Abstract

The photoelectric properties of a high-resistance silver film on sapphire, consisting of granules 15–20 nm across with the same intervals between them, have been investigated. The ohmic conductivity of the film increased with temperature. Photoconductivity is detected in the film when optical radiation with wavelengths up to the red limit of the photoelectric effect acts on it. A sign change of the photocurrent is detected in the photoconductivity spectrum when the current through the film increases under the action of radiation with wavelength less than 460 nm, whereas it decreases when the wavelength is greater than 460 nm. A conductivity and photoconductivity model is proposed that is based on doping of the dielectric substrate due to the metallic nanoparticles placed on it and the motion of electrons over traps in the substrate. The position of the bottom of the conduction band of the dielectric relative to the Fermi level for silver is calculated in terms of the model.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C.  Roco, R. S.  Williams, P.  Alivisatos, eds., Nanotechnology Research Directions: IWGN Workshop Report: Vision for Nanotechnology R & D in the Next Decade (Kluwer Academic, Boston, 2001; Mir, Moscow, 2002).
  2. B.  Bhushan, ed., Springer Handbook of Nanotechnology (Springer-Verlag, Berlin, 2004).
  3. V. I.  Arzhantsev, White Book on Nanotechnologies: Studies in Nanoparticles, Nanostructures, and Nanocomposites in the Russian Federation: from the Materials of the First All-Russia Conference of Scientists, Engineers, and Manufacturers in the Area of Nanotechnologies: A Collection (URSS, Moscow, 2008).
  4. C. A.  Neugebauer M. N.  Web, “Electrical conduction mechanism in ultrathin, evaporated metal films,” J. Appl. Phys. 33, 74 (1962).
    [CrossRef]
  5. K. L.  Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969; Mir, Moscow, 1972).
  6. S.  Wagner A.  Pundt, “Conduction mechanisms during the growth of the Pd thin films: experiment and model,” Phys. Rev. B 78, 155131 (2008).
    [CrossRef]
  7. D. A.  Zakge?m, I. V.  Rozhanski?, I. P.  Smirnova, “Temperature dependence of the conductivity of Cu:SiO2 composite films. Experiment and numerical simulation,” Zh. Eksp. Teor. Fiz. 118, 637 (2000) [Sov. Phys. JETP 91, 553 (2000)].
  8. I. E.  Efimov, I. Ya.  Kozyr’, Yu. I.  Gorbunov, Microelectronics (Vysshaya Shkola, Moscow, 1986).
  9. É. L.  Nolle M. Ya.  Shchelev, “Photoelectron emission caused by surface plasmons in silver nanoparticles,” Pis’ma Zh. Eksp. Teor. Fiz. 30, No. 8, 1 (2004) [JETP Lett. 30, 304 (2004)].
  10. A. P.  Boltaev, N. A.  Penin, A. O.  Pogosov, F. A.  Pudonin, “Detection of photoconductivity in hyperfine metal films in the visible and infrared spectral regions,” Zh. Eksp. Teor. Fiz. 123, 1067 (2003) [Sov. Phys. JETP 96, 940 (2003)].
  11. K.  Oura, V. G.  Lifshits, A. A.  Saranin, Introduction to Surface Physics (Nauka, Moscow, 2006).
  12. V. V.  Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009).
  13. D. K.  Nikiforov, “Emitting thin-film Al–Al2O3 and Be–BeO structures under the conditions of ion–electron bombardment,” Author’s abstract of dissertation for candidate of physicomathematical sciences, Moscow (2006).
  14. W. J.  Gignak, R. S.  Williams, S. P.  Kowalczyk, “Valence- and conduction-band structure of sapphire (1102) surface,” Phys. Rev. B 32, 1237 (1985).
    [CrossRef]
  15. T. V.  Perevalov V. A.  Gritsenko, “Application and electronic structure of high-permittivity dielectrics,” Usp. Fiz. Nauk 180, 587 (2010) [Phys. Usp. 53, 561 (2010)].
    [CrossRef]
  16. V. A.  Pustovarov, V. Sh.  Aliev, T. V.  Perevalov, “Electronic structure of an oxygen vacancy in Al2O3 from the results of ab initio quantum-chemical calculations and photoluminescence experiments,” Zh. Eksp. Teor. Fiz. 138, 1119 (2010) [JETP 111, 989 (2010)].
  17. A.  Sasahara, H.  Uetsuka, H.  Onishi, “Noncontact-mode atomic-force microscopy observation of an ?-Al2O3 (0001) surface,” Jpn. J. Appl. Phys. 39, 3773 (2000).
    [CrossRef]
  18. B. K.  Ridley, Quantum Processes in Semiconductors (Oxford University Press, New York, 1999; Mir, Moscow, 1986).

2010

T. V.  Perevalov V. A.  Gritsenko, “Application and electronic structure of high-permittivity dielectrics,” Usp. Fiz. Nauk 180, 587 (2010) [Phys. Usp. 53, 561 (2010)].
[CrossRef]

V. A.  Pustovarov, V. Sh.  Aliev, T. V.  Perevalov, “Electronic structure of an oxygen vacancy in Al2O3 from the results of ab initio quantum-chemical calculations and photoluminescence experiments,” Zh. Eksp. Teor. Fiz. 138, 1119 (2010) [JETP 111, 989 (2010)].

2008

S.  Wagner A.  Pundt, “Conduction mechanisms during the growth of the Pd thin films: experiment and model,” Phys. Rev. B 78, 155131 (2008).
[CrossRef]

2004

É. L.  Nolle M. Ya.  Shchelev, “Photoelectron emission caused by surface plasmons in silver nanoparticles,” Pis’ma Zh. Eksp. Teor. Fiz. 30, No. 8, 1 (2004) [JETP Lett. 30, 304 (2004)].

2003

A. P.  Boltaev, N. A.  Penin, A. O.  Pogosov, F. A.  Pudonin, “Detection of photoconductivity in hyperfine metal films in the visible and infrared spectral regions,” Zh. Eksp. Teor. Fiz. 123, 1067 (2003) [Sov. Phys. JETP 96, 940 (2003)].

2000

D. A.  Zakge?m, I. V.  Rozhanski?, I. P.  Smirnova, “Temperature dependence of the conductivity of Cu:SiO2 composite films. Experiment and numerical simulation,” Zh. Eksp. Teor. Fiz. 118, 637 (2000) [Sov. Phys. JETP 91, 553 (2000)].

A.  Sasahara, H.  Uetsuka, H.  Onishi, “Noncontact-mode atomic-force microscopy observation of an ?-Al2O3 (0001) surface,” Jpn. J. Appl. Phys. 39, 3773 (2000).
[CrossRef]

1985

W. J.  Gignak, R. S.  Williams, S. P.  Kowalczyk, “Valence- and conduction-band structure of sapphire (1102) surface,” Phys. Rev. B 32, 1237 (1985).
[CrossRef]

1962

C. A.  Neugebauer M. N.  Web, “Electrical conduction mechanism in ultrathin, evaporated metal films,” J. Appl. Phys. 33, 74 (1962).
[CrossRef]

Aliev, V. Sh.

V. A.  Pustovarov, V. Sh.  Aliev, T. V.  Perevalov, “Electronic structure of an oxygen vacancy in Al2O3 from the results of ab initio quantum-chemical calculations and photoluminescence experiments,” Zh. Eksp. Teor. Fiz. 138, 1119 (2010) [JETP 111, 989 (2010)].

Arzhantsev, V. I.

V. I.  Arzhantsev, White Book on Nanotechnologies: Studies in Nanoparticles, Nanostructures, and Nanocomposites in the Russian Federation: from the Materials of the First All-Russia Conference of Scientists, Engineers, and Manufacturers in the Area of Nanotechnologies: A Collection (URSS, Moscow, 2008).

Boltaev, A. P.

A. P.  Boltaev, N. A.  Penin, A. O.  Pogosov, F. A.  Pudonin, “Detection of photoconductivity in hyperfine metal films in the visible and infrared spectral regions,” Zh. Eksp. Teor. Fiz. 123, 1067 (2003) [Sov. Phys. JETP 96, 940 (2003)].

Chopra, K. L.

K. L.  Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969; Mir, Moscow, 1972).

Efimov, I. E.

I. E.  Efimov, I. Ya.  Kozyr’, Yu. I.  Gorbunov, Microelectronics (Vysshaya Shkola, Moscow, 1986).

Gignak, W. J.

W. J.  Gignak, R. S.  Williams, S. P.  Kowalczyk, “Valence- and conduction-band structure of sapphire (1102) surface,” Phys. Rev. B 32, 1237 (1985).
[CrossRef]

Gorbunov, Yu. I.

I. E.  Efimov, I. Ya.  Kozyr’, Yu. I.  Gorbunov, Microelectronics (Vysshaya Shkola, Moscow, 1986).

Gritsenko, V. A.

T. V.  Perevalov V. A.  Gritsenko, “Application and electronic structure of high-permittivity dielectrics,” Usp. Fiz. Nauk 180, 587 (2010) [Phys. Usp. 53, 561 (2010)].
[CrossRef]

Klimov, V. V.

V. V.  Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009).

Kowalczyk, S. P.

W. J.  Gignak, R. S.  Williams, S. P.  Kowalczyk, “Valence- and conduction-band structure of sapphire (1102) surface,” Phys. Rev. B 32, 1237 (1985).
[CrossRef]

Kozyr’, I. Ya.

I. E.  Efimov, I. Ya.  Kozyr’, Yu. I.  Gorbunov, Microelectronics (Vysshaya Shkola, Moscow, 1986).

Lifshits, V. G.

K.  Oura, V. G.  Lifshits, A. A.  Saranin, Introduction to Surface Physics (Nauka, Moscow, 2006).

Neugebauer, C. A.

C. A.  Neugebauer M. N.  Web, “Electrical conduction mechanism in ultrathin, evaporated metal films,” J. Appl. Phys. 33, 74 (1962).
[CrossRef]

Nikiforov, D. K.

D. K.  Nikiforov, “Emitting thin-film Al–Al2O3 and Be–BeO structures under the conditions of ion–electron bombardment,” Author’s abstract of dissertation for candidate of physicomathematical sciences, Moscow (2006).

Nolle, É. L.

É. L.  Nolle M. Ya.  Shchelev, “Photoelectron emission caused by surface plasmons in silver nanoparticles,” Pis’ma Zh. Eksp. Teor. Fiz. 30, No. 8, 1 (2004) [JETP Lett. 30, 304 (2004)].

Onishi, H.

A.  Sasahara, H.  Uetsuka, H.  Onishi, “Noncontact-mode atomic-force microscopy observation of an ?-Al2O3 (0001) surface,” Jpn. J. Appl. Phys. 39, 3773 (2000).
[CrossRef]

Oura, K.

K.  Oura, V. G.  Lifshits, A. A.  Saranin, Introduction to Surface Physics (Nauka, Moscow, 2006).

Penin, N. A.

A. P.  Boltaev, N. A.  Penin, A. O.  Pogosov, F. A.  Pudonin, “Detection of photoconductivity in hyperfine metal films in the visible and infrared spectral regions,” Zh. Eksp. Teor. Fiz. 123, 1067 (2003) [Sov. Phys. JETP 96, 940 (2003)].

Perevalov, T. V.

V. A.  Pustovarov, V. Sh.  Aliev, T. V.  Perevalov, “Electronic structure of an oxygen vacancy in Al2O3 from the results of ab initio quantum-chemical calculations and photoluminescence experiments,” Zh. Eksp. Teor. Fiz. 138, 1119 (2010) [JETP 111, 989 (2010)].

T. V.  Perevalov V. A.  Gritsenko, “Application and electronic structure of high-permittivity dielectrics,” Usp. Fiz. Nauk 180, 587 (2010) [Phys. Usp. 53, 561 (2010)].
[CrossRef]

Pogosov, A. O.

A. P.  Boltaev, N. A.  Penin, A. O.  Pogosov, F. A.  Pudonin, “Detection of photoconductivity in hyperfine metal films in the visible and infrared spectral regions,” Zh. Eksp. Teor. Fiz. 123, 1067 (2003) [Sov. Phys. JETP 96, 940 (2003)].

Pudonin, F. A.

A. P.  Boltaev, N. A.  Penin, A. O.  Pogosov, F. A.  Pudonin, “Detection of photoconductivity in hyperfine metal films in the visible and infrared spectral regions,” Zh. Eksp. Teor. Fiz. 123, 1067 (2003) [Sov. Phys. JETP 96, 940 (2003)].

Pundt, A.

S.  Wagner A.  Pundt, “Conduction mechanisms during the growth of the Pd thin films: experiment and model,” Phys. Rev. B 78, 155131 (2008).
[CrossRef]

Pustovarov, V. A.

V. A.  Pustovarov, V. Sh.  Aliev, T. V.  Perevalov, “Electronic structure of an oxygen vacancy in Al2O3 from the results of ab initio quantum-chemical calculations and photoluminescence experiments,” Zh. Eksp. Teor. Fiz. 138, 1119 (2010) [JETP 111, 989 (2010)].

Ridley, B. K.

B. K.  Ridley, Quantum Processes in Semiconductors (Oxford University Press, New York, 1999; Mir, Moscow, 1986).

Rozhanskii, I. V.

D. A.  Zakge?m, I. V.  Rozhanski?, I. P.  Smirnova, “Temperature dependence of the conductivity of Cu:SiO2 composite films. Experiment and numerical simulation,” Zh. Eksp. Teor. Fiz. 118, 637 (2000) [Sov. Phys. JETP 91, 553 (2000)].

Saranin, A. A.

K.  Oura, V. G.  Lifshits, A. A.  Saranin, Introduction to Surface Physics (Nauka, Moscow, 2006).

Sasahara, A.

A.  Sasahara, H.  Uetsuka, H.  Onishi, “Noncontact-mode atomic-force microscopy observation of an ?-Al2O3 (0001) surface,” Jpn. J. Appl. Phys. 39, 3773 (2000).
[CrossRef]

Shchelev, M. Ya.

É. L.  Nolle M. Ya.  Shchelev, “Photoelectron emission caused by surface plasmons in silver nanoparticles,” Pis’ma Zh. Eksp. Teor. Fiz. 30, No. 8, 1 (2004) [JETP Lett. 30, 304 (2004)].

Smirnova, I. P.

D. A.  Zakge?m, I. V.  Rozhanski?, I. P.  Smirnova, “Temperature dependence of the conductivity of Cu:SiO2 composite films. Experiment and numerical simulation,” Zh. Eksp. Teor. Fiz. 118, 637 (2000) [Sov. Phys. JETP 91, 553 (2000)].

Uetsuka, H.

A.  Sasahara, H.  Uetsuka, H.  Onishi, “Noncontact-mode atomic-force microscopy observation of an ?-Al2O3 (0001) surface,” Jpn. J. Appl. Phys. 39, 3773 (2000).
[CrossRef]

Wagner, S.

S.  Wagner A.  Pundt, “Conduction mechanisms during the growth of the Pd thin films: experiment and model,” Phys. Rev. B 78, 155131 (2008).
[CrossRef]

Web, M. N.

C. A.  Neugebauer M. N.  Web, “Electrical conduction mechanism in ultrathin, evaporated metal films,” J. Appl. Phys. 33, 74 (1962).
[CrossRef]

Williams, R. S.

W. J.  Gignak, R. S.  Williams, S. P.  Kowalczyk, “Valence- and conduction-band structure of sapphire (1102) surface,” Phys. Rev. B 32, 1237 (1985).
[CrossRef]

Zakgeim, D. A.

D. A.  Zakge?m, I. V.  Rozhanski?, I. P.  Smirnova, “Temperature dependence of the conductivity of Cu:SiO2 composite films. Experiment and numerical simulation,” Zh. Eksp. Teor. Fiz. 118, 637 (2000) [Sov. Phys. JETP 91, 553 (2000)].

J. Appl. Phys.

C. A.  Neugebauer M. N.  Web, “Electrical conduction mechanism in ultrathin, evaporated metal films,” J. Appl. Phys. 33, 74 (1962).
[CrossRef]

Jpn. J. Appl. Phys.

A.  Sasahara, H.  Uetsuka, H.  Onishi, “Noncontact-mode atomic-force microscopy observation of an ?-Al2O3 (0001) surface,” Jpn. J. Appl. Phys. 39, 3773 (2000).
[CrossRef]

Phys. Rev. B

S.  Wagner A.  Pundt, “Conduction mechanisms during the growth of the Pd thin films: experiment and model,” Phys. Rev. B 78, 155131 (2008).
[CrossRef]

W. J.  Gignak, R. S.  Williams, S. P.  Kowalczyk, “Valence- and conduction-band structure of sapphire (1102) surface,” Phys. Rev. B 32, 1237 (1985).
[CrossRef]

Pis’ma Zh. Eksp. Teor. Fiz.

É. L.  Nolle M. Ya.  Shchelev, “Photoelectron emission caused by surface plasmons in silver nanoparticles,” Pis’ma Zh. Eksp. Teor. Fiz. 30, No. 8, 1 (2004) [JETP Lett. 30, 304 (2004)].

Usp. Fiz. Nauk

T. V.  Perevalov V. A.  Gritsenko, “Application and electronic structure of high-permittivity dielectrics,” Usp. Fiz. Nauk 180, 587 (2010) [Phys. Usp. 53, 561 (2010)].
[CrossRef]

Zh. Eksp. Teor. Fiz.

V. A.  Pustovarov, V. Sh.  Aliev, T. V.  Perevalov, “Electronic structure of an oxygen vacancy in Al2O3 from the results of ab initio quantum-chemical calculations and photoluminescence experiments,” Zh. Eksp. Teor. Fiz. 138, 1119 (2010) [JETP 111, 989 (2010)].

D. A.  Zakge?m, I. V.  Rozhanski?, I. P.  Smirnova, “Temperature dependence of the conductivity of Cu:SiO2 composite films. Experiment and numerical simulation,” Zh. Eksp. Teor. Fiz. 118, 637 (2000) [Sov. Phys. JETP 91, 553 (2000)].

A. P.  Boltaev, N. A.  Penin, A. O.  Pogosov, F. A.  Pudonin, “Detection of photoconductivity in hyperfine metal films in the visible and infrared spectral regions,” Zh. Eksp. Teor. Fiz. 123, 1067 (2003) [Sov. Phys. JETP 96, 940 (2003)].

Other

K.  Oura, V. G.  Lifshits, A. A.  Saranin, Introduction to Surface Physics (Nauka, Moscow, 2006).

V. V.  Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009).

D. K.  Nikiforov, “Emitting thin-film Al–Al2O3 and Be–BeO structures under the conditions of ion–electron bombardment,” Author’s abstract of dissertation for candidate of physicomathematical sciences, Moscow (2006).

K. L.  Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969; Mir, Moscow, 1972).

M. C.  Roco, R. S.  Williams, P.  Alivisatos, eds., Nanotechnology Research Directions: IWGN Workshop Report: Vision for Nanotechnology R & D in the Next Decade (Kluwer Academic, Boston, 2001; Mir, Moscow, 2002).

B.  Bhushan, ed., Springer Handbook of Nanotechnology (Springer-Verlag, Berlin, 2004).

V. I.  Arzhantsev, White Book on Nanotechnologies: Studies in Nanoparticles, Nanostructures, and Nanocomposites in the Russian Federation: from the Materials of the First All-Russia Conference of Scientists, Engineers, and Manufacturers in the Area of Nanotechnologies: A Collection (URSS, Moscow, 2008).

I. E.  Efimov, I. Ya.  Kozyr’, Yu. I.  Gorbunov, Microelectronics (Vysshaya Shkola, Moscow, 1986).

B. K.  Ridley, Quantum Processes in Semiconductors (Oxford University Press, New York, 1999; Mir, Moscow, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.