Abstract

Based on the Kubelka–Munk two-flux model modified by the authors, which makes it possible in one-dimensional problems to obtain exact analytical expressions for radiation fluxes at the boundary of a turbid medium, and Kokhanovsky’s solution for the radiation flux of fluorescence, questions are considered of modelling the spectrum of stimulated endogenous fluorescence of biological tissues as applied to problems of noninvasive medical diagnosis. An analytical expression is presented for the spectral distortion function, which depends on the scattering and absorption properties of cellular biological tissues and blood. It is shown that the model spectra agree well with the experimental data.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. B.  Loschenov, V. I.  Konov, A. M.  Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188 (2000).
  2. M. A.  Mycek, B. W.  Pogue, Handbook of Biomedical Fluorescence (Marcel Dekker Inc., New York, 2003).
  3. F.  Leblond, S.  Davis, P.  Valdes, B.  Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol., B 98, 77 (2010).
    [CrossRef]
  4. P.  Bonfert-Taylor, F.  Leblond, R.  Holt, K.  Tichauer, B.  Pogue, E.  Taylor, “Information loss and reconstruction in diffuse fluorescence tomography,” J. Opt. Soc. Am. A 29, 321 (2012).
    [CrossRef]
  5. D. A.  Rogatkin, “Instrumental and methodological errors of measurements in noninvasive medical spectrophotometry,” in Materials of the Third Eurasian Congress with Respect to Medical Physics and Engineering, Medical Physics-2010 (MGU, Moscow, 2010), pp. 38–41.
  6. W. J. M.  Putten, M. J. C.  Gemert, “A modeling approach to the detection of subcutaneous tumours by haematoporphyrin-derivative fluorescence,” Phys. Med. Biol. 28, 639 (1983).
    [CrossRef]
  7. D.  Rogatkin, V.  Svirin, G.  Hachaturyan, “The theoretical model for fluorescent field calculation in nonhomogeneous and scattering biological tissues,” Proc. SPIE 3563, 125 (1998).
  8. D. A.  Rogatkin, V. V.  Tchernyi, “Mathematical simulation as a key point of the laser fluorescence diagnostic technique in oncology,” Proc. SPIE 4059, 73 (2000).
    [CrossRef]
  9. E.  Baraghis, A.  Devor, Q.  Fang, V.  Srinivasan, W.  Wu, D.  Boas, S.  Sakadzic, F.  Lesage, C.  Ayata, K.  Kasischke, “Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response,” J. Biomed. Opt. 16, 106003 (2011).
    [CrossRef]
  10. S.  Kanick, D.  Robinson, C.  Sterenborg, A.  Amelink, “Extraction of intrinsic from single-fiber fluorescence measurements on a turbid medium,” Opt. Lett. 37, 948 (2012).
    [CrossRef]
  11. A. A.  Kokhanovsky, “Radiative properties of optically thick fluorescent turbid media,” J. Opt. Soc. Am. A 26, 1896 (2009).
    [CrossRef]
  12. D. A.  Rogatkin, “On a feature in determining the optical properties of turbid biological tissues and media in calculational problems of medical noninvasive spectrophotometry,” Medits. Tekhn. No. 2, 10 (2007).
  13. A. R.  Subbotin, T. A.  Savel’eva, S. A.  Goryaĭnov, “Algorithm for processing the fluorescence spectra of protoporphyrin IX and the endogenous fluorophores in glial tumors of the brain,” in Collection of the Materials of the Fifth Troitsk Conference on Medical Physics and Innovation in Medicine, Troitsk, 2012, vol. 1, pp. 268–269.
  14. D. A.  Rogatkin, L. G.  Lapaeva, E. N.  Petritskaya, V. V.  Sidorov, V. I.  Shumskiy, “Multifunctional laser noninvasive spectroscopic system for medical diagnostics and some metrological provisions for that,” Proc. SPIE 7368, 73681Y (2009).
    [CrossRef]
  15. , “Optical colored glass,” Izd. Standartov, Moscow, 1976.
  16. D. A.  Rogatkin, “Physical principles of optical oximetry,” Medits. Fiz. No. 2, 97 (2012).

2012 (3)

2011 (1)

E.  Baraghis, A.  Devor, Q.  Fang, V.  Srinivasan, W.  Wu, D.  Boas, S.  Sakadzic, F.  Lesage, C.  Ayata, K.  Kasischke, “Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response,” J. Biomed. Opt. 16, 106003 (2011).
[CrossRef]

2010 (1)

F.  Leblond, S.  Davis, P.  Valdes, B.  Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol., B 98, 77 (2010).
[CrossRef]

2009 (2)

D. A.  Rogatkin, L. G.  Lapaeva, E. N.  Petritskaya, V. V.  Sidorov, V. I.  Shumskiy, “Multifunctional laser noninvasive spectroscopic system for medical diagnostics and some metrological provisions for that,” Proc. SPIE 7368, 73681Y (2009).
[CrossRef]

A. A.  Kokhanovsky, “Radiative properties of optically thick fluorescent turbid media,” J. Opt. Soc. Am. A 26, 1896 (2009).
[CrossRef]

2007 (1)

D. A.  Rogatkin, “On a feature in determining the optical properties of turbid biological tissues and media in calculational problems of medical noninvasive spectrophotometry,” Medits. Tekhn. No. 2, 10 (2007).

2000 (2)

D. A.  Rogatkin, V. V.  Tchernyi, “Mathematical simulation as a key point of the laser fluorescence diagnostic technique in oncology,” Proc. SPIE 4059, 73 (2000).
[CrossRef]

V. B.  Loschenov, V. I.  Konov, A. M.  Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188 (2000).

1998 (1)

D.  Rogatkin, V.  Svirin, G.  Hachaturyan, “The theoretical model for fluorescent field calculation in nonhomogeneous and scattering biological tissues,” Proc. SPIE 3563, 125 (1998).

1983 (1)

W. J. M.  Putten, M. J. C.  Gemert, “A modeling approach to the detection of subcutaneous tumours by haematoporphyrin-derivative fluorescence,” Phys. Med. Biol. 28, 639 (1983).
[CrossRef]

Amelink, A.

Ayata, C.

E.  Baraghis, A.  Devor, Q.  Fang, V.  Srinivasan, W.  Wu, D.  Boas, S.  Sakadzic, F.  Lesage, C.  Ayata, K.  Kasischke, “Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response,” J. Biomed. Opt. 16, 106003 (2011).
[CrossRef]

Baraghis, E.

E.  Baraghis, A.  Devor, Q.  Fang, V.  Srinivasan, W.  Wu, D.  Boas, S.  Sakadzic, F.  Lesage, C.  Ayata, K.  Kasischke, “Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response,” J. Biomed. Opt. 16, 106003 (2011).
[CrossRef]

Boas, D.

E.  Baraghis, A.  Devor, Q.  Fang, V.  Srinivasan, W.  Wu, D.  Boas, S.  Sakadzic, F.  Lesage, C.  Ayata, K.  Kasischke, “Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response,” J. Biomed. Opt. 16, 106003 (2011).
[CrossRef]

Bonfert-Taylor, P.

Davis, S.

F.  Leblond, S.  Davis, P.  Valdes, B.  Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol., B 98, 77 (2010).
[CrossRef]

Devor, A.

E.  Baraghis, A.  Devor, Q.  Fang, V.  Srinivasan, W.  Wu, D.  Boas, S.  Sakadzic, F.  Lesage, C.  Ayata, K.  Kasischke, “Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response,” J. Biomed. Opt. 16, 106003 (2011).
[CrossRef]

Fang, Q.

E.  Baraghis, A.  Devor, Q.  Fang, V.  Srinivasan, W.  Wu, D.  Boas, S.  Sakadzic, F.  Lesage, C.  Ayata, K.  Kasischke, “Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response,” J. Biomed. Opt. 16, 106003 (2011).
[CrossRef]

Gemert, M. J. C.

W. J. M.  Putten, M. J. C.  Gemert, “A modeling approach to the detection of subcutaneous tumours by haematoporphyrin-derivative fluorescence,” Phys. Med. Biol. 28, 639 (1983).
[CrossRef]

Goryainov, S. A.

A. R.  Subbotin, T. A.  Savel’eva, S. A.  Goryaĭnov, “Algorithm for processing the fluorescence spectra of protoporphyrin IX and the endogenous fluorophores in glial tumors of the brain,” in Collection of the Materials of the Fifth Troitsk Conference on Medical Physics and Innovation in Medicine, Troitsk, 2012, vol. 1, pp. 268–269.

Hachaturyan, G.

D.  Rogatkin, V.  Svirin, G.  Hachaturyan, “The theoretical model for fluorescent field calculation in nonhomogeneous and scattering biological tissues,” Proc. SPIE 3563, 125 (1998).

Holt, R.

Kanick, S.

Kasischke, K.

E.  Baraghis, A.  Devor, Q.  Fang, V.  Srinivasan, W.  Wu, D.  Boas, S.  Sakadzic, F.  Lesage, C.  Ayata, K.  Kasischke, “Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response,” J. Biomed. Opt. 16, 106003 (2011).
[CrossRef]

Kokhanovsky, A. A.

Konov, V. I.

V. B.  Loschenov, V. I.  Konov, A. M.  Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188 (2000).

Lapaeva, L. G.

D. A.  Rogatkin, L. G.  Lapaeva, E. N.  Petritskaya, V. V.  Sidorov, V. I.  Shumskiy, “Multifunctional laser noninvasive spectroscopic system for medical diagnostics and some metrological provisions for that,” Proc. SPIE 7368, 73681Y (2009).
[CrossRef]

Leblond, F.

P.  Bonfert-Taylor, F.  Leblond, R.  Holt, K.  Tichauer, B.  Pogue, E.  Taylor, “Information loss and reconstruction in diffuse fluorescence tomography,” J. Opt. Soc. Am. A 29, 321 (2012).
[CrossRef]

F.  Leblond, S.  Davis, P.  Valdes, B.  Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol., B 98, 77 (2010).
[CrossRef]

Lesage, F.

E.  Baraghis, A.  Devor, Q.  Fang, V.  Srinivasan, W.  Wu, D.  Boas, S.  Sakadzic, F.  Lesage, C.  Ayata, K.  Kasischke, “Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response,” J. Biomed. Opt. 16, 106003 (2011).
[CrossRef]

Loschenov, V. B.

V. B.  Loschenov, V. I.  Konov, A. M.  Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188 (2000).

Mycek, M. A.

M. A.  Mycek, B. W.  Pogue, Handbook of Biomedical Fluorescence (Marcel Dekker Inc., New York, 2003).

Petritskaya, E. N.

D. A.  Rogatkin, L. G.  Lapaeva, E. N.  Petritskaya, V. V.  Sidorov, V. I.  Shumskiy, “Multifunctional laser noninvasive spectroscopic system for medical diagnostics and some metrological provisions for that,” Proc. SPIE 7368, 73681Y (2009).
[CrossRef]

Pogue, B.

P.  Bonfert-Taylor, F.  Leblond, R.  Holt, K.  Tichauer, B.  Pogue, E.  Taylor, “Information loss and reconstruction in diffuse fluorescence tomography,” J. Opt. Soc. Am. A 29, 321 (2012).
[CrossRef]

F.  Leblond, S.  Davis, P.  Valdes, B.  Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol., B 98, 77 (2010).
[CrossRef]

Pogue, B. W.

M. A.  Mycek, B. W.  Pogue, Handbook of Biomedical Fluorescence (Marcel Dekker Inc., New York, 2003).

Prokhorov, A. M.

V. B.  Loschenov, V. I.  Konov, A. M.  Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188 (2000).

Putten, W. J. M.

W. J. M.  Putten, M. J. C.  Gemert, “A modeling approach to the detection of subcutaneous tumours by haematoporphyrin-derivative fluorescence,” Phys. Med. Biol. 28, 639 (1983).
[CrossRef]

Robinson, D.

Rogatkin, D.

D.  Rogatkin, V.  Svirin, G.  Hachaturyan, “The theoretical model for fluorescent field calculation in nonhomogeneous and scattering biological tissues,” Proc. SPIE 3563, 125 (1998).

Rogatkin, D. A.

D. A.  Rogatkin, “Physical principles of optical oximetry,” Medits. Fiz. No. 2, 97 (2012).

D. A.  Rogatkin, L. G.  Lapaeva, E. N.  Petritskaya, V. V.  Sidorov, V. I.  Shumskiy, “Multifunctional laser noninvasive spectroscopic system for medical diagnostics and some metrological provisions for that,” Proc. SPIE 7368, 73681Y (2009).
[CrossRef]

D. A.  Rogatkin, “On a feature in determining the optical properties of turbid biological tissues and media in calculational problems of medical noninvasive spectrophotometry,” Medits. Tekhn. No. 2, 10 (2007).

D. A.  Rogatkin, V. V.  Tchernyi, “Mathematical simulation as a key point of the laser fluorescence diagnostic technique in oncology,” Proc. SPIE 4059, 73 (2000).
[CrossRef]

D. A.  Rogatkin, “Instrumental and methodological errors of measurements in noninvasive medical spectrophotometry,” in Materials of the Third Eurasian Congress with Respect to Medical Physics and Engineering, Medical Physics-2010 (MGU, Moscow, 2010), pp. 38–41.

Sakadzic, S.

E.  Baraghis, A.  Devor, Q.  Fang, V.  Srinivasan, W.  Wu, D.  Boas, S.  Sakadzic, F.  Lesage, C.  Ayata, K.  Kasischke, “Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response,” J. Biomed. Opt. 16, 106003 (2011).
[CrossRef]

Savel’eva, T. A.

A. R.  Subbotin, T. A.  Savel’eva, S. A.  Goryaĭnov, “Algorithm for processing the fluorescence spectra of protoporphyrin IX and the endogenous fluorophores in glial tumors of the brain,” in Collection of the Materials of the Fifth Troitsk Conference on Medical Physics and Innovation in Medicine, Troitsk, 2012, vol. 1, pp. 268–269.

Shumskiy, V. I.

D. A.  Rogatkin, L. G.  Lapaeva, E. N.  Petritskaya, V. V.  Sidorov, V. I.  Shumskiy, “Multifunctional laser noninvasive spectroscopic system for medical diagnostics and some metrological provisions for that,” Proc. SPIE 7368, 73681Y (2009).
[CrossRef]

Sidorov, V. V.

D. A.  Rogatkin, L. G.  Lapaeva, E. N.  Petritskaya, V. V.  Sidorov, V. I.  Shumskiy, “Multifunctional laser noninvasive spectroscopic system for medical diagnostics and some metrological provisions for that,” Proc. SPIE 7368, 73681Y (2009).
[CrossRef]

Srinivasan, V.

E.  Baraghis, A.  Devor, Q.  Fang, V.  Srinivasan, W.  Wu, D.  Boas, S.  Sakadzic, F.  Lesage, C.  Ayata, K.  Kasischke, “Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response,” J. Biomed. Opt. 16, 106003 (2011).
[CrossRef]

Sterenborg, C.

Subbotin, A. R.

A. R.  Subbotin, T. A.  Savel’eva, S. A.  Goryaĭnov, “Algorithm for processing the fluorescence spectra of protoporphyrin IX and the endogenous fluorophores in glial tumors of the brain,” in Collection of the Materials of the Fifth Troitsk Conference on Medical Physics and Innovation in Medicine, Troitsk, 2012, vol. 1, pp. 268–269.

Svirin, V.

D.  Rogatkin, V.  Svirin, G.  Hachaturyan, “The theoretical model for fluorescent field calculation in nonhomogeneous and scattering biological tissues,” Proc. SPIE 3563, 125 (1998).

Taylor, E.

Tchernyi, V. V.

D. A.  Rogatkin, V. V.  Tchernyi, “Mathematical simulation as a key point of the laser fluorescence diagnostic technique in oncology,” Proc. SPIE 4059, 73 (2000).
[CrossRef]

Tichauer, K.

Valdes, P.

F.  Leblond, S.  Davis, P.  Valdes, B.  Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol., B 98, 77 (2010).
[CrossRef]

Wu, W.

E.  Baraghis, A.  Devor, Q.  Fang, V.  Srinivasan, W.  Wu, D.  Boas, S.  Sakadzic, F.  Lesage, C.  Ayata, K.  Kasischke, “Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response,” J. Biomed. Opt. 16, 106003 (2011).
[CrossRef]

J. Biomed. Opt. (1)

E.  Baraghis, A.  Devor, Q.  Fang, V.  Srinivasan, W.  Wu, D.  Boas, S.  Sakadzic, F.  Lesage, C.  Ayata, K.  Kasischke, “Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response,” J. Biomed. Opt. 16, 106003 (2011).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Photochem. Photobiol., B (1)

F.  Leblond, S.  Davis, P.  Valdes, B.  Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol., B 98, 77 (2010).
[CrossRef]

Laser Phys. (1)

V. B.  Loschenov, V. I.  Konov, A. M.  Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188 (2000).

Medits. Fiz. (1)

D. A.  Rogatkin, “Physical principles of optical oximetry,” Medits. Fiz. No. 2, 97 (2012).

Medits. Tekhn. (1)

D. A.  Rogatkin, “On a feature in determining the optical properties of turbid biological tissues and media in calculational problems of medical noninvasive spectrophotometry,” Medits. Tekhn. No. 2, 10 (2007).

Opt. Lett. (1)

Phys. Med. Biol. (1)

W. J. M.  Putten, M. J. C.  Gemert, “A modeling approach to the detection of subcutaneous tumours by haematoporphyrin-derivative fluorescence,” Phys. Med. Biol. 28, 639 (1983).
[CrossRef]

Proc. SPIE (3)

D.  Rogatkin, V.  Svirin, G.  Hachaturyan, “The theoretical model for fluorescent field calculation in nonhomogeneous and scattering biological tissues,” Proc. SPIE 3563, 125 (1998).

D. A.  Rogatkin, V. V.  Tchernyi, “Mathematical simulation as a key point of the laser fluorescence diagnostic technique in oncology,” Proc. SPIE 4059, 73 (2000).
[CrossRef]

D. A.  Rogatkin, L. G.  Lapaeva, E. N.  Petritskaya, V. V.  Sidorov, V. I.  Shumskiy, “Multifunctional laser noninvasive spectroscopic system for medical diagnostics and some metrological provisions for that,” Proc. SPIE 7368, 73681Y (2009).
[CrossRef]

Other (4)

, “Optical colored glass,” Izd. Standartov, Moscow, 1976.

A. R.  Subbotin, T. A.  Savel’eva, S. A.  Goryaĭnov, “Algorithm for processing the fluorescence spectra of protoporphyrin IX and the endogenous fluorophores in glial tumors of the brain,” in Collection of the Materials of the Fifth Troitsk Conference on Medical Physics and Innovation in Medicine, Troitsk, 2012, vol. 1, pp. 268–269.

M. A.  Mycek, B. W.  Pogue, Handbook of Biomedical Fluorescence (Marcel Dekker Inc., New York, 2003).

D. A.  Rogatkin, “Instrumental and methodological errors of measurements in noninvasive medical spectrophotometry,” in Materials of the Third Eurasian Congress with Respect to Medical Physics and Engineering, Medical Physics-2010 (MGU, Moscow, 2010), pp. 38–41.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.