Abstract

This paper describes a technique for calculating the reflection of optical radiation from a rough three-dimensional object in the approximation of geometrical optics, using the Monte Carlo method. To allow for roughness, along with a macroscopic model of the object, a model is introduced at the microlevel, consisting of a substrate of finite size on which inhomogeneities are specified in the form of bodies bounded by second-order surfaces. The influence of edge effects on the microlevel model is investigated, and its optimal dimensions are selected. Results of the testing of the technique are presented, using experiments to determine the reflective properties of materials with a known degree of random roughness and of a three-dimensional object in the form of a biconical radiator.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. E.  Torrance, E. M.  Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am. 57, 1105 (1967).
    [CrossRef]
  2. X. D.  He, K. E.  Torrance, F. X.  Sillion, D. P.  Greenberg, “A comprehensive physical model for light reflection,” Comput. Graph. 25, 175 (1991).
    [CrossRef]
  3. L. M.  Hanssen, A. V.  Prokhorov, “A procedural model of reflection from random rough surfaces,” Proc. SPIE 7065, 70650W (2008).
    [CrossRef]
  4. E. V.  Klass, S. A.  Ul’yanov, V. V.  Shakhovskiĭ, “Modeling the brightness of artificial objects in earth orbit,” Vestnik SibGAU No. 6 (39), 142 (2011).
  5. R. L.  Cook, K. E.  Torrance, “A reflectance model for computer graphics,” Comput. Graph. 15, 307 (1981).
    [CrossRef]
  6. S. H.  Westin, “Predicting reflectance functions from complex surfaces,” Thesis presented to the faculty of the Graduate School of Cornell University in partial fulfillment of the requirements for the degree of Master of Science, Association for Computing Machinery, 1992.
  7. H.  Li, K. E.  Torrance, “An experimental study of the correlation between surface roughness and light scattering for rough metallic surfaces. Advanced characterization techniques for optics, semiconductors, and nanotechnologies II,” Proc. SPIE 5878, 1 (2005).
    [CrossRef]
  8. V. B.  Khromchenko, S. N.  Mekhontsev, L. M.  Hanssen, “Design and evaluation of large-aperture gallium fixed-point blackbody,” Int. J. Thermophys. 30, 9 (2009).
    [CrossRef]

2009 (1)

V. B.  Khromchenko, S. N.  Mekhontsev, L. M.  Hanssen, “Design and evaluation of large-aperture gallium fixed-point blackbody,” Int. J. Thermophys. 30, 9 (2009).
[CrossRef]

2008 (1)

L. M.  Hanssen, A. V.  Prokhorov, “A procedural model of reflection from random rough surfaces,” Proc. SPIE 7065, 70650W (2008).
[CrossRef]

2005 (1)

H.  Li, K. E.  Torrance, “An experimental study of the correlation between surface roughness and light scattering for rough metallic surfaces. Advanced characterization techniques for optics, semiconductors, and nanotechnologies II,” Proc. SPIE 5878, 1 (2005).
[CrossRef]

1991 (1)

X. D.  He, K. E.  Torrance, F. X.  Sillion, D. P.  Greenberg, “A comprehensive physical model for light reflection,” Comput. Graph. 25, 175 (1991).
[CrossRef]

1981 (1)

R. L.  Cook, K. E.  Torrance, “A reflectance model for computer graphics,” Comput. Graph. 15, 307 (1981).
[CrossRef]

1967 (1)

Cook, R. L.

R. L.  Cook, K. E.  Torrance, “A reflectance model for computer graphics,” Comput. Graph. 15, 307 (1981).
[CrossRef]

Greenberg, D. P.

X. D.  He, K. E.  Torrance, F. X.  Sillion, D. P.  Greenberg, “A comprehensive physical model for light reflection,” Comput. Graph. 25, 175 (1991).
[CrossRef]

Hanssen, L. M.

V. B.  Khromchenko, S. N.  Mekhontsev, L. M.  Hanssen, “Design and evaluation of large-aperture gallium fixed-point blackbody,” Int. J. Thermophys. 30, 9 (2009).
[CrossRef]

L. M.  Hanssen, A. V.  Prokhorov, “A procedural model of reflection from random rough surfaces,” Proc. SPIE 7065, 70650W (2008).
[CrossRef]

He, X. D.

X. D.  He, K. E.  Torrance, F. X.  Sillion, D. P.  Greenberg, “A comprehensive physical model for light reflection,” Comput. Graph. 25, 175 (1991).
[CrossRef]

Khromchenko, V. B.

V. B.  Khromchenko, S. N.  Mekhontsev, L. M.  Hanssen, “Design and evaluation of large-aperture gallium fixed-point blackbody,” Int. J. Thermophys. 30, 9 (2009).
[CrossRef]

Klass, E. V.

E. V.  Klass, S. A.  Ul’yanov, V. V.  Shakhovskiĭ, “Modeling the brightness of artificial objects in earth orbit,” Vestnik SibGAU No. 6 (39), 142 (2011).

Li, H.

H.  Li, K. E.  Torrance, “An experimental study of the correlation between surface roughness and light scattering for rough metallic surfaces. Advanced characterization techniques for optics, semiconductors, and nanotechnologies II,” Proc. SPIE 5878, 1 (2005).
[CrossRef]

Mekhontsev, S. N.

V. B.  Khromchenko, S. N.  Mekhontsev, L. M.  Hanssen, “Design and evaluation of large-aperture gallium fixed-point blackbody,” Int. J. Thermophys. 30, 9 (2009).
[CrossRef]

Prokhorov, A. V.

L. M.  Hanssen, A. V.  Prokhorov, “A procedural model of reflection from random rough surfaces,” Proc. SPIE 7065, 70650W (2008).
[CrossRef]

Shakhovskii, V. V.

E. V.  Klass, S. A.  Ul’yanov, V. V.  Shakhovskiĭ, “Modeling the brightness of artificial objects in earth orbit,” Vestnik SibGAU No. 6 (39), 142 (2011).

Sillion, F. X.

X. D.  He, K. E.  Torrance, F. X.  Sillion, D. P.  Greenberg, “A comprehensive physical model for light reflection,” Comput. Graph. 25, 175 (1991).
[CrossRef]

Sparrow, E. M.

Torrance, K. E.

H.  Li, K. E.  Torrance, “An experimental study of the correlation between surface roughness and light scattering for rough metallic surfaces. Advanced characterization techniques for optics, semiconductors, and nanotechnologies II,” Proc. SPIE 5878, 1 (2005).
[CrossRef]

X. D.  He, K. E.  Torrance, F. X.  Sillion, D. P.  Greenberg, “A comprehensive physical model for light reflection,” Comput. Graph. 25, 175 (1991).
[CrossRef]

R. L.  Cook, K. E.  Torrance, “A reflectance model for computer graphics,” Comput. Graph. 15, 307 (1981).
[CrossRef]

K. E.  Torrance, E. M.  Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am. 57, 1105 (1967).
[CrossRef]

Ul’yanov, S. A.

E. V.  Klass, S. A.  Ul’yanov, V. V.  Shakhovskiĭ, “Modeling the brightness of artificial objects in earth orbit,” Vestnik SibGAU No. 6 (39), 142 (2011).

Westin, S. H.

S. H.  Westin, “Predicting reflectance functions from complex surfaces,” Thesis presented to the faculty of the Graduate School of Cornell University in partial fulfillment of the requirements for the degree of Master of Science, Association for Computing Machinery, 1992.

Comput. Graph. (2)

X. D.  He, K. E.  Torrance, F. X.  Sillion, D. P.  Greenberg, “A comprehensive physical model for light reflection,” Comput. Graph. 25, 175 (1991).
[CrossRef]

R. L.  Cook, K. E.  Torrance, “A reflectance model for computer graphics,” Comput. Graph. 15, 307 (1981).
[CrossRef]

Int. J. Thermophys. (1)

V. B.  Khromchenko, S. N.  Mekhontsev, L. M.  Hanssen, “Design and evaluation of large-aperture gallium fixed-point blackbody,” Int. J. Thermophys. 30, 9 (2009).
[CrossRef]

J. Opt. Soc. Am. (1)

Proc. SPIE (2)

H.  Li, K. E.  Torrance, “An experimental study of the correlation between surface roughness and light scattering for rough metallic surfaces. Advanced characterization techniques for optics, semiconductors, and nanotechnologies II,” Proc. SPIE 5878, 1 (2005).
[CrossRef]

L. M.  Hanssen, A. V.  Prokhorov, “A procedural model of reflection from random rough surfaces,” Proc. SPIE 7065, 70650W (2008).
[CrossRef]

Other (2)

E. V.  Klass, S. A.  Ul’yanov, V. V.  Shakhovskiĭ, “Modeling the brightness of artificial objects in earth orbit,” Vestnik SibGAU No. 6 (39), 142 (2011).

S. H.  Westin, “Predicting reflectance functions from complex surfaces,” Thesis presented to the faculty of the Graduate School of Cornell University in partial fulfillment of the requirements for the degree of Master of Science, Association for Computing Machinery, 1992.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.