Abstract

It is shown by calculation that highly reactive radicals can be generated by the photolysis of water molecules with vacuum ultraviolet radiation. The concentrations of the degradation products of water are calculated, and it is numerically shown that the aromatic chlorine-containing compounds found in liquid and gaseous media can be broken down by the products of the VUV photolysis of water molecules. It is numerically demonstrated that the products of the VUV photolysis of water molecules can be used for biological purposes.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Morimoto, T. Sumitomo, M. Yoshioka, and T. Takemura, “Recent progress on UV lamps for industries,” in Proceedings of the IAS (IEEE Industry Application Society, 2004), pp. 24–31.
  2. Th. Oppenlander, Photochemical Purification of Water and Air (Wiley-VCH, Weinheim, 2003).
  3. L. K. Wang, Y.-T. Hung, and N. K. Shammas, eds., Handbook of Environmental Engineering (Human Press, New York, 2006).
  4. O. Kirino and T. Enomoto, “Ultra-flat and ultra-smooth Cu surfaces produced by abrasive-free chemical–mechanical planarization/polishing using vacuum ultraviolet light,” Precis. Eng. 35, 669 (2011).
  5. K. D. Weltmann, E. Kindel, T. Woedtke, M. Hähnel, M. Stieber, and R. Brandenburg, “Atmospheric-pressure plasma sources: Prospective tools for plasma medicine,” Pure Appl. Chem. 82, 1223 (2010).
  6. S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS ONE 6, 1 (2011).
  7. G. Heit, A. Neuner, P.-Y. Saugy, and A. M. Braun, “Vacuum-UV actinometry. The quantum yield of the photolysis of water,” J. Chem. Phys. A 102, 5551 (1998).
  8. A. K. Pikaev and S. A. Kabakchi, Reactivity of the Primary Products of the Radiolysis of Water (Énergoizdat, Moscow, 1982).
  9. J. L. Weeks, G. M. A. C. Meaburn, and S. Gordon, “Absorption coefficient of liquid water and aqueous solutions in the far ultraviolet,” Radiat. Res. 19, 559 (1963).
    [PubMed]
  10. R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. H. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, “Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—gas phase reactions of Ox,HOx,NOx and SOx species,” Atmos. Chem. Phys. 4, 1461 (2004).
  11. P. Wardman, “Reduction potentials of one-electron couples involving free radicals an aqueous solutions,” J. Phys. Chem. Ref. Data 18, 1637 (1989).
  12. N. A. Aristova and I. M. Piskarev, “Water purification in large water bodies using chain reactions initiated by hydroxyl radicals,” Sovrem. Naukoemk. Tekh. No. 2, 42 (2008).
  13. B. R. Locke, “Electrical discharge with water spray,” in Proceedings of the Fourth International Congress on Cold Atmospheric Pressure Plasmas: Sources and Applications (CAPPSA 2009), Ghent, Belgium, 2009, pp. 62–65.
  14. T. Maehara, S. Nimura, and H. Toyota, “Radio-frequency plasmas in water,” in Abstracts of the Eighteenth Topical Conference on Radio-Frequency Power in Plasmas, Ghent, Belgium, 2009, p. 13.
  15. Handbook on Advanced Photochemical Oxidation Processes (EPA/625/R-98/004, 1998), p. 97.
  16. N. Gettoff, “Purification of drinking water by irradiation. A review,” Proc. Indian Acad. Sci., Chem/Sci. 105, 373 (1993).
  17. G. Heit and A. M. Braun, “VUV-photolysis of aqueous systems: spatial differentiation between volumes of primary and secondary reactions,” Water Sci. Technol. 35, No. 4, 25 (1997).
  18. G. A. Loraine and W. H. Glaze, “Destruction of vapor-phase halogenated methanes by means of ultraviolet photolysis,” in Forty-seventh Purdue Industrial Waste Conference Proceedings (Lewis Publishers, Chelsea, 1992), pp. 309–316.
  19. A. Afzal, Th. Oppenlander, J. R. Bolton, and M. G. El-Din, “Anatoxin-a degradation by advanced oxidation processes: Vacuum-UV at 172 nm, photolysis using medium-pressure UV and UV/H2O2,” Water Res. 30, 1 (2009).
  20. G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, “Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O?) in aqueous solution,” J. Phys. Chem. Ref. Data 17, 513 (1988).
  21. B. H. J. Bielski, D. E. Cabelli, and R. L. Arudi, “Reactivity of HO2/O2? radicals in aqueous solution,” J. Phys. Chem. Ref. Data 14, 1041 (1985).
  22. V. L. Bugaenko and V. M. Byakov, “Quantitative model of the radiolysis of liquid water and dilute solutions of hydrogen, oxygen, and hydrogen peroxide. I. Formulation of the model,” Khimiya Vysokikh Énergi? 32, 407 (1998).
  23. G. N. Zvereva, “Investigation of water decomposition by vacuum ultraviolet radiation,” Opt. Spektrosk. 108, 963 (2010). [Opt. Spectrosc. 108, 915 (2010)].
  24. I. M. Piskarev, “Model of reactions accompanying a corona discharge in the O2(g)–H2O system,” Zh. Fiz. Khim. 74, 546 (2000).
  25. K. Watanabe and M. Zelikoff, “Absorption coefficient of water vapor in the vacuum ultraviolet,” J. Opt. Soc. Am. 43, 753 (1953).
  26. K. Watanabe, E. C. Y. Inn, and M. Zelikoff, “Absorption coefficients of oxygen in the vacuum ultraviolet,” Chem. Phys. No. 6, 1026 (1953).
  27. M. Mandalakis, H. Berresheim, and E. G. Stephanou, “Direct evidence for destruction of polychlorobiphenyls by OH radicals in the subtropical troposphere,” Environ. Sci. Technol. 37, 542 (2003).
    [PubMed]
  28. P. N. Anderson and R. A. Hites, “OH radical reactions: The major removal pathway for polychlorinated biphenyls from the atmosphere,” Environ. Sci. Technol. 30, 1756 (1996).
  29. K. Sehested and E. J. Hart, “Formation and decay of the biphenyl cation radical in aqueous acidic solution,” J. Phys. Chem. 79, 1639 (1975).
  30. M. Daniels and A. Grimison, “Photochemistry of thymine,” Nature 197, 484 (1963).
  31. M. Daniels and A. Grimison, “Photolysis of the aqueous thymine system,” Biochim. Biophys. Acta 142, 292 (1967).
    [PubMed]
  32. B. Ohtani, H. Nagasaki, S. Nishimoto, K. Sakano, and T. Kagiya, “Far-ultraviolet-induced decomposition of thymine in deaerated and aerated aqueous solutions,” Can. J. Chem. 64, 2297 (1986).
  33. B. Ohtani, H. Nagasaki, K. Sakano, S. Nishimoto, and T. Kagiya, “Photoinduced oxygenation of thymine in an aqueous suspension of titanium dioxide,” J. Photochem. Photobiol. A 41, 141 (1987).
  34. S. G. Swarts, M. D. Sevilla, D. Becker, C. J. Tokar, and K. T. Wheeler, “Radiation-induced DNA damage as a function of hydration,” Radiat. Res. 129, 333 (1992).
    [PubMed]
  35. T. Ito, A. Ito, K. Hieda, and K. Kobayashi, “Wavelength dependence of inactivation and membrane damage to Saccharomyces cerevisiae cells by monochromatic synchrotron vacuum-UV radiation (145–190 nm),” Radiat. Res. 96, 532 (1983).
    [PubMed]
  36. R. V. Bensasson, E. J. Land, and T. G. Truscott, Flash Photolysis and Pulse Radiolysis: Contributions to the Chemistry of Biology and Medicine (Oxford Press, New York, 1983; Nauka, Moscow, 1987).
  37. T. P. Coohill and J. C. Sutherland, “Free-electron laser in ultraviolet photobiology,” J. Opt. Soc. Am. B 6, 1079 (1989).
  38. G. Slimi, ed., Radiation Research (1967).

2011 (2)

O. Kirino and T. Enomoto, “Ultra-flat and ultra-smooth Cu surfaces produced by abrasive-free chemical–mechanical planarization/polishing using vacuum ultraviolet light,” Precis. Eng. 35, 669 (2011).

S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS ONE 6, 1 (2011).

2010 (2)

K. D. Weltmann, E. Kindel, T. Woedtke, M. Hähnel, M. Stieber, and R. Brandenburg, “Atmospheric-pressure plasma sources: Prospective tools for plasma medicine,” Pure Appl. Chem. 82, 1223 (2010).

G. N. Zvereva, “Investigation of water decomposition by vacuum ultraviolet radiation,” Opt. Spektrosk. 108, 963 (2010). [Opt. Spectrosc. 108, 915 (2010)].

2009 (1)

A. Afzal, Th. Oppenlander, J. R. Bolton, and M. G. El-Din, “Anatoxin-a degradation by advanced oxidation processes: Vacuum-UV at 172 nm, photolysis using medium-pressure UV and UV/H2O2,” Water Res. 30, 1 (2009).

2008 (1)

N. A. Aristova and I. M. Piskarev, “Water purification in large water bodies using chain reactions initiated by hydroxyl radicals,” Sovrem. Naukoemk. Tekh. No. 2, 42 (2008).

2004 (1)

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. H. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, “Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—gas phase reactions of Ox,HOx,NOx and SOx species,” Atmos. Chem. Phys. 4, 1461 (2004).

2003 (1)

M. Mandalakis, H. Berresheim, and E. G. Stephanou, “Direct evidence for destruction of polychlorobiphenyls by OH radicals in the subtropical troposphere,” Environ. Sci. Technol. 37, 542 (2003).
[PubMed]

2000 (1)

I. M. Piskarev, “Model of reactions accompanying a corona discharge in the O2(g)–H2O system,” Zh. Fiz. Khim. 74, 546 (2000).

1998 (2)

V. L. Bugaenko and V. M. Byakov, “Quantitative model of the radiolysis of liquid water and dilute solutions of hydrogen, oxygen, and hydrogen peroxide. I. Formulation of the model,” Khimiya Vysokikh Énergi? 32, 407 (1998).

G. Heit, A. Neuner, P.-Y. Saugy, and A. M. Braun, “Vacuum-UV actinometry. The quantum yield of the photolysis of water,” J. Chem. Phys. A 102, 5551 (1998).

1997 (1)

G. Heit and A. M. Braun, “VUV-photolysis of aqueous systems: spatial differentiation between volumes of primary and secondary reactions,” Water Sci. Technol. 35, No. 4, 25 (1997).

1996 (1)

P. N. Anderson and R. A. Hites, “OH radical reactions: The major removal pathway for polychlorinated biphenyls from the atmosphere,” Environ. Sci. Technol. 30, 1756 (1996).

1993 (1)

N. Gettoff, “Purification of drinking water by irradiation. A review,” Proc. Indian Acad. Sci., Chem/Sci. 105, 373 (1993).

1992 (1)

S. G. Swarts, M. D. Sevilla, D. Becker, C. J. Tokar, and K. T. Wheeler, “Radiation-induced DNA damage as a function of hydration,” Radiat. Res. 129, 333 (1992).
[PubMed]

1989 (2)

T. P. Coohill and J. C. Sutherland, “Free-electron laser in ultraviolet photobiology,” J. Opt. Soc. Am. B 6, 1079 (1989).

P. Wardman, “Reduction potentials of one-electron couples involving free radicals an aqueous solutions,” J. Phys. Chem. Ref. Data 18, 1637 (1989).

1988 (1)

G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, “Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O?) in aqueous solution,” J. Phys. Chem. Ref. Data 17, 513 (1988).

1987 (1)

B. Ohtani, H. Nagasaki, K. Sakano, S. Nishimoto, and T. Kagiya, “Photoinduced oxygenation of thymine in an aqueous suspension of titanium dioxide,” J. Photochem. Photobiol. A 41, 141 (1987).

1986 (1)

B. Ohtani, H. Nagasaki, S. Nishimoto, K. Sakano, and T. Kagiya, “Far-ultraviolet-induced decomposition of thymine in deaerated and aerated aqueous solutions,” Can. J. Chem. 64, 2297 (1986).

1985 (1)

B. H. J. Bielski, D. E. Cabelli, and R. L. Arudi, “Reactivity of HO2/O2? radicals in aqueous solution,” J. Phys. Chem. Ref. Data 14, 1041 (1985).

1983 (1)

T. Ito, A. Ito, K. Hieda, and K. Kobayashi, “Wavelength dependence of inactivation and membrane damage to Saccharomyces cerevisiae cells by monochromatic synchrotron vacuum-UV radiation (145–190 nm),” Radiat. Res. 96, 532 (1983).
[PubMed]

1975 (1)

K. Sehested and E. J. Hart, “Formation and decay of the biphenyl cation radical in aqueous acidic solution,” J. Phys. Chem. 79, 1639 (1975).

1967 (1)

M. Daniels and A. Grimison, “Photolysis of the aqueous thymine system,” Biochim. Biophys. Acta 142, 292 (1967).
[PubMed]

1963 (2)

M. Daniels and A. Grimison, “Photochemistry of thymine,” Nature 197, 484 (1963).

J. L. Weeks, G. M. A. C. Meaburn, and S. Gordon, “Absorption coefficient of liquid water and aqueous solutions in the far ultraviolet,” Radiat. Res. 19, 559 (1963).
[PubMed]

1953 (2)

K. Watanabe and M. Zelikoff, “Absorption coefficient of water vapor in the vacuum ultraviolet,” J. Opt. Soc. Am. 43, 753 (1953).

K. Watanabe, E. C. Y. Inn, and M. Zelikoff, “Absorption coefficients of oxygen in the vacuum ultraviolet,” Chem. Phys. No. 6, 1026 (1953).

Afzal, A.

A. Afzal, Th. Oppenlander, J. R. Bolton, and M. G. El-Din, “Anatoxin-a degradation by advanced oxidation processes: Vacuum-UV at 172 nm, photolysis using medium-pressure UV and UV/H2O2,” Water Res. 30, 1 (2009).

Alekseev, O.

S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS ONE 6, 1 (2011).

Anderson, P. N.

P. N. Anderson and R. A. Hites, “OH radical reactions: The major removal pathway for polychlorinated biphenyls from the atmosphere,” Environ. Sci. Technol. 30, 1756 (1996).

Aristova, N. A.

N. A. Aristova and I. M. Piskarev, “Water purification in large water bodies using chain reactions initiated by hydroxyl radicals,” Sovrem. Naukoemk. Tekh. No. 2, 42 (2008).

Arudi, R. L.

B. H. J. Bielski, D. E. Cabelli, and R. L. Arudi, “Reactivity of HO2/O2? radicals in aqueous solution,” J. Phys. Chem. Ref. Data 14, 1041 (1985).

Atkinson, R.

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. H. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, “Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—gas phase reactions of Ox,HOx,NOx and SOx species,” Atmos. Chem. Phys. 4, 1461 (2004).

Azizkhan-Clifford, J.

S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS ONE 6, 1 (2011).

Baulch, D. L.

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. H. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, “Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—gas phase reactions of Ox,HOx,NOx and SOx species,” Atmos. Chem. Phys. 4, 1461 (2004).

Becker, D.

S. G. Swarts, M. D. Sevilla, D. Becker, C. J. Tokar, and K. T. Wheeler, “Radiation-induced DNA damage as a function of hydration,” Radiat. Res. 129, 333 (1992).
[PubMed]

Bensasson, R. V.

R. V. Bensasson, E. J. Land, and T. G. Truscott, Flash Photolysis and Pulse Radiolysis: Contributions to the Chemistry of Biology and Medicine (Oxford Press, New York, 1983; Nauka, Moscow, 1987).

Berresheim, H.

M. Mandalakis, H. Berresheim, and E. G. Stephanou, “Direct evidence for destruction of polychlorobiphenyls by OH radicals in the subtropical troposphere,” Environ. Sci. Technol. 37, 542 (2003).
[PubMed]

Bielski, B. H. J.

B. H. J. Bielski, D. E. Cabelli, and R. L. Arudi, “Reactivity of HO2/O2? radicals in aqueous solution,” J. Phys. Chem. Ref. Data 14, 1041 (1985).

Bolton, J. R.

A. Afzal, Th. Oppenlander, J. R. Bolton, and M. G. El-Din, “Anatoxin-a degradation by advanced oxidation processes: Vacuum-UV at 172 nm, photolysis using medium-pressure UV and UV/H2O2,” Water Res. 30, 1 (2009).

Brandenburg, R.

K. D. Weltmann, E. Kindel, T. Woedtke, M. Hähnel, M. Stieber, and R. Brandenburg, “Atmospheric-pressure plasma sources: Prospective tools for plasma medicine,” Pure Appl. Chem. 82, 1223 (2010).

Braun, A. M.

G. Heit, A. Neuner, P.-Y. Saugy, and A. M. Braun, “Vacuum-UV actinometry. The quantum yield of the photolysis of water,” J. Chem. Phys. A 102, 5551 (1998).

G. Heit and A. M. Braun, “VUV-photolysis of aqueous systems: spatial differentiation between volumes of primary and secondary reactions,” Water Sci. Technol. 35, No. 4, 25 (1997).

Bugaenko, V. L.

V. L. Bugaenko and V. M. Byakov, “Quantitative model of the radiolysis of liquid water and dilute solutions of hydrogen, oxygen, and hydrogen peroxide. I. Formulation of the model,” Khimiya Vysokikh Énergi? 32, 407 (1998).

Buxton, G. V.

G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, “Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O?) in aqueous solution,” J. Phys. Chem. Ref. Data 17, 513 (1988).

Byakov, V. M.

V. L. Bugaenko and V. M. Byakov, “Quantitative model of the radiolysis of liquid water and dilute solutions of hydrogen, oxygen, and hydrogen peroxide. I. Formulation of the model,” Khimiya Vysokikh Énergi? 32, 407 (1998).

Cabelli, D. E.

B. H. J. Bielski, D. E. Cabelli, and R. L. Arudi, “Reactivity of HO2/O2? radicals in aqueous solution,” J. Phys. Chem. Ref. Data 14, 1041 (1985).

Cerchar, E.

S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS ONE 6, 1 (2011).

Coohill, T. P.

Cox, R. A.

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. H. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, “Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—gas phase reactions of Ox,HOx,NOx and SOx species,” Atmos. Chem. Phys. 4, 1461 (2004).

Crowley, J. N.

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. H. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, “Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—gas phase reactions of Ox,HOx,NOx and SOx species,” Atmos. Chem. Phys. 4, 1461 (2004).

Daniels, M.

M. Daniels and A. Grimison, “Photolysis of the aqueous thymine system,” Biochim. Biophys. Acta 142, 292 (1967).
[PubMed]

M. Daniels and A. Grimison, “Photochemistry of thymine,” Nature 197, 484 (1963).

El-Din, M. G.

A. Afzal, Th. Oppenlander, J. R. Bolton, and M. G. El-Din, “Anatoxin-a degradation by advanced oxidation processes: Vacuum-UV at 172 nm, photolysis using medium-pressure UV and UV/H2O2,” Water Res. 30, 1 (2009).

Enomoto, T.

O. Kirino and T. Enomoto, “Ultra-flat and ultra-smooth Cu surfaces produced by abrasive-free chemical–mechanical planarization/polishing using vacuum ultraviolet light,” Precis. Eng. 35, 669 (2011).

Fridman, A.

S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS ONE 6, 1 (2011).

Friedman, G.

S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS ONE 6, 1 (2011).

Gettoff, N.

N. Gettoff, “Purification of drinking water by irradiation. A review,” Proc. Indian Acad. Sci., Chem/Sci. 105, 373 (1993).

Glaze, W. H.

G. A. Loraine and W. H. Glaze, “Destruction of vapor-phase halogenated methanes by means of ultraviolet photolysis,” in Forty-seventh Purdue Industrial Waste Conference Proceedings (Lewis Publishers, Chelsea, 1992), pp. 309–316.

Gordon, S.

J. L. Weeks, G. M. A. C. Meaburn, and S. Gordon, “Absorption coefficient of liquid water and aqueous solutions in the far ultraviolet,” Radiat. Res. 19, 559 (1963).
[PubMed]

Greenstock, C. L.

G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, “Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O?) in aqueous solution,” J. Phys. Chem. Ref. Data 17, 513 (1988).

Grimison, A.

M. Daniels and A. Grimison, “Photolysis of the aqueous thymine system,” Biochim. Biophys. Acta 142, 292 (1967).
[PubMed]

M. Daniels and A. Grimison, “Photochemistry of thymine,” Nature 197, 484 (1963).

Hähnel, M.

K. D. Weltmann, E. Kindel, T. Woedtke, M. Hähnel, M. Stieber, and R. Brandenburg, “Atmospheric-pressure plasma sources: Prospective tools for plasma medicine,” Pure Appl. Chem. 82, 1223 (2010).

Hampson, R. H.

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. H. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, “Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—gas phase reactions of Ox,HOx,NOx and SOx species,” Atmos. Chem. Phys. 4, 1461 (2004).

Hart, E. J.

K. Sehested and E. J. Hart, “Formation and decay of the biphenyl cation radical in aqueous acidic solution,” J. Phys. Chem. 79, 1639 (1975).

Heit, G.

G. Heit, A. Neuner, P.-Y. Saugy, and A. M. Braun, “Vacuum-UV actinometry. The quantum yield of the photolysis of water,” J. Chem. Phys. A 102, 5551 (1998).

G. Heit and A. M. Braun, “VUV-photolysis of aqueous systems: spatial differentiation between volumes of primary and secondary reactions,” Water Sci. Technol. 35, No. 4, 25 (1997).

Helman, W. P.

G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, “Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O?) in aqueous solution,” J. Phys. Chem. Ref. Data 17, 513 (1988).

Hieda, K.

T. Ito, A. Ito, K. Hieda, and K. Kobayashi, “Wavelength dependence of inactivation and membrane damage to Saccharomyces cerevisiae cells by monochromatic synchrotron vacuum-UV radiation (145–190 nm),” Radiat. Res. 96, 532 (1983).
[PubMed]

Hites, R. A.

P. N. Anderson and R. A. Hites, “OH radical reactions: The major removal pathway for polychlorinated biphenyls from the atmosphere,” Environ. Sci. Technol. 30, 1756 (1996).

Hynes, R. G.

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. H. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, “Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—gas phase reactions of Ox,HOx,NOx and SOx species,” Atmos. Chem. Phys. 4, 1461 (2004).

Inn, E. C. Y.

K. Watanabe, E. C. Y. Inn, and M. Zelikoff, “Absorption coefficients of oxygen in the vacuum ultraviolet,” Chem. Phys. No. 6, 1026 (1953).

Ito, A.

T. Ito, A. Ito, K. Hieda, and K. Kobayashi, “Wavelength dependence of inactivation and membrane damage to Saccharomyces cerevisiae cells by monochromatic synchrotron vacuum-UV radiation (145–190 nm),” Radiat. Res. 96, 532 (1983).
[PubMed]

Ito, T.

T. Ito, A. Ito, K. Hieda, and K. Kobayashi, “Wavelength dependence of inactivation and membrane damage to Saccharomyces cerevisiae cells by monochromatic synchrotron vacuum-UV radiation (145–190 nm),” Radiat. Res. 96, 532 (1983).
[PubMed]

Jenkin, M. E.

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. H. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, “Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—gas phase reactions of Ox,HOx,NOx and SOx species,” Atmos. Chem. Phys. 4, 1461 (2004).

Kabakchi, S. A.

A. K. Pikaev and S. A. Kabakchi, Reactivity of the Primary Products of the Radiolysis of Water (Énergoizdat, Moscow, 1982).

Kagiya, T.

B. Ohtani, H. Nagasaki, K. Sakano, S. Nishimoto, and T. Kagiya, “Photoinduced oxygenation of thymine in an aqueous suspension of titanium dioxide,” J. Photochem. Photobiol. A 41, 141 (1987).

B. Ohtani, H. Nagasaki, S. Nishimoto, K. Sakano, and T. Kagiya, “Far-ultraviolet-induced decomposition of thymine in deaerated and aerated aqueous solutions,” Can. J. Chem. 64, 2297 (1986).

Kalghatgi, S.

S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS ONE 6, 1 (2011).

Kelly, C. M.

S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS ONE 6, 1 (2011).

Kindel, E.

K. D. Weltmann, E. Kindel, T. Woedtke, M. Hähnel, M. Stieber, and R. Brandenburg, “Atmospheric-pressure plasma sources: Prospective tools for plasma medicine,” Pure Appl. Chem. 82, 1223 (2010).

Kirino, O.

O. Kirino and T. Enomoto, “Ultra-flat and ultra-smooth Cu surfaces produced by abrasive-free chemical–mechanical planarization/polishing using vacuum ultraviolet light,” Precis. Eng. 35, 669 (2011).

Kobayashi, K.

T. Ito, A. Ito, K. Hieda, and K. Kobayashi, “Wavelength dependence of inactivation and membrane damage to Saccharomyces cerevisiae cells by monochromatic synchrotron vacuum-UV radiation (145–190 nm),” Radiat. Res. 96, 532 (1983).
[PubMed]

Land, E. J.

R. V. Bensasson, E. J. Land, and T. G. Truscott, Flash Photolysis and Pulse Radiolysis: Contributions to the Chemistry of Biology and Medicine (Oxford Press, New York, 1983; Nauka, Moscow, 1987).

Locke, B. R.

B. R. Locke, “Electrical discharge with water spray,” in Proceedings of the Fourth International Congress on Cold Atmospheric Pressure Plasmas: Sources and Applications (CAPPSA 2009), Ghent, Belgium, 2009, pp. 62–65.

Loraine, G. A.

G. A. Loraine and W. H. Glaze, “Destruction of vapor-phase halogenated methanes by means of ultraviolet photolysis,” in Forty-seventh Purdue Industrial Waste Conference Proceedings (Lewis Publishers, Chelsea, 1992), pp. 309–316.

Maehara, T.

T. Maehara, S. Nimura, and H. Toyota, “Radio-frequency plasmas in water,” in Abstracts of the Eighteenth Topical Conference on Radio-Frequency Power in Plasmas, Ghent, Belgium, 2009, p. 13.

Mandalakis, M.

M. Mandalakis, H. Berresheim, and E. G. Stephanou, “Direct evidence for destruction of polychlorobiphenyls by OH radicals in the subtropical troposphere,” Environ. Sci. Technol. 37, 542 (2003).
[PubMed]

Meaburn, G. M. A. C.

J. L. Weeks, G. M. A. C. Meaburn, and S. Gordon, “Absorption coefficient of liquid water and aqueous solutions in the far ultraviolet,” Radiat. Res. 19, 559 (1963).
[PubMed]

Morimoto, Y.

Y. Morimoto, T. Sumitomo, M. Yoshioka, and T. Takemura, “Recent progress on UV lamps for industries,” in Proceedings of the IAS (IEEE Industry Application Society, 2004), pp. 24–31.

Nagasaki, H.

B. Ohtani, H. Nagasaki, K. Sakano, S. Nishimoto, and T. Kagiya, “Photoinduced oxygenation of thymine in an aqueous suspension of titanium dioxide,” J. Photochem. Photobiol. A 41, 141 (1987).

B. Ohtani, H. Nagasaki, S. Nishimoto, K. Sakano, and T. Kagiya, “Far-ultraviolet-induced decomposition of thymine in deaerated and aerated aqueous solutions,” Can. J. Chem. 64, 2297 (1986).

Neuner, A.

G. Heit, A. Neuner, P.-Y. Saugy, and A. M. Braun, “Vacuum-UV actinometry. The quantum yield of the photolysis of water,” J. Chem. Phys. A 102, 5551 (1998).

Nimura, S.

T. Maehara, S. Nimura, and H. Toyota, “Radio-frequency plasmas in water,” in Abstracts of the Eighteenth Topical Conference on Radio-Frequency Power in Plasmas, Ghent, Belgium, 2009, p. 13.

Nishimoto, S.

B. Ohtani, H. Nagasaki, K. Sakano, S. Nishimoto, and T. Kagiya, “Photoinduced oxygenation of thymine in an aqueous suspension of titanium dioxide,” J. Photochem. Photobiol. A 41, 141 (1987).

B. Ohtani, H. Nagasaki, S. Nishimoto, K. Sakano, and T. Kagiya, “Far-ultraviolet-induced decomposition of thymine in deaerated and aerated aqueous solutions,” Can. J. Chem. 64, 2297 (1986).

Ohtani, B.

B. Ohtani, H. Nagasaki, K. Sakano, S. Nishimoto, and T. Kagiya, “Photoinduced oxygenation of thymine in an aqueous suspension of titanium dioxide,” J. Photochem. Photobiol. A 41, 141 (1987).

B. Ohtani, H. Nagasaki, S. Nishimoto, K. Sakano, and T. Kagiya, “Far-ultraviolet-induced decomposition of thymine in deaerated and aerated aqueous solutions,” Can. J. Chem. 64, 2297 (1986).

Oppenlander, Th.

A. Afzal, Th. Oppenlander, J. R. Bolton, and M. G. El-Din, “Anatoxin-a degradation by advanced oxidation processes: Vacuum-UV at 172 nm, photolysis using medium-pressure UV and UV/H2O2,” Water Res. 30, 1 (2009).

Th. Oppenlander, Photochemical Purification of Water and Air (Wiley-VCH, Weinheim, 2003).

Pikaev, A. K.

A. K. Pikaev and S. A. Kabakchi, Reactivity of the Primary Products of the Radiolysis of Water (Énergoizdat, Moscow, 1982).

Piskarev, I. M.

N. A. Aristova and I. M. Piskarev, “Water purification in large water bodies using chain reactions initiated by hydroxyl radicals,” Sovrem. Naukoemk. Tekh. No. 2, 42 (2008).

I. M. Piskarev, “Model of reactions accompanying a corona discharge in the O2(g)–H2O system,” Zh. Fiz. Khim. 74, 546 (2000).

Ross, A. B.

G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, “Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O?) in aqueous solution,” J. Phys. Chem. Ref. Data 17, 513 (1988).

Rossi, M. J.

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. H. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, “Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—gas phase reactions of Ox,HOx,NOx and SOx species,” Atmos. Chem. Phys. 4, 1461 (2004).

Sakano, K.

B. Ohtani, H. Nagasaki, K. Sakano, S. Nishimoto, and T. Kagiya, “Photoinduced oxygenation of thymine in an aqueous suspension of titanium dioxide,” J. Photochem. Photobiol. A 41, 141 (1987).

B. Ohtani, H. Nagasaki, S. Nishimoto, K. Sakano, and T. Kagiya, “Far-ultraviolet-induced decomposition of thymine in deaerated and aerated aqueous solutions,” Can. J. Chem. 64, 2297 (1986).

Saugy, P.-Y.

G. Heit, A. Neuner, P.-Y. Saugy, and A. M. Braun, “Vacuum-UV actinometry. The quantum yield of the photolysis of water,” J. Chem. Phys. A 102, 5551 (1998).

Sehested, K.

K. Sehested and E. J. Hart, “Formation and decay of the biphenyl cation radical in aqueous acidic solution,” J. Phys. Chem. 79, 1639 (1975).

Sevilla, M. D.

S. G. Swarts, M. D. Sevilla, D. Becker, C. J. Tokar, and K. T. Wheeler, “Radiation-induced DNA damage as a function of hydration,” Radiat. Res. 129, 333 (1992).
[PubMed]

Stephanou, E. G.

M. Mandalakis, H. Berresheim, and E. G. Stephanou, “Direct evidence for destruction of polychlorobiphenyls by OH radicals in the subtropical troposphere,” Environ. Sci. Technol. 37, 542 (2003).
[PubMed]

Stieber, M.

K. D. Weltmann, E. Kindel, T. Woedtke, M. Hähnel, M. Stieber, and R. Brandenburg, “Atmospheric-pressure plasma sources: Prospective tools for plasma medicine,” Pure Appl. Chem. 82, 1223 (2010).

Sumitomo, T.

Y. Morimoto, T. Sumitomo, M. Yoshioka, and T. Takemura, “Recent progress on UV lamps for industries,” in Proceedings of the IAS (IEEE Industry Application Society, 2004), pp. 24–31.

Sutherland, J. C.

Swarts, S. G.

S. G. Swarts, M. D. Sevilla, D. Becker, C. J. Tokar, and K. T. Wheeler, “Radiation-induced DNA damage as a function of hydration,” Radiat. Res. 129, 333 (1992).
[PubMed]

Takemura, T.

Y. Morimoto, T. Sumitomo, M. Yoshioka, and T. Takemura, “Recent progress on UV lamps for industries,” in Proceedings of the IAS (IEEE Industry Application Society, 2004), pp. 24–31.

Tokar, C. J.

S. G. Swarts, M. D. Sevilla, D. Becker, C. J. Tokar, and K. T. Wheeler, “Radiation-induced DNA damage as a function of hydration,” Radiat. Res. 129, 333 (1992).
[PubMed]

Torabi, B.

S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS ONE 6, 1 (2011).

Toyota, H.

T. Maehara, S. Nimura, and H. Toyota, “Radio-frequency plasmas in water,” in Abstracts of the Eighteenth Topical Conference on Radio-Frequency Power in Plasmas, Ghent, Belgium, 2009, p. 13.

Troe, J.

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. H. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, “Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—gas phase reactions of Ox,HOx,NOx and SOx species,” Atmos. Chem. Phys. 4, 1461 (2004).

Truscott, T. G.

R. V. Bensasson, E. J. Land, and T. G. Truscott, Flash Photolysis and Pulse Radiolysis: Contributions to the Chemistry of Biology and Medicine (Oxford Press, New York, 1983; Nauka, Moscow, 1987).

Wardman, P.

P. Wardman, “Reduction potentials of one-electron couples involving free radicals an aqueous solutions,” J. Phys. Chem. Ref. Data 18, 1637 (1989).

Watanabe, K.

K. Watanabe and M. Zelikoff, “Absorption coefficient of water vapor in the vacuum ultraviolet,” J. Opt. Soc. Am. 43, 753 (1953).

K. Watanabe, E. C. Y. Inn, and M. Zelikoff, “Absorption coefficients of oxygen in the vacuum ultraviolet,” Chem. Phys. No. 6, 1026 (1953).

Weeks, J. L.

J. L. Weeks, G. M. A. C. Meaburn, and S. Gordon, “Absorption coefficient of liquid water and aqueous solutions in the far ultraviolet,” Radiat. Res. 19, 559 (1963).
[PubMed]

Weltmann, K. D.

K. D. Weltmann, E. Kindel, T. Woedtke, M. Hähnel, M. Stieber, and R. Brandenburg, “Atmospheric-pressure plasma sources: Prospective tools for plasma medicine,” Pure Appl. Chem. 82, 1223 (2010).

Wheeler, K. T.

S. G. Swarts, M. D. Sevilla, D. Becker, C. J. Tokar, and K. T. Wheeler, “Radiation-induced DNA damage as a function of hydration,” Radiat. Res. 129, 333 (1992).
[PubMed]

Woedtke, T.

K. D. Weltmann, E. Kindel, T. Woedtke, M. Hähnel, M. Stieber, and R. Brandenburg, “Atmospheric-pressure plasma sources: Prospective tools for plasma medicine,” Pure Appl. Chem. 82, 1223 (2010).

Yoshioka, M.

Y. Morimoto, T. Sumitomo, M. Yoshioka, and T. Takemura, “Recent progress on UV lamps for industries,” in Proceedings of the IAS (IEEE Industry Application Society, 2004), pp. 24–31.

Zelikoff, M.

K. Watanabe and M. Zelikoff, “Absorption coefficient of water vapor in the vacuum ultraviolet,” J. Opt. Soc. Am. 43, 753 (1953).

K. Watanabe, E. C. Y. Inn, and M. Zelikoff, “Absorption coefficients of oxygen in the vacuum ultraviolet,” Chem. Phys. No. 6, 1026 (1953).

Zvereva, G. N.

G. N. Zvereva, “Investigation of water decomposition by vacuum ultraviolet radiation,” Opt. Spektrosk. 108, 963 (2010). [Opt. Spectrosc. 108, 915 (2010)].

Atmos. Chem. Phys. (1)

R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. H. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, “Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—gas phase reactions of Ox,HOx,NOx and SOx species,” Atmos. Chem. Phys. 4, 1461 (2004).

Biochim. Biophys. Acta (1)

M. Daniels and A. Grimison, “Photolysis of the aqueous thymine system,” Biochim. Biophys. Acta 142, 292 (1967).
[PubMed]

Can. J. Chem. (1)

B. Ohtani, H. Nagasaki, S. Nishimoto, K. Sakano, and T. Kagiya, “Far-ultraviolet-induced decomposition of thymine in deaerated and aerated aqueous solutions,” Can. J. Chem. 64, 2297 (1986).

Chem. Phys. (1)

K. Watanabe, E. C. Y. Inn, and M. Zelikoff, “Absorption coefficients of oxygen in the vacuum ultraviolet,” Chem. Phys. No. 6, 1026 (1953).

Environ. Sci. Technol. (2)

M. Mandalakis, H. Berresheim, and E. G. Stephanou, “Direct evidence for destruction of polychlorobiphenyls by OH radicals in the subtropical troposphere,” Environ. Sci. Technol. 37, 542 (2003).
[PubMed]

P. N. Anderson and R. A. Hites, “OH radical reactions: The major removal pathway for polychlorinated biphenyls from the atmosphere,” Environ. Sci. Technol. 30, 1756 (1996).

J. Chem. Phys. A (1)

G. Heit, A. Neuner, P.-Y. Saugy, and A. M. Braun, “Vacuum-UV actinometry. The quantum yield of the photolysis of water,” J. Chem. Phys. A 102, 5551 (1998).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. A (1)

B. Ohtani, H. Nagasaki, K. Sakano, S. Nishimoto, and T. Kagiya, “Photoinduced oxygenation of thymine in an aqueous suspension of titanium dioxide,” J. Photochem. Photobiol. A 41, 141 (1987).

J. Phys. Chem. (1)

K. Sehested and E. J. Hart, “Formation and decay of the biphenyl cation radical in aqueous acidic solution,” J. Phys. Chem. 79, 1639 (1975).

J. Phys. Chem. Ref. Data (3)

P. Wardman, “Reduction potentials of one-electron couples involving free radicals an aqueous solutions,” J. Phys. Chem. Ref. Data 18, 1637 (1989).

G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, “Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O?) in aqueous solution,” J. Phys. Chem. Ref. Data 17, 513 (1988).

B. H. J. Bielski, D. E. Cabelli, and R. L. Arudi, “Reactivity of HO2/O2? radicals in aqueous solution,” J. Phys. Chem. Ref. Data 14, 1041 (1985).

Khimiya Vysokikh Énergii (1)

V. L. Bugaenko and V. M. Byakov, “Quantitative model of the radiolysis of liquid water and dilute solutions of hydrogen, oxygen, and hydrogen peroxide. I. Formulation of the model,” Khimiya Vysokikh Énergi? 32, 407 (1998).

Nature (1)

M. Daniels and A. Grimison, “Photochemistry of thymine,” Nature 197, 484 (1963).

Opt. Spektrosk. (1)

G. N. Zvereva, “Investigation of water decomposition by vacuum ultraviolet radiation,” Opt. Spektrosk. 108, 963 (2010). [Opt. Spectrosc. 108, 915 (2010)].

PLoS ONE (1)

S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS ONE 6, 1 (2011).

Precis. Eng. (1)

O. Kirino and T. Enomoto, “Ultra-flat and ultra-smooth Cu surfaces produced by abrasive-free chemical–mechanical planarization/polishing using vacuum ultraviolet light,” Precis. Eng. 35, 669 (2011).

Proc. Indian Acad. Sci., Chem/Sci. (1)

N. Gettoff, “Purification of drinking water by irradiation. A review,” Proc. Indian Acad. Sci., Chem/Sci. 105, 373 (1993).

Pure Appl. Chem. (1)

K. D. Weltmann, E. Kindel, T. Woedtke, M. Hähnel, M. Stieber, and R. Brandenburg, “Atmospheric-pressure plasma sources: Prospective tools for plasma medicine,” Pure Appl. Chem. 82, 1223 (2010).

Radiat. Res. (3)

J. L. Weeks, G. M. A. C. Meaburn, and S. Gordon, “Absorption coefficient of liquid water and aqueous solutions in the far ultraviolet,” Radiat. Res. 19, 559 (1963).
[PubMed]

S. G. Swarts, M. D. Sevilla, D. Becker, C. J. Tokar, and K. T. Wheeler, “Radiation-induced DNA damage as a function of hydration,” Radiat. Res. 129, 333 (1992).
[PubMed]

T. Ito, A. Ito, K. Hieda, and K. Kobayashi, “Wavelength dependence of inactivation and membrane damage to Saccharomyces cerevisiae cells by monochromatic synchrotron vacuum-UV radiation (145–190 nm),” Radiat. Res. 96, 532 (1983).
[PubMed]

Sovrem. Naukoemk. Tekh. (1)

N. A. Aristova and I. M. Piskarev, “Water purification in large water bodies using chain reactions initiated by hydroxyl radicals,” Sovrem. Naukoemk. Tekh. No. 2, 42 (2008).

Water Res. (1)

A. Afzal, Th. Oppenlander, J. R. Bolton, and M. G. El-Din, “Anatoxin-a degradation by advanced oxidation processes: Vacuum-UV at 172 nm, photolysis using medium-pressure UV and UV/H2O2,” Water Res. 30, 1 (2009).

Water Sci. Technol. (1)

G. Heit and A. M. Braun, “VUV-photolysis of aqueous systems: spatial differentiation between volumes of primary and secondary reactions,” Water Sci. Technol. 35, No. 4, 25 (1997).

Zh. Fiz. Khim. (1)

I. M. Piskarev, “Model of reactions accompanying a corona discharge in the O2(g)–H2O system,” Zh. Fiz. Khim. 74, 546 (2000).

Other (10)

B. R. Locke, “Electrical discharge with water spray,” in Proceedings of the Fourth International Congress on Cold Atmospheric Pressure Plasmas: Sources and Applications (CAPPSA 2009), Ghent, Belgium, 2009, pp. 62–65.

T. Maehara, S. Nimura, and H. Toyota, “Radio-frequency plasmas in water,” in Abstracts of the Eighteenth Topical Conference on Radio-Frequency Power in Plasmas, Ghent, Belgium, 2009, p. 13.

Handbook on Advanced Photochemical Oxidation Processes (EPA/625/R-98/004, 1998), p. 97.

A. K. Pikaev and S. A. Kabakchi, Reactivity of the Primary Products of the Radiolysis of Water (Énergoizdat, Moscow, 1982).

Y. Morimoto, T. Sumitomo, M. Yoshioka, and T. Takemura, “Recent progress on UV lamps for industries,” in Proceedings of the IAS (IEEE Industry Application Society, 2004), pp. 24–31.

Th. Oppenlander, Photochemical Purification of Water and Air (Wiley-VCH, Weinheim, 2003).

L. K. Wang, Y.-T. Hung, and N. K. Shammas, eds., Handbook of Environmental Engineering (Human Press, New York, 2006).

G. A. Loraine and W. H. Glaze, “Destruction of vapor-phase halogenated methanes by means of ultraviolet photolysis,” in Forty-seventh Purdue Industrial Waste Conference Proceedings (Lewis Publishers, Chelsea, 1992), pp. 309–316.

R. V. Bensasson, E. J. Land, and T. G. Truscott, Flash Photolysis and Pulse Radiolysis: Contributions to the Chemistry of Biology and Medicine (Oxford Press, New York, 1983; Nauka, Moscow, 1987).

G. Slimi, ed., Radiation Research (1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.