Abstract

This paper presents expressions that make it possible to calculate the third- and fifth-order aberrations of a volume holographic optical element (HOE) recorded by means of a cylindrical reference wave and a spherical object wave. It is shown that the aberration coefficients of this volume element can be represented as a sum of the monochromatic and chromatic aberration coefficients, as well as the aberration coefficients that result from the photoinduced, thermally induced, and strain variations of its refractive index and dimensions. It is pointed out that the selectivity of a volume HOE reduces its aberrations by comparison with the corresponding aberrations of a thin HOE.

© 2013 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription