Abstract

The integration of optical devices demands the fabrication of waveguides for electromagnetic energy below the diffraction limit of light. In this work, we have investigated the possibility of utilizing specific chains of closely spaced noble metal nanoparticles for waveguides beyond diffraction limit. Accordingly, we have employed Au and Ag nanorings in order to transport the optical energy through the plasmon waveguide at optical C-band spectrum (λ≈1550 nm). In proposed waveguides, we try to select the best structure via comparison between their transmission losses and group velocities of propagated energy. Three-dimensional simulations based on finite-difference time-domain algorithm (FDTD) are used to determine the related geometrical values. It is shown that nanoring’s geometrical tunability and extra degree of freedom (DoFs) in its geometry can cause the optical energy to transport at 1550 nm with higher efficiency and lower losses in comparison with those of the other shapes of nanoparticles such as nanospheres and nanorods.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  3. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  4. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
    [CrossRef]
  5. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, No. 19, pp. 1501–1505 (2001).
    [CrossRef]
  6. K. Y. Jung, F. L. Teixeira, and R. M. Reano, “ Au/SiO2 nanoring plasmon waveguides at optical communication band,” J. Lightwave Technol. 25, No. 9, pp. 2757–2765 (2007).
    [CrossRef]
  7. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
    [CrossRef]
  8. J. D. Jackson, Classical Electrodynamics (Wiley & Sons, 1998).
  9. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
    [CrossRef]
  10. S. D. Gendey, Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics (Morgan & Claypool, 2010).
  11. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  12. S. A. Maier, Plasmonics, Fundamentals and Applications (Springer, 2007).
  13. J. J. Mock, D. R. Smith, and S. Schutz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3, No. 4, pp. 485–491 (2003).
    [CrossRef]
  14. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, No. 21, 211101 (2007).
    [CrossRef]

2008 (1)

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

2007 (2)

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, No. 21, 211101 (2007).
[CrossRef]

K. Y. Jung, F. L. Teixeira, and R. M. Reano, “ Au/SiO2 nanoring plasmon waveguides at optical communication band,” J. Lightwave Technol. 25, No. 9, pp. 2757–2765 (2007).
[CrossRef]

2003 (2)

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
[CrossRef]

J. J. Mock, D. R. Smith, and S. Schutz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3, No. 4, pp. 485–491 (2003).
[CrossRef]

2001 (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, No. 19, pp. 1501–1505 (2001).
[CrossRef]

2000 (1)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, No. 19, pp. 1501–1505 (2001).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Bolger, P.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

Bozhevolnyi, S. I.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, No. 19, pp. 1501–1505 (2001).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Dereux, A.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

Gendey, S. D.

S. D. Gendey, Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics (Morgan & Claypool, 2010).

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Holmgaard, T.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley & Sons, 1998).

Jung, K. Y.

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, No. 19, pp. 1501–1505 (2001).
[CrossRef]

Krasavin, A. V.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, No. 21, 211101 (2007).
[CrossRef]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Maier, S. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, No. 19, pp. 1501–1505 (2001).
[CrossRef]

S. A. Maier, Plasmonics, Fundamentals and Applications (Springer, 2007).

Markey, L.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, No. 19, pp. 1501–1505 (2001).
[CrossRef]

Mock, J. J.

J. J. Mock, D. R. Smith, and S. Schutz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3, No. 4, pp. 485–491 (2003).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Reano, R. M.

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, No. 19, pp. 1501–1505 (2001).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Schutz, S.

J. J. Mock, D. R. Smith, and S. Schutz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3, No. 4, pp. 485–491 (2003).
[CrossRef]

Smith, D. R.

J. J. Mock, D. R. Smith, and S. Schutz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3, No. 4, pp. 485–491 (2003).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Teixeira, F. L.

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Zayast, A. V.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, No. 21, 211101 (2007).
[CrossRef]

Adv. Mater. (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, No. 19, pp. 1501–1505 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, No. 21, 211101 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Nano Lett. (1)

J. J. Mock, D. R. Smith, and S. Schutz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3, No. 4, pp. 485–491 (2003).
[CrossRef]

Phys. Rev. B (3)

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, P. Bolger, and A. V. Zayast, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B 78, 165431 (2008).
[CrossRef]

Other (7)

S. D. Gendey, Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics (Morgan & Claypool, 2010).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

S. A. Maier, Plasmonics, Fundamentals and Applications (Springer, 2007).

J. D. Jackson, Classical Electrodynamics (Wiley & Sons, 1998).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.