Abstract

A method has been developed for generating amplitude masks with constant power spectra so that they can be used to measure the two-dimensional modulation-transfer functions of optical systems. This paper estimates the spectral stability of the masks obtained by the method developed here and of other forms of masks against the noise and geometrical distortions that arise when images of the masks are recorded by photosensor arrays. The possibilities of using them to measure two-dimensional modulation-transfer functions are analyzed. The two-dimensional modulation-transfer function of a digital camera is measured, using a mask obtained by the method developed here and correlation alignment of the rasters.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X.  Zhang, T.  Kashti, D.  Kella, T.  Frank, D.  Shaked, R.  Ulichney, M.  Fischer, J. P.  Allebach, “Measuring the modulation transfer function of image-capture devices: what do the numbers really mean?” Proc. SPIE 8293, 829307 (2012).
    [CrossRef]
  2. A.  Daniels, G.  Boreman, A.  Ducharme, E.  Sair, “Random transparency targets for modulation-transfer measurement in the visible and infrared regions,” Opt. Eng. 34, 860 (1995).
    [CrossRef]
  3. B. T.  Teipen D. L.  MacFarlane, “Liquid-crystal-display projector-based modulation-transfer function measurements of charge-coupled-device video-camera systems,” Appl. Opt. 39, 515 (2000).
    [CrossRef]
  4. A.  Fernández-Oliveras, A. M.  Pozo, M.  Rubiño, “Comparison of spectacle-lens optical quality by modulation-transfer-function measurements based on random-dot patterns,” Opt. Eng. 49, 083603 (2010).
    [CrossRef]
  5. H.  Kubota H.  Ohzu, “Method of response function by means of random chart,” J. Opt. Soc. Am. 47, 666 (1957).
    [CrossRef]
  6. E. E.  Fenimore T. M.  Cannon, “Coded aperture imaging with uniformly redundant arrays,” Appl. Opt. 17, 337 (1978).
    [CrossRef]
  7. M. A.  Seldowitz, J. P.  Allebach, D. W.  Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788 (1987).
    [CrossRef]
  8. L. R.  Rabiner B.  Gold, Theory and Applications of Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N. J., 1975; Mir, Moscow, 1978), pp. 89–227.

2012 (1)

X.  Zhang, T.  Kashti, D.  Kella, T.  Frank, D.  Shaked, R.  Ulichney, M.  Fischer, J. P.  Allebach, “Measuring the modulation transfer function of image-capture devices: what do the numbers really mean?” Proc. SPIE 8293, 829307 (2012).
[CrossRef]

2010 (1)

A.  Fernández-Oliveras, A. M.  Pozo, M.  Rubiño, “Comparison of spectacle-lens optical quality by modulation-transfer-function measurements based on random-dot patterns,” Opt. Eng. 49, 083603 (2010).
[CrossRef]

2000 (1)

1995 (1)

A.  Daniels, G.  Boreman, A.  Ducharme, E.  Sair, “Random transparency targets for modulation-transfer measurement in the visible and infrared regions,” Opt. Eng. 34, 860 (1995).
[CrossRef]

1987 (1)

1978 (1)

1957 (1)

Allebach, J. P.

X.  Zhang, T.  Kashti, D.  Kella, T.  Frank, D.  Shaked, R.  Ulichney, M.  Fischer, J. P.  Allebach, “Measuring the modulation transfer function of image-capture devices: what do the numbers really mean?” Proc. SPIE 8293, 829307 (2012).
[CrossRef]

M. A.  Seldowitz, J. P.  Allebach, D. W.  Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788 (1987).
[CrossRef]

Boreman, G.

A.  Daniels, G.  Boreman, A.  Ducharme, E.  Sair, “Random transparency targets for modulation-transfer measurement in the visible and infrared regions,” Opt. Eng. 34, 860 (1995).
[CrossRef]

Cannon, T. M.

Daniels, A.

A.  Daniels, G.  Boreman, A.  Ducharme, E.  Sair, “Random transparency targets for modulation-transfer measurement in the visible and infrared regions,” Opt. Eng. 34, 860 (1995).
[CrossRef]

Ducharme, A.

A.  Daniels, G.  Boreman, A.  Ducharme, E.  Sair, “Random transparency targets for modulation-transfer measurement in the visible and infrared regions,” Opt. Eng. 34, 860 (1995).
[CrossRef]

Fenimore, E. E.

Fernández-Oliveras, A.

A.  Fernández-Oliveras, A. M.  Pozo, M.  Rubiño, “Comparison of spectacle-lens optical quality by modulation-transfer-function measurements based on random-dot patterns,” Opt. Eng. 49, 083603 (2010).
[CrossRef]

Fischer, M.

X.  Zhang, T.  Kashti, D.  Kella, T.  Frank, D.  Shaked, R.  Ulichney, M.  Fischer, J. P.  Allebach, “Measuring the modulation transfer function of image-capture devices: what do the numbers really mean?” Proc. SPIE 8293, 829307 (2012).
[CrossRef]

Frank, T.

X.  Zhang, T.  Kashti, D.  Kella, T.  Frank, D.  Shaked, R.  Ulichney, M.  Fischer, J. P.  Allebach, “Measuring the modulation transfer function of image-capture devices: what do the numbers really mean?” Proc. SPIE 8293, 829307 (2012).
[CrossRef]

Gold, B.

L. R.  Rabiner B.  Gold, Theory and Applications of Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N. J., 1975; Mir, Moscow, 1978), pp. 89–227.

Kashti, T.

X.  Zhang, T.  Kashti, D.  Kella, T.  Frank, D.  Shaked, R.  Ulichney, M.  Fischer, J. P.  Allebach, “Measuring the modulation transfer function of image-capture devices: what do the numbers really mean?” Proc. SPIE 8293, 829307 (2012).
[CrossRef]

Kella, D.

X.  Zhang, T.  Kashti, D.  Kella, T.  Frank, D.  Shaked, R.  Ulichney, M.  Fischer, J. P.  Allebach, “Measuring the modulation transfer function of image-capture devices: what do the numbers really mean?” Proc. SPIE 8293, 829307 (2012).
[CrossRef]

Kubota, H.

MacFarlane, D. L.

Ohzu, H.

Pozo, A. M.

A.  Fernández-Oliveras, A. M.  Pozo, M.  Rubiño, “Comparison of spectacle-lens optical quality by modulation-transfer-function measurements based on random-dot patterns,” Opt. Eng. 49, 083603 (2010).
[CrossRef]

Rabiner, L. R.

L. R.  Rabiner B.  Gold, Theory and Applications of Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N. J., 1975; Mir, Moscow, 1978), pp. 89–227.

Rubiño, M.

A.  Fernández-Oliveras, A. M.  Pozo, M.  Rubiño, “Comparison of spectacle-lens optical quality by modulation-transfer-function measurements based on random-dot patterns,” Opt. Eng. 49, 083603 (2010).
[CrossRef]

Sair, E.

A.  Daniels, G.  Boreman, A.  Ducharme, E.  Sair, “Random transparency targets for modulation-transfer measurement in the visible and infrared regions,” Opt. Eng. 34, 860 (1995).
[CrossRef]

Seldowitz, M. A.

Shaked, D.

X.  Zhang, T.  Kashti, D.  Kella, T.  Frank, D.  Shaked, R.  Ulichney, M.  Fischer, J. P.  Allebach, “Measuring the modulation transfer function of image-capture devices: what do the numbers really mean?” Proc. SPIE 8293, 829307 (2012).
[CrossRef]

Sweeney, D. W.

Teipen, B. T.

Ulichney, R.

X.  Zhang, T.  Kashti, D.  Kella, T.  Frank, D.  Shaked, R.  Ulichney, M.  Fischer, J. P.  Allebach, “Measuring the modulation transfer function of image-capture devices: what do the numbers really mean?” Proc. SPIE 8293, 829307 (2012).
[CrossRef]

Zhang, X.

X.  Zhang, T.  Kashti, D.  Kella, T.  Frank, D.  Shaked, R.  Ulichney, M.  Fischer, J. P.  Allebach, “Measuring the modulation transfer function of image-capture devices: what do the numbers really mean?” Proc. SPIE 8293, 829307 (2012).
[CrossRef]

Appl. Opt. (3)

J. Opt. Soc. Am. (1)

Opt. Eng. (2)

A.  Daniels, G.  Boreman, A.  Ducharme, E.  Sair, “Random transparency targets for modulation-transfer measurement in the visible and infrared regions,” Opt. Eng. 34, 860 (1995).
[CrossRef]

A.  Fernández-Oliveras, A. M.  Pozo, M.  Rubiño, “Comparison of spectacle-lens optical quality by modulation-transfer-function measurements based on random-dot patterns,” Opt. Eng. 49, 083603 (2010).
[CrossRef]

Proc. SPIE (1)

X.  Zhang, T.  Kashti, D.  Kella, T.  Frank, D.  Shaked, R.  Ulichney, M.  Fischer, J. P.  Allebach, “Measuring the modulation transfer function of image-capture devices: what do the numbers really mean?” Proc. SPIE 8293, 829307 (2012).
[CrossRef]

Other (1)

L. R.  Rabiner B.  Gold, Theory and Applications of Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N. J., 1975; Mir, Moscow, 1978), pp. 89–227.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.