Abstract

This paper discusses the evolution of the temperature on the surface of the human body directly in a projection of a malignant tumor and at some distance from it. Models are proposed for the propagation of heat in the region of the mammary gland that make it possible to estimate the limits of sensitivity of the method of IR thermography and to predict the rate at which the tumor is developing. It is shown that the temperature signals have substantial fluctuations in the region of both healthy and pathological tissue. Mathematical models for processing the temperature signals are proposed in order to calculate the quantitative differences between the healthy and pathological regions. These techniques, in combination with standard thermal-vision symptoms, can be used as a supplementary risk factor when diagnosing a malignant tumor.

© 2013 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription