Abstract

A diagnostic complex has been developed for the modelling and experimental investigation of the gas-dynamic and spectral characteristics of an inductively coupled plasma. This complex includes a four-dimensional computer model of plasma, a research plasma generator, a schlieren system for visualizing the spatial structure of gas flows in the torch, and a high-resolution spectrometer for obtaining information on the temperature in the discharge zone from the intensity of the emission spectra. The model adequately maps the gas-flow dynamics in the torch with no discharge ignited in the inductively coupled plasma. The results of the calculations agree well with the experimental data.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. I. Boulos, “The inductively coupled radio frequency plasma,” Pure Appl. Chem. 57, 1321 (1985).
    [CrossRef]
  2. P. Yang and R. M. Barnes, “Plasma modeling and computer simulation of spectrochemical ICP discharges,” Spectrochim. Acta Rev. 13, 275 (1990).
  3. J. Mostaghimi and M. I. Bulous, “Mathematical modeling of the ICPs,” in Inductively Coupled Plasmas in Analytical Atomic Spectrometry (John Wiley & Sons, New York, 1998), pp. 949–983.
  4. J. W. McKelliget and N. El-Kaddah, “The effect of coil design on materials synthesis in an inductively coupled torch,” J. Appl. Phys. 64, 2948 (1998).
    [CrossRef]
  5. D. C. Schram, J. A. Van der Mullen, J. M. de Regt, and D. A. Benoy, “Fundamental description of spectrochemical ICP discharges,” J. Anal. At. Spectrom. 11, 623 (1996).
    [CrossRef]
  6. R. K. Winge, D. E. Eckels, E. L. DeKalb, and V. A. Fassel, “Spatiotemporal characteristics of the inductively coupled plasma,” J. Anal. At. Spectrom. 3, 849 (1988).
    [CrossRef]
  7. R. K. Winge, J. S. Crain, and R. S. Houk, “High-speed photographic study of plasma fluctuations and intact aerosol particles in inductively coupled plasma mass spectrometry,” J. Anal. At. Spectrom. 6, 601 (1991).
    [CrossRef]
  8. L. A. Iacone, W. R. L. Masamba, S. H. Nam, H. Zhang, M. G. Minnich, A. Okino, and A. Montaser, “Formation and fundamental characteristics of novel free-running helium inductively coupled plasmas,” J. Anal. At. Spectrom. 15, 491 (2000).
    [CrossRef]
  9. D. Bernardi, V. Colombo, G. G. M. Coppa, and A. D’Angola, “Simulation of the ignition transient in RF inductively coupled plasma torches,” Eur. Phys. J. D14, 337 (2001).
  10. G. Dunn and T. W. Eagar, “Metal vapors in gas tungsten arcs: Part II. Theoretical calculations of transport properties,” Metall. Trans. A 17, 1865 (1986).
    [CrossRef]
  11. A. Montaser and D. W. Golightly, eds., Inductively Coupled Plasmas in Analytical Atomic Spectrometry (VCH Publishers, Chichester, 1992), p. 195.
  12. V. S. Klubnikin, “Thermal and gas-dynamic characteristics of an induction discharge in an argon flux,” Teplofiz. Vys. Temp. 13, 473 (1975).
  13. I. Dundr and Ya. Kuchera, “Hydrodynamic structure of a turbulent plasma jet,” in Properties of a Low-Temperature Plasma and Methods of Diagnosing It, M. F. Zhukov, ed. (Sib. Sect. Nauka, Novosibirsk, 1977), pp. 244–257.
  14. Yu. N. Dubnishchev, V. A. Arbuzov, P. P. Belousov, and P. Ya. Belousov, Optical Methods of Studying Flows (Sib. Univ. Izd, Novosibirsk, 2003).
  15. L. A. Vasil’ev, Schlieren Methods (Nauka, Moscow, 1968).
  16. G. I. Mishin, Optical Methods of Studies in a Ballistic Experiment (Nauka, Leningrad, 1979), p. 11.
  17. A. F. Belozerov, Optical Methods of Visualizing Gas Flows (Izd. Kazan. Gos. Tekhn. Univ., Kazan, 2007), p. 615.
  18. A. P. Burmakov and A. G. Shashkov, “Interference–holographic study of nonsteady-state and turbulence of a plasma jet,” in Properties of Low-Temperature Plasma and Methods of Diagnosing It, M. F. Zhukov, ed. (Nauka, Novosibirsk, 1977), pp. 216–229.

2001 (1)

D. Bernardi, V. Colombo, G. G. M. Coppa, and A. D’Angola, “Simulation of the ignition transient in RF inductively coupled plasma torches,” Eur. Phys. J. D14, 337 (2001).

2000 (1)

L. A. Iacone, W. R. L. Masamba, S. H. Nam, H. Zhang, M. G. Minnich, A. Okino, and A. Montaser, “Formation and fundamental characteristics of novel free-running helium inductively coupled plasmas,” J. Anal. At. Spectrom. 15, 491 (2000).
[CrossRef]

1998 (1)

J. W. McKelliget and N. El-Kaddah, “The effect of coil design on materials synthesis in an inductively coupled torch,” J. Appl. Phys. 64, 2948 (1998).
[CrossRef]

1996 (1)

D. C. Schram, J. A. Van der Mullen, J. M. de Regt, and D. A. Benoy, “Fundamental description of spectrochemical ICP discharges,” J. Anal. At. Spectrom. 11, 623 (1996).
[CrossRef]

1991 (1)

R. K. Winge, J. S. Crain, and R. S. Houk, “High-speed photographic study of plasma fluctuations and intact aerosol particles in inductively coupled plasma mass spectrometry,” J. Anal. At. Spectrom. 6, 601 (1991).
[CrossRef]

1990 (1)

P. Yang and R. M. Barnes, “Plasma modeling and computer simulation of spectrochemical ICP discharges,” Spectrochim. Acta Rev. 13, 275 (1990).

1988 (1)

R. K. Winge, D. E. Eckels, E. L. DeKalb, and V. A. Fassel, “Spatiotemporal characteristics of the inductively coupled plasma,” J. Anal. At. Spectrom. 3, 849 (1988).
[CrossRef]

1986 (1)

G. Dunn and T. W. Eagar, “Metal vapors in gas tungsten arcs: Part II. Theoretical calculations of transport properties,” Metall. Trans. A 17, 1865 (1986).
[CrossRef]

1985 (1)

M. I. Boulos, “The inductively coupled radio frequency plasma,” Pure Appl. Chem. 57, 1321 (1985).
[CrossRef]

1975 (1)

V. S. Klubnikin, “Thermal and gas-dynamic characteristics of an induction discharge in an argon flux,” Teplofiz. Vys. Temp. 13, 473 (1975).

Arbuzov, V. A.

Yu. N. Dubnishchev, V. A. Arbuzov, P. P. Belousov, and P. Ya. Belousov, Optical Methods of Studying Flows (Sib. Univ. Izd, Novosibirsk, 2003).

Barnes, R. M.

P. Yang and R. M. Barnes, “Plasma modeling and computer simulation of spectrochemical ICP discharges,” Spectrochim. Acta Rev. 13, 275 (1990).

Belousov, P. P.

Yu. N. Dubnishchev, V. A. Arbuzov, P. P. Belousov, and P. Ya. Belousov, Optical Methods of Studying Flows (Sib. Univ. Izd, Novosibirsk, 2003).

Belousov, P. Ya.

Yu. N. Dubnishchev, V. A. Arbuzov, P. P. Belousov, and P. Ya. Belousov, Optical Methods of Studying Flows (Sib. Univ. Izd, Novosibirsk, 2003).

Belozerov, A. F.

A. F. Belozerov, Optical Methods of Visualizing Gas Flows (Izd. Kazan. Gos. Tekhn. Univ., Kazan, 2007), p. 615.

Benoy, D. A.

D. C. Schram, J. A. Van der Mullen, J. M. de Regt, and D. A. Benoy, “Fundamental description of spectrochemical ICP discharges,” J. Anal. At. Spectrom. 11, 623 (1996).
[CrossRef]

Bernardi, D.

D. Bernardi, V. Colombo, G. G. M. Coppa, and A. D’Angola, “Simulation of the ignition transient in RF inductively coupled plasma torches,” Eur. Phys. J. D14, 337 (2001).

Boulos, M. I.

M. I. Boulos, “The inductively coupled radio frequency plasma,” Pure Appl. Chem. 57, 1321 (1985).
[CrossRef]

Bulous, M. I.

J. Mostaghimi and M. I. Bulous, “Mathematical modeling of the ICPs,” in Inductively Coupled Plasmas in Analytical Atomic Spectrometry (John Wiley & Sons, New York, 1998), pp. 949–983.

Burmakov, A. P.

A. P. Burmakov and A. G. Shashkov, “Interference–holographic study of nonsteady-state and turbulence of a plasma jet,” in Properties of Low-Temperature Plasma and Methods of Diagnosing It, M. F. Zhukov, ed. (Nauka, Novosibirsk, 1977), pp. 216–229.

Colombo, V.

D. Bernardi, V. Colombo, G. G. M. Coppa, and A. D’Angola, “Simulation of the ignition transient in RF inductively coupled plasma torches,” Eur. Phys. J. D14, 337 (2001).

Coppa, G. G. M.

D. Bernardi, V. Colombo, G. G. M. Coppa, and A. D’Angola, “Simulation of the ignition transient in RF inductively coupled plasma torches,” Eur. Phys. J. D14, 337 (2001).

Crain, J. S.

R. K. Winge, J. S. Crain, and R. S. Houk, “High-speed photographic study of plasma fluctuations and intact aerosol particles in inductively coupled plasma mass spectrometry,” J. Anal. At. Spectrom. 6, 601 (1991).
[CrossRef]

D’Angola, A.

D. Bernardi, V. Colombo, G. G. M. Coppa, and A. D’Angola, “Simulation of the ignition transient in RF inductively coupled plasma torches,” Eur. Phys. J. D14, 337 (2001).

de Regt, J. M.

D. C. Schram, J. A. Van der Mullen, J. M. de Regt, and D. A. Benoy, “Fundamental description of spectrochemical ICP discharges,” J. Anal. At. Spectrom. 11, 623 (1996).
[CrossRef]

DeKalb, E. L.

R. K. Winge, D. E. Eckels, E. L. DeKalb, and V. A. Fassel, “Spatiotemporal characteristics of the inductively coupled plasma,” J. Anal. At. Spectrom. 3, 849 (1988).
[CrossRef]

Dubnishchev, Yu. N.

Yu. N. Dubnishchev, V. A. Arbuzov, P. P. Belousov, and P. Ya. Belousov, Optical Methods of Studying Flows (Sib. Univ. Izd, Novosibirsk, 2003).

Dundr, I.

I. Dundr and Ya. Kuchera, “Hydrodynamic structure of a turbulent plasma jet,” in Properties of a Low-Temperature Plasma and Methods of Diagnosing It, M. F. Zhukov, ed. (Sib. Sect. Nauka, Novosibirsk, 1977), pp. 244–257.

Dunn, G.

G. Dunn and T. W. Eagar, “Metal vapors in gas tungsten arcs: Part II. Theoretical calculations of transport properties,” Metall. Trans. A 17, 1865 (1986).
[CrossRef]

Eagar, T. W.

G. Dunn and T. W. Eagar, “Metal vapors in gas tungsten arcs: Part II. Theoretical calculations of transport properties,” Metall. Trans. A 17, 1865 (1986).
[CrossRef]

Eckels, D. E.

R. K. Winge, D. E. Eckels, E. L. DeKalb, and V. A. Fassel, “Spatiotemporal characteristics of the inductively coupled plasma,” J. Anal. At. Spectrom. 3, 849 (1988).
[CrossRef]

El-Kaddah, N.

J. W. McKelliget and N. El-Kaddah, “The effect of coil design on materials synthesis in an inductively coupled torch,” J. Appl. Phys. 64, 2948 (1998).
[CrossRef]

Fassel, V. A.

R. K. Winge, D. E. Eckels, E. L. DeKalb, and V. A. Fassel, “Spatiotemporal characteristics of the inductively coupled plasma,” J. Anal. At. Spectrom. 3, 849 (1988).
[CrossRef]

Houk, R. S.

R. K. Winge, J. S. Crain, and R. S. Houk, “High-speed photographic study of plasma fluctuations and intact aerosol particles in inductively coupled plasma mass spectrometry,” J. Anal. At. Spectrom. 6, 601 (1991).
[CrossRef]

Iacone, L. A.

L. A. Iacone, W. R. L. Masamba, S. H. Nam, H. Zhang, M. G. Minnich, A. Okino, and A. Montaser, “Formation and fundamental characteristics of novel free-running helium inductively coupled plasmas,” J. Anal. At. Spectrom. 15, 491 (2000).
[CrossRef]

Klubnikin, V. S.

V. S. Klubnikin, “Thermal and gas-dynamic characteristics of an induction discharge in an argon flux,” Teplofiz. Vys. Temp. 13, 473 (1975).

Kuchera, Ya.

I. Dundr and Ya. Kuchera, “Hydrodynamic structure of a turbulent plasma jet,” in Properties of a Low-Temperature Plasma and Methods of Diagnosing It, M. F. Zhukov, ed. (Sib. Sect. Nauka, Novosibirsk, 1977), pp. 244–257.

Masamba, W. R. L.

L. A. Iacone, W. R. L. Masamba, S. H. Nam, H. Zhang, M. G. Minnich, A. Okino, and A. Montaser, “Formation and fundamental characteristics of novel free-running helium inductively coupled plasmas,” J. Anal. At. Spectrom. 15, 491 (2000).
[CrossRef]

McKelliget, J. W.

J. W. McKelliget and N. El-Kaddah, “The effect of coil design on materials synthesis in an inductively coupled torch,” J. Appl. Phys. 64, 2948 (1998).
[CrossRef]

Minnich, M. G.

L. A. Iacone, W. R. L. Masamba, S. H. Nam, H. Zhang, M. G. Minnich, A. Okino, and A. Montaser, “Formation and fundamental characteristics of novel free-running helium inductively coupled plasmas,” J. Anal. At. Spectrom. 15, 491 (2000).
[CrossRef]

Mishin, G. I.

G. I. Mishin, Optical Methods of Studies in a Ballistic Experiment (Nauka, Leningrad, 1979), p. 11.

Montaser, A.

L. A. Iacone, W. R. L. Masamba, S. H. Nam, H. Zhang, M. G. Minnich, A. Okino, and A. Montaser, “Formation and fundamental characteristics of novel free-running helium inductively coupled plasmas,” J. Anal. At. Spectrom. 15, 491 (2000).
[CrossRef]

Mostaghimi, J.

J. Mostaghimi and M. I. Bulous, “Mathematical modeling of the ICPs,” in Inductively Coupled Plasmas in Analytical Atomic Spectrometry (John Wiley & Sons, New York, 1998), pp. 949–983.

Nam, S. H.

L. A. Iacone, W. R. L. Masamba, S. H. Nam, H. Zhang, M. G. Minnich, A. Okino, and A. Montaser, “Formation and fundamental characteristics of novel free-running helium inductively coupled plasmas,” J. Anal. At. Spectrom. 15, 491 (2000).
[CrossRef]

Okino, A.

L. A. Iacone, W. R. L. Masamba, S. H. Nam, H. Zhang, M. G. Minnich, A. Okino, and A. Montaser, “Formation and fundamental characteristics of novel free-running helium inductively coupled plasmas,” J. Anal. At. Spectrom. 15, 491 (2000).
[CrossRef]

Schram, D. C.

D. C. Schram, J. A. Van der Mullen, J. M. de Regt, and D. A. Benoy, “Fundamental description of spectrochemical ICP discharges,” J. Anal. At. Spectrom. 11, 623 (1996).
[CrossRef]

Shashkov, A. G.

A. P. Burmakov and A. G. Shashkov, “Interference–holographic study of nonsteady-state and turbulence of a plasma jet,” in Properties of Low-Temperature Plasma and Methods of Diagnosing It, M. F. Zhukov, ed. (Nauka, Novosibirsk, 1977), pp. 216–229.

Van der Mullen, J. A.

D. C. Schram, J. A. Van der Mullen, J. M. de Regt, and D. A. Benoy, “Fundamental description of spectrochemical ICP discharges,” J. Anal. At. Spectrom. 11, 623 (1996).
[CrossRef]

Vasil’ev, L. A.

L. A. Vasil’ev, Schlieren Methods (Nauka, Moscow, 1968).

Winge, R. K.

R. K. Winge, J. S. Crain, and R. S. Houk, “High-speed photographic study of plasma fluctuations and intact aerosol particles in inductively coupled plasma mass spectrometry,” J. Anal. At. Spectrom. 6, 601 (1991).
[CrossRef]

R. K. Winge, D. E. Eckels, E. L. DeKalb, and V. A. Fassel, “Spatiotemporal characteristics of the inductively coupled plasma,” J. Anal. At. Spectrom. 3, 849 (1988).
[CrossRef]

Yang, P.

P. Yang and R. M. Barnes, “Plasma modeling and computer simulation of spectrochemical ICP discharges,” Spectrochim. Acta Rev. 13, 275 (1990).

Zhang, H.

L. A. Iacone, W. R. L. Masamba, S. H. Nam, H. Zhang, M. G. Minnich, A. Okino, and A. Montaser, “Formation and fundamental characteristics of novel free-running helium inductively coupled plasmas,” J. Anal. At. Spectrom. 15, 491 (2000).
[CrossRef]

Eur. Phys. J. (1)

D. Bernardi, V. Colombo, G. G. M. Coppa, and A. D’Angola, “Simulation of the ignition transient in RF inductively coupled plasma torches,” Eur. Phys. J. D14, 337 (2001).

J. Anal. At. Spectrom. (4)

D. C. Schram, J. A. Van der Mullen, J. M. de Regt, and D. A. Benoy, “Fundamental description of spectrochemical ICP discharges,” J. Anal. At. Spectrom. 11, 623 (1996).
[CrossRef]

R. K. Winge, D. E. Eckels, E. L. DeKalb, and V. A. Fassel, “Spatiotemporal characteristics of the inductively coupled plasma,” J. Anal. At. Spectrom. 3, 849 (1988).
[CrossRef]

R. K. Winge, J. S. Crain, and R. S. Houk, “High-speed photographic study of plasma fluctuations and intact aerosol particles in inductively coupled plasma mass spectrometry,” J. Anal. At. Spectrom. 6, 601 (1991).
[CrossRef]

L. A. Iacone, W. R. L. Masamba, S. H. Nam, H. Zhang, M. G. Minnich, A. Okino, and A. Montaser, “Formation and fundamental characteristics of novel free-running helium inductively coupled plasmas,” J. Anal. At. Spectrom. 15, 491 (2000).
[CrossRef]

J. Appl. Phys. (1)

J. W. McKelliget and N. El-Kaddah, “The effect of coil design on materials synthesis in an inductively coupled torch,” J. Appl. Phys. 64, 2948 (1998).
[CrossRef]

Metall. Trans. A (1)

G. Dunn and T. W. Eagar, “Metal vapors in gas tungsten arcs: Part II. Theoretical calculations of transport properties,” Metall. Trans. A 17, 1865 (1986).
[CrossRef]

Pure Appl. Chem. (1)

M. I. Boulos, “The inductively coupled radio frequency plasma,” Pure Appl. Chem. 57, 1321 (1985).
[CrossRef]

Spectrochim. Acta Rev. (1)

P. Yang and R. M. Barnes, “Plasma modeling and computer simulation of spectrochemical ICP discharges,” Spectrochim. Acta Rev. 13, 275 (1990).

Teplofiz. Vys. Temp. (1)

V. S. Klubnikin, “Thermal and gas-dynamic characteristics of an induction discharge in an argon flux,” Teplofiz. Vys. Temp. 13, 473 (1975).

Other (8)

I. Dundr and Ya. Kuchera, “Hydrodynamic structure of a turbulent plasma jet,” in Properties of a Low-Temperature Plasma and Methods of Diagnosing It, M. F. Zhukov, ed. (Sib. Sect. Nauka, Novosibirsk, 1977), pp. 244–257.

Yu. N. Dubnishchev, V. A. Arbuzov, P. P. Belousov, and P. Ya. Belousov, Optical Methods of Studying Flows (Sib. Univ. Izd, Novosibirsk, 2003).

L. A. Vasil’ev, Schlieren Methods (Nauka, Moscow, 1968).

G. I. Mishin, Optical Methods of Studies in a Ballistic Experiment (Nauka, Leningrad, 1979), p. 11.

A. F. Belozerov, Optical Methods of Visualizing Gas Flows (Izd. Kazan. Gos. Tekhn. Univ., Kazan, 2007), p. 615.

A. P. Burmakov and A. G. Shashkov, “Interference–holographic study of nonsteady-state and turbulence of a plasma jet,” in Properties of Low-Temperature Plasma and Methods of Diagnosing It, M. F. Zhukov, ed. (Nauka, Novosibirsk, 1977), pp. 216–229.

J. Mostaghimi and M. I. Bulous, “Mathematical modeling of the ICPs,” in Inductively Coupled Plasmas in Analytical Atomic Spectrometry (John Wiley & Sons, New York, 1998), pp. 949–983.

A. Montaser and D. W. Golightly, eds., Inductively Coupled Plasmas in Analytical Atomic Spectrometry (VCH Publishers, Chichester, 1992), p. 195.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.