Abstract

This paper proposes an adaptive method of detecting objects on the image of an optoelectronic device. The method is based on reconstructing a reference signal-image and forming a statistic in the form of the maximum eigenvalue of the selective correlation matrix for making a decision concerning the detection of an object, using the Neyman–Pearson criterion. The information contained in the images recorded is used when there are no a priori data concerning the background–target situation. A block diagram of the algorithm is given, along with the results of estimating the efficiency index for detecting objects under various conditions.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S.  Kondrat’ev, A. F.  Kotov, L. N.  Markov, Multiposition Radio-Engineering Systems (Radio i Svyaz’, Moscow, 1986).
  2. V. T.  Fesenko, T. Yu.  Fesenko, “Automatic tracking of objects in computerized image-processing systems,” Opt. Zh. 74, No. 11, 39 (2007) [J. Opt. Technol. 74, 752 (2007)].
  3. N. S.  Shestov, Distinguishing Optical Signals on a Background of Random Noise (Sov. Radio, Moscow, 1967).
  4. I. V.  Borisova, “Segmentation and tracking of objects on a complex background,” Opt. Zh. 78, No. 5, 27 (2011) [J. Opt. Technol. 78, 305 (2011)].
  5. E. A.  Samoĭlin, “Discrimination of image signals on a background of bimodal Gaussoid pulsed noise, optimal by the combined-limitation criterion,” Opt. Zh. 77, No. 4, 26 (2010) [J. Opt. Technol. 77, 245 (2010)].
  6. V. I.  Fedoseev, “Optimizing the signal processing of detector arrays, using the window method,” Opt. Zh. 77, No. 4, 60 (2010) [J. Opt. Technol. 77, 272 (2010)].
  7. V. S.  Murav’ev, S. I.  Murav’ev, “Adaptive algorithm for discriminating and detecting airborne objects for autotracking systems,” in Scientific–Engineering Conference on Artificial Vision In Control Systems, Moscow, 14–16 March2012, pp. 66–68.
  8. D. A.  Gurchenkov, M. V.  Zhendarev, A. S.  Nabatchivkov, I. V.  Yakimenko, “Method of detecting point thermal objects on a complex atmospheric background,” Matemat. Morf. Élektron. Matemat. Mediko-Biol. Zh. 11, No. 3, 1 (2012).
  9. Yu. G.  Sosulin, A. B.  Russkin, “Fractal detection of extended low-contrast objects on an image,” Radiotekh. No. 12, 48 (2009).
  10. A.  Yilmaz, K.  Shafique, M.  Shah, “Target tracking in airborne forward-looking infrared imagery,” Image Vis. Comput. 21 No. 7, 623 (2003).
  11. V. S.  Pugachev, Theory of Random Functions and Its Application to Problems of Automatic Control (Fizmatgiz, Moscow, 1960).
  12. J.  Feder, Fractals (Plenum Press, New York, 1988; Mir, Moscow, 1991).
  13. A. A.  Potapov, Fractals in Radiophysics and Radar (Logos, Moscow, 2002).
  14. M. A.  Lavrent’ev, B. V.  Shabat, Methods of the Theory of Functions of a Complex Variable (Nauka, Moscow, 1973).
  15. A. N.  Katulev, A. A.  Khramichev, S. V.  Yagol’nikov, “Fractal–statistical method of detecting objects on a two-dimensional image,” Radiotekhnika No. 11, 85 (2012).
  16. B. R.  Levin, Theoretical Principles of Statistical Radio Engineering. Second Book (Sov. Radio, Moscow, 1975).
  17. A. E.  Basharinov, B. S.  Fleĭshman, Methods of Statistical Sequential Analysis and Their Radio-Engineering Applications (Sovetskoe Radio, Moscow, 1962), pp. 230–241.
  18. A. N.  Katulev, A. N.  Kudinov, M. A.  Malevinskiĭ, G. M.  Solomakha, “Integral operator for differentiating two-dimensional random fields,” Radioteknika No. 14, 15 (2008).

2012 (2)

D. A.  Gurchenkov, M. V.  Zhendarev, A. S.  Nabatchivkov, I. V.  Yakimenko, “Method of detecting point thermal objects on a complex atmospheric background,” Matemat. Morf. Élektron. Matemat. Mediko-Biol. Zh. 11, No. 3, 1 (2012).

A. N.  Katulev, A. A.  Khramichev, S. V.  Yagol’nikov, “Fractal–statistical method of detecting objects on a two-dimensional image,” Radiotekhnika No. 11, 85 (2012).

2011 (1)

I. V.  Borisova, “Segmentation and tracking of objects on a complex background,” Opt. Zh. 78, No. 5, 27 (2011) [J. Opt. Technol. 78, 305 (2011)].

2010 (2)

E. A.  Samoĭlin, “Discrimination of image signals on a background of bimodal Gaussoid pulsed noise, optimal by the combined-limitation criterion,” Opt. Zh. 77, No. 4, 26 (2010) [J. Opt. Technol. 77, 245 (2010)].

V. I.  Fedoseev, “Optimizing the signal processing of detector arrays, using the window method,” Opt. Zh. 77, No. 4, 60 (2010) [J. Opt. Technol. 77, 272 (2010)].

2009 (1)

Yu. G.  Sosulin, A. B.  Russkin, “Fractal detection of extended low-contrast objects on an image,” Radiotekh. No. 12, 48 (2009).

2008 (1)

A. N.  Katulev, A. N.  Kudinov, M. A.  Malevinskiĭ, G. M.  Solomakha, “Integral operator for differentiating two-dimensional random fields,” Radioteknika No. 14, 15 (2008).

2007 (1)

V. T.  Fesenko, T. Yu.  Fesenko, “Automatic tracking of objects in computerized image-processing systems,” Opt. Zh. 74, No. 11, 39 (2007) [J. Opt. Technol. 74, 752 (2007)].

2003 (1)

A.  Yilmaz, K.  Shafique, M.  Shah, “Target tracking in airborne forward-looking infrared imagery,” Image Vis. Comput. 21 No. 7, 623 (2003).

Basharinov, A. E.

A. E.  Basharinov, B. S.  Fleĭshman, Methods of Statistical Sequential Analysis and Their Radio-Engineering Applications (Sovetskoe Radio, Moscow, 1962), pp. 230–241.

Borisova, I. V.

I. V.  Borisova, “Segmentation and tracking of objects on a complex background,” Opt. Zh. 78, No. 5, 27 (2011) [J. Opt. Technol. 78, 305 (2011)].

Feder, J.

J.  Feder, Fractals (Plenum Press, New York, 1988; Mir, Moscow, 1991).

Fedoseev, V. I.

V. I.  Fedoseev, “Optimizing the signal processing of detector arrays, using the window method,” Opt. Zh. 77, No. 4, 60 (2010) [J. Opt. Technol. 77, 272 (2010)].

Fesenko, T. Yu.

V. T.  Fesenko, T. Yu.  Fesenko, “Automatic tracking of objects in computerized image-processing systems,” Opt. Zh. 74, No. 11, 39 (2007) [J. Opt. Technol. 74, 752 (2007)].

Fesenko, V. T.

V. T.  Fesenko, T. Yu.  Fesenko, “Automatic tracking of objects in computerized image-processing systems,” Opt. Zh. 74, No. 11, 39 (2007) [J. Opt. Technol. 74, 752 (2007)].

Fleishman, B. S.

A. E.  Basharinov, B. S.  Fleĭshman, Methods of Statistical Sequential Analysis and Their Radio-Engineering Applications (Sovetskoe Radio, Moscow, 1962), pp. 230–241.

Gurchenkov, D. A.

D. A.  Gurchenkov, M. V.  Zhendarev, A. S.  Nabatchivkov, I. V.  Yakimenko, “Method of detecting point thermal objects on a complex atmospheric background,” Matemat. Morf. Élektron. Matemat. Mediko-Biol. Zh. 11, No. 3, 1 (2012).

Katulev, A. N.

A. N.  Katulev, A. A.  Khramichev, S. V.  Yagol’nikov, “Fractal–statistical method of detecting objects on a two-dimensional image,” Radiotekhnika No. 11, 85 (2012).

A. N.  Katulev, A. N.  Kudinov, M. A.  Malevinskiĭ, G. M.  Solomakha, “Integral operator for differentiating two-dimensional random fields,” Radioteknika No. 14, 15 (2008).

Khramichev, A. A.

A. N.  Katulev, A. A.  Khramichev, S. V.  Yagol’nikov, “Fractal–statistical method of detecting objects on a two-dimensional image,” Radiotekhnika No. 11, 85 (2012).

Kondrat’ev, V. S.

V. S.  Kondrat’ev, A. F.  Kotov, L. N.  Markov, Multiposition Radio-Engineering Systems (Radio i Svyaz’, Moscow, 1986).

Kotov, A. F.

V. S.  Kondrat’ev, A. F.  Kotov, L. N.  Markov, Multiposition Radio-Engineering Systems (Radio i Svyaz’, Moscow, 1986).

Kudinov, A. N.

A. N.  Katulev, A. N.  Kudinov, M. A.  Malevinskiĭ, G. M.  Solomakha, “Integral operator for differentiating two-dimensional random fields,” Radioteknika No. 14, 15 (2008).

Lavrent’ev, M. A.

M. A.  Lavrent’ev, B. V.  Shabat, Methods of the Theory of Functions of a Complex Variable (Nauka, Moscow, 1973).

Levin, B. R.

B. R.  Levin, Theoretical Principles of Statistical Radio Engineering. Second Book (Sov. Radio, Moscow, 1975).

Malevinskii, M. A.

A. N.  Katulev, A. N.  Kudinov, M. A.  Malevinskiĭ, G. M.  Solomakha, “Integral operator for differentiating two-dimensional random fields,” Radioteknika No. 14, 15 (2008).

Markov, L. N.

V. S.  Kondrat’ev, A. F.  Kotov, L. N.  Markov, Multiposition Radio-Engineering Systems (Radio i Svyaz’, Moscow, 1986).

Murav’ev, S. I.

V. S.  Murav’ev, S. I.  Murav’ev, “Adaptive algorithm for discriminating and detecting airborne objects for autotracking systems,” in Scientific–Engineering Conference on Artificial Vision In Control Systems, Moscow, 14–16 March2012, pp. 66–68.

Murav’ev, V. S.

V. S.  Murav’ev, S. I.  Murav’ev, “Adaptive algorithm for discriminating and detecting airborne objects for autotracking systems,” in Scientific–Engineering Conference on Artificial Vision In Control Systems, Moscow, 14–16 March2012, pp. 66–68.

Nabatchivkov, A. S.

D. A.  Gurchenkov, M. V.  Zhendarev, A. S.  Nabatchivkov, I. V.  Yakimenko, “Method of detecting point thermal objects on a complex atmospheric background,” Matemat. Morf. Élektron. Matemat. Mediko-Biol. Zh. 11, No. 3, 1 (2012).

Potapov, A. A.

A. A.  Potapov, Fractals in Radiophysics and Radar (Logos, Moscow, 2002).

Pugachev, V. S.

V. S.  Pugachev, Theory of Random Functions and Its Application to Problems of Automatic Control (Fizmatgiz, Moscow, 1960).

Russkin, A. B.

Yu. G.  Sosulin, A. B.  Russkin, “Fractal detection of extended low-contrast objects on an image,” Radiotekh. No. 12, 48 (2009).

Samoilin, E. A.

E. A.  Samoĭlin, “Discrimination of image signals on a background of bimodal Gaussoid pulsed noise, optimal by the combined-limitation criterion,” Opt. Zh. 77, No. 4, 26 (2010) [J. Opt. Technol. 77, 245 (2010)].

Shabat, B. V.

M. A.  Lavrent’ev, B. V.  Shabat, Methods of the Theory of Functions of a Complex Variable (Nauka, Moscow, 1973).

Shafique, K.

A.  Yilmaz, K.  Shafique, M.  Shah, “Target tracking in airborne forward-looking infrared imagery,” Image Vis. Comput. 21 No. 7, 623 (2003).

Shah, M.

A.  Yilmaz, K.  Shafique, M.  Shah, “Target tracking in airborne forward-looking infrared imagery,” Image Vis. Comput. 21 No. 7, 623 (2003).

Shestov, N. S.

N. S.  Shestov, Distinguishing Optical Signals on a Background of Random Noise (Sov. Radio, Moscow, 1967).

Solomakha, G. M.

A. N.  Katulev, A. N.  Kudinov, M. A.  Malevinskiĭ, G. M.  Solomakha, “Integral operator for differentiating two-dimensional random fields,” Radioteknika No. 14, 15 (2008).

Sosulin, Yu. G.

Yu. G.  Sosulin, A. B.  Russkin, “Fractal detection of extended low-contrast objects on an image,” Radiotekh. No. 12, 48 (2009).

Yagol’nikov, S. V.

A. N.  Katulev, A. A.  Khramichev, S. V.  Yagol’nikov, “Fractal–statistical method of detecting objects on a two-dimensional image,” Radiotekhnika No. 11, 85 (2012).

Yakimenko, I. V.

D. A.  Gurchenkov, M. V.  Zhendarev, A. S.  Nabatchivkov, I. V.  Yakimenko, “Method of detecting point thermal objects on a complex atmospheric background,” Matemat. Morf. Élektron. Matemat. Mediko-Biol. Zh. 11, No. 3, 1 (2012).

Yilmaz, A.

A.  Yilmaz, K.  Shafique, M.  Shah, “Target tracking in airborne forward-looking infrared imagery,” Image Vis. Comput. 21 No. 7, 623 (2003).

Zhendarev, M. V.

D. A.  Gurchenkov, M. V.  Zhendarev, A. S.  Nabatchivkov, I. V.  Yakimenko, “Method of detecting point thermal objects on a complex atmospheric background,” Matemat. Morf. Élektron. Matemat. Mediko-Biol. Zh. 11, No. 3, 1 (2012).

Image Vis. Comput. (1)

A.  Yilmaz, K.  Shafique, M.  Shah, “Target tracking in airborne forward-looking infrared imagery,” Image Vis. Comput. 21 No. 7, 623 (2003).

Matemat. Morf. Élektron. Matemat. Mediko-Biol. Zh. (1)

D. A.  Gurchenkov, M. V.  Zhendarev, A. S.  Nabatchivkov, I. V.  Yakimenko, “Method of detecting point thermal objects on a complex atmospheric background,” Matemat. Morf. Élektron. Matemat. Mediko-Biol. Zh. 11, No. 3, 1 (2012).

Opt. Zh. (4)

V. T.  Fesenko, T. Yu.  Fesenko, “Automatic tracking of objects in computerized image-processing systems,” Opt. Zh. 74, No. 11, 39 (2007) [J. Opt. Technol. 74, 752 (2007)].

I. V.  Borisova, “Segmentation and tracking of objects on a complex background,” Opt. Zh. 78, No. 5, 27 (2011) [J. Opt. Technol. 78, 305 (2011)].

E. A.  Samoĭlin, “Discrimination of image signals on a background of bimodal Gaussoid pulsed noise, optimal by the combined-limitation criterion,” Opt. Zh. 77, No. 4, 26 (2010) [J. Opt. Technol. 77, 245 (2010)].

V. I.  Fedoseev, “Optimizing the signal processing of detector arrays, using the window method,” Opt. Zh. 77, No. 4, 60 (2010) [J. Opt. Technol. 77, 272 (2010)].

Radiotekh. (1)

Yu. G.  Sosulin, A. B.  Russkin, “Fractal detection of extended low-contrast objects on an image,” Radiotekh. No. 12, 48 (2009).

Radiotekhnika (1)

A. N.  Katulev, A. A.  Khramichev, S. V.  Yagol’nikov, “Fractal–statistical method of detecting objects on a two-dimensional image,” Radiotekhnika No. 11, 85 (2012).

Radioteknika (1)

A. N.  Katulev, A. N.  Kudinov, M. A.  Malevinskiĭ, G. M.  Solomakha, “Integral operator for differentiating two-dimensional random fields,” Radioteknika No. 14, 15 (2008).

Other (9)

V. S.  Kondrat’ev, A. F.  Kotov, L. N.  Markov, Multiposition Radio-Engineering Systems (Radio i Svyaz’, Moscow, 1986).

B. R.  Levin, Theoretical Principles of Statistical Radio Engineering. Second Book (Sov. Radio, Moscow, 1975).

A. E.  Basharinov, B. S.  Fleĭshman, Methods of Statistical Sequential Analysis and Their Radio-Engineering Applications (Sovetskoe Radio, Moscow, 1962), pp. 230–241.

V. S.  Pugachev, Theory of Random Functions and Its Application to Problems of Automatic Control (Fizmatgiz, Moscow, 1960).

J.  Feder, Fractals (Plenum Press, New York, 1988; Mir, Moscow, 1991).

A. A.  Potapov, Fractals in Radiophysics and Radar (Logos, Moscow, 2002).

M. A.  Lavrent’ev, B. V.  Shabat, Methods of the Theory of Functions of a Complex Variable (Nauka, Moscow, 1973).

N. S.  Shestov, Distinguishing Optical Signals on a Background of Random Noise (Sov. Radio, Moscow, 1967).

V. S.  Murav’ev, S. I.  Murav’ev, “Adaptive algorithm for discriminating and detecting airborne objects for autotracking systems,” in Scientific–Engineering Conference on Artificial Vision In Control Systems, Moscow, 14–16 March2012, pp. 66–68.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.