1842–1844 (2008).
[CrossRef]

X.  Shan, X.  Sun, J.  Luo, Z.  Tan, M.  Zhan, “Free-space quantum key distribution with Rb vapor filters,” Appl. Phys. Lett. 89, No. 19, 191121 (2006).
[CrossRef]

Zhang, L.

Y.  Peng, W.  Zhang, L.  Zhang, J.  Tang, “Analyses of transmission characteristics of Rb, 85Rb and 87Rb Faraday optical filters at 532  nm,” Opt. Commun. 282, No. 2, 236–241 (2009).
[CrossRef]

J.  Tang, Q.  Wang, Y.  Li, L.  Zhang, J.  Gan, M.  Duan, J.  Kong, L.  Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, No. 15, 2619–2622 (1995).
[CrossRef]

Z.  Hu, X.  Sun, X.  Zeng, Y.  Peng, J.  Tang, L.  Zhang, Q.  Wang, L.  Zheng, “Rb 780  nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun. 101, No. 3–4, 175–178 (1993).
[CrossRef]

Zhang, W.

Y.  Peng, W.  Zhang, L.  Zhang, J.  Tang, “Analyses of transmission characteristics of Rb, 85Rb and 87Rb Faraday optical filters at 532  nm,” Opt. Commun. 282, No. 2, 236–241 (2009).
[CrossRef]

Zhang, Y.

Y.  Zhang, X.  Jia, Z.  Ma, Q.  Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, No. 1–3, 147–150 (2001).
[CrossRef]

Zheng, L.

J.  Tang, Q.  Wang, Y.  Li, L.  Zhang, J.  Gan, M.  Duan, J.  Kong, L.  Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, No. 15, 2619–2622 (1995).
[CrossRef]

Z.  Hu, X.  Sun, X.  Zeng, Y.  Peng, J.  Tang, L.  Zhang, Q.  Wang, L.  Zheng, “Rb 780  nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun. 101, No. 3–4, 175–178 (1993).
[CrossRef]

Zhu, Y.

H.  Kang, L.  Wen, Y.  Zhu, “Normal or anomalous dispersion and gain in a resonant coherent medium,” Phys. Rev. A 68, No. 6, 063806 (2003).
[CrossRef]

Y.  Zhu, “Light amplification mechanisms in a coherently coupled atomic system,” Phys. Rev. A 55, No. 6, 4568–4575 (1997).
[CrossRef]

Y.  Zhu, J.  Lin, “Sub-Doppler light amplification in a coherently pumped atomic system,” Phys. Rev. A 53, No. 3, 1767–1774 (1996).
[CrossRef]

Zibrov, A. S.

A. S.  Zibrov, M. D.  Lukin, D. E.  Nikonov, L.  Hollberg, M. O.  Scully, V. L.  Velichansky, H. G.  Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, No. 8, 1499–1502 (1995).
[CrossRef]

Zielinska, J. A.

Acta Phys. Sin. (Overseas Edn). (1)

Y. F.  Peng, J. X.  Tang, Q. J.  Wang, “Study of Faraday anomalous dispersion spectra of the hyperfine structure of Rb D2 lines,” Acta Phys. Sin. (Overseas Edn). 2, No. 1, 1–8 (1993).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

X.  Shan, X.  Sun, J.  Luo, Z.  Tan, M.  Zhan, “Free-space quantum key distribution with Rb vapor filters,” Appl. Phys. Lett. 89, No. 19, 191121 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B. (1)

E. T.  Dressler, A. E.  Laux, R. I.  Billmers, “Theory and experiment for the anomalous Faraday effect in potassium,” J. Opt. Soc. Am. B. 13, No. 9, 1849–1858 (1996).

Opt. Commun. (5)

Z.  Hu, X.  Sun, X.  Zeng, Y.  Peng, J.  Tang, L.  Zhang, Q.  Wang, L.  Zheng, “Rb 780  nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun. 101, No. 3–4, 175–178 (1993).
[CrossRef]

A.  Popescu, D.  Walldorf, K.  Schorstein, T.  Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264, No. 2, 475–481 (2006).
[CrossRef]

Z.  Hu, X.  Sun, Y.  Liu, L.  Fu, X.  Zeng, “Temperature properties of Na dispersive Faraday optical filter at D1 and D2 line,” Opt. Commun. 156, No. 4–6, 289–293 (1998).
[CrossRef]

Y.  Zhang, X.  Jia, Z.  Ma, Q.  Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, No. 1–3, 147–150 (2001).
[CrossRef]

Y.  Peng, W.  Zhang, L.  Zhang, J.  Tang, “Analyses of transmission characteristics of Rb, 85Rb and 87Rb Faraday optical filters at 532  nm,” Opt. Commun. 282, No. 2, 236–241 (2009).
[CrossRef]

Opt. Lett. (8)

Phys. Rev. A (5)

G. S.  Agarwal, “Origin of gain in systems without inversion in bare or dressed states,” Phys. Rev. A 44, No. 1, R28–R30 (1991).
[CrossRef]

Y.  Zhu, J.  Lin, “Sub-Doppler light amplification in a coherently pumped atomic system,” Phys. Rev. A 53, No. 3, 1767–1774 (1996).
[CrossRef]

Y.  Zhu, “Light amplification mechanisms in a coherently coupled atomic system,” Phys. Rev. A 55, No. 6, 4568–4575 (1997).
[CrossRef]

H.  Wanare, “Gain without population inversion in V-type systems driven by a frequency-modulated field,” Phys. Rev. A 65, No. 3, 033417 (2002).
[CrossRef]

H.  Kang, L.  Wen, Y.  Zhu, “Normal or anomalous dispersion and gain in a resonant coherent medium,” Phys. Rev. A 68, No. 6, 063806 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

S. Y.  Kilin, K. T.  Kapale, M. O.  Scully, “Lasing without inversion: counterintuitive population dynamics in the transient regime,” Phys. Rev. Lett. 100, No. 17, 173601 (2008).
[CrossRef]

W. T.  Buttler, R. J.  Hughes, P. G.  Kwiat, S. K.  Lamoreaux, G. G.  Luther, G. L.  Morgan, J. E.  Nordholt, C. G.  Peterson, C. M.  Simmons, “Practical free-space quantum key distribution over 1  km,” Phys. Rev. Lett. 81, No. 15, 3283–3286 (1998).
[CrossRef]

A. S.  Zibrov, M. D.  Lukin, D. E.  Nikonov, L.  Hollberg, M. O.  Scully, V. L.  Velichansky, H. G.  Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, No. 8, 1499–1502 (1995).
[CrossRef]

Stockholms Obs. Ann. (1)

Y.  Ohman, “On some new auxiliary instruments in astrophysical research VI. A tentative monochromator for solar work based on the principle of selective magnetic rotation,” Stockholms Obs. Ann. 19, No. 4, 9–11 (1956).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.