Abstract

This paper presents the results of the development of modules for protecting the eyes from laser radiation in the visible and near-IR regions. A description is given of a nonlinear-optical module with a medium based on a suspension of carbon nanoparticles in a silicone liquid, a multispectral interference filter having narrow reflection bands with minimal transmission at wavelengths of 355, 532, and 1064 nm, and a system adequate for observational devices with embedded protective elements. The combined use of the protective modules makes it possible to reduce the energy at the output of the system to a level no greater than 200 pJ when the input energy is 50 mJ and the pulse-repetition rates are as much as 10 Hz, thus ensuring the safety of the observer’s eyes.

© 2013 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription