Abstract

Based on a numerical solution of the Navier–Stokes equations and the equations of molecular kinetics, a complete computer model of a two-stage atomizer has been developed for analytical spectrometry, consisting of a graphite crucible evaporator and a helical atomizer. The model correctly takes into account the heating of the atomizer by an electric current, the gas dynamics, and nonsteady-state thermal-exchange processes, as well as the evaporation and condensation of the atoms of the test substance. The developed model has been experimentally tested, and the results of the modelling agree well with the experimental data.

© 2012 OSA

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription