Abstract

Based on a numerical solution of the Navier–Stokes equations and the equations of molecular kinetics, a complete computer model of a two-stage atomizer has been developed for analytical spectrometry, consisting of a graphite crucible evaporator and a helical atomizer. The model correctly takes into account the heating of the atomizer by an electric current, the gas dynamics, and nonsteady-state thermal-exchange processes, as well as the evaporation and condensation of the atoms of the test substance. The developed model has been experimentally tested, and the results of the modelling agree well with the experimental data.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. V. L’vov, Atomic Absorption Spectral Analysis (Nauka, Moscow, 1966).
  2. I. L. Grinshtein, Y. A. Vil’pan, L. A. Vasilieva, and V. A. Kopeikin, “Reduction of matrix interference during the atomic absorption determination of lead and cadmium in strongly interfering matrix samples using a two-step atomizer with vaporizer purging,” Spectrochim. Acta Part B 54, 745 (1999).
    [CrossRef]
  3. V. N. Oreshkin, G. I. Tsizin, and G. L. Vnukovskaya, “Sorption-atomic-absorption determination of tracks of metals (Ag, Bi, In, Cd, Pb and Tl) in natural waters, using a two-chamber powder atomizer,” Zh. Analit. Khimii 49, 755 (1994).
  4. J. A. Holcombe and M. T. Sheehan, “Graphite furnace modification for second-surface atomization,” Appl. Spectrosc. 36, 631 (1982).
    [CrossRef]
  5. Yu. A. Zakharov and O. B. Kokorina, “Method of spectral analysis,” Russian Patent No. 2 274 848 (2004).
  6. A. Kh. Gilmutdinov, “Electrothermal atomization means for analytical spectrometry,” U. S. Patent No. 5 981 912 (1999).
  7. K. Yu. Nagulin, A. Kh. Gil’mutdinov, and L. A. Grishin, “Two-stage atomizer for electrothermal atomic-absorption spectroscopy. Dynamics of spatial temperature distribution,” Zh. Analit. Khimii 58, 439 (2003).
  8. A. Kh. Gil’mutdinov and K. Yu. Nagulin, “Method of elementary analysis of a substance and a device for implementing it,” Russian Patent No. 2 370 755 (2007).
  9. Sh. F. Araslanov, A. Kh. Gilmutdinov, and M. Sperling, “3D numerical simulation of gas flows in transversely heated graphite tube atomizers,” in CD—Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, ECCOMAS, 2000, p. 20.
  10. A. Gilmutdinov, Sh. Araslanov, R. Ibragimov, A. Staroverov, and M. Salakhov, “Fundamental description of spectroanalytical inductively coupled plasmas,” in Third Nordic Conference on Plasma Spectrochemistry, Loen, Norway, 2006, p. 17.
  11. A. A. Samarskiĭ and Yu. P. Popov, Difference Methods of Solving Problems of Gas Dynamics (Nauka, Moscow, 1980).
  12. C. A. J. Fletcher, Computational Techniques in Fluid Dynamics, Vol. 1 (Springer-Verlag, Berlin, 1990; Mir, Moscow, 1991).
  13. A. Kh. Gil’mutdinov, A. V. Voloshin, and K. Yu. Nagulin, “Atomic-absorption spectrometry with spatial resolution,” Usp. Khim. 75, 339 (2006).
  14. Z. Queiroz, P. Oliveira, J. Nobrega, C. Silva, I. Rufini, S. Sousa, and F. Krug, “Surface and gas-phase temperatures of a tungsten-coil atomizer,” Spectrochim. Acta Part B 57, 1789 (2002).
    [CrossRef]
  15. K. Yu. Nagulin and A. Kh. Gil’mutdinov, “Recording system with spatial resolution for atomic-absorption spectrophotometers,” Opt. Zh. 66, No. 7, 99 (1999). [J. Opt. Technol. 66, 662 (1999)].
  16. A. Kh. Gilmutdinov, K. Yu. Nagulin, and M. Sperling, “Spatially resolved atomic absorption analysis,” J. Analyt. At. Spectrom. 15, 1375 (2000).
    [CrossRef]
  17. X. Hou, K. E. Levine, A. Salido, B. T. Jones, M. Ezer, S. Elwood, and J. B. Simeonsson, “Tungsten-coil devices in atomic spectrometry: absorption, fluorescence, and emission,” Analyt. Sci. 17, 175 (2001).
    [CrossRef]
  18. G. L. Donati, M. H. Gonzales, J. A. Nobrega, and B. T. Jones, “Multi-wavelength determination of cobalt by tungsten coil atomic emission spectrometry,” Analyt. Lett. 43, 1723 (2010).
    [CrossRef]

2010

G. L. Donati, M. H. Gonzales, J. A. Nobrega, and B. T. Jones, “Multi-wavelength determination of cobalt by tungsten coil atomic emission spectrometry,” Analyt. Lett. 43, 1723 (2010).
[CrossRef]

2006

A. Kh. Gil’mutdinov, A. V. Voloshin, and K. Yu. Nagulin, “Atomic-absorption spectrometry with spatial resolution,” Usp. Khim. 75, 339 (2006).

2003

K. Yu. Nagulin, A. Kh. Gil’mutdinov, and L. A. Grishin, “Two-stage atomizer for electrothermal atomic-absorption spectroscopy. Dynamics of spatial temperature distribution,” Zh. Analit. Khimii 58, 439 (2003).

2002

Z. Queiroz, P. Oliveira, J. Nobrega, C. Silva, I. Rufini, S. Sousa, and F. Krug, “Surface and gas-phase temperatures of a tungsten-coil atomizer,” Spectrochim. Acta Part B 57, 1789 (2002).
[CrossRef]

2001

X. Hou, K. E. Levine, A. Salido, B. T. Jones, M. Ezer, S. Elwood, and J. B. Simeonsson, “Tungsten-coil devices in atomic spectrometry: absorption, fluorescence, and emission,” Analyt. Sci. 17, 175 (2001).
[CrossRef]

2000

A. Kh. Gilmutdinov, K. Yu. Nagulin, and M. Sperling, “Spatially resolved atomic absorption analysis,” J. Analyt. At. Spectrom. 15, 1375 (2000).
[CrossRef]

1999

K. Yu. Nagulin and A. Kh. Gil’mutdinov, “Recording system with spatial resolution for atomic-absorption spectrophotometers,” Opt. Zh. 66, No. 7, 99 (1999). [J. Opt. Technol. 66, 662 (1999)].

I. L. Grinshtein, Y. A. Vil’pan, L. A. Vasilieva, and V. A. Kopeikin, “Reduction of matrix interference during the atomic absorption determination of lead and cadmium in strongly interfering matrix samples using a two-step atomizer with vaporizer purging,” Spectrochim. Acta Part B 54, 745 (1999).
[CrossRef]

1994

V. N. Oreshkin, G. I. Tsizin, and G. L. Vnukovskaya, “Sorption-atomic-absorption determination of tracks of metals (Ag, Bi, In, Cd, Pb and Tl) in natural waters, using a two-chamber powder atomizer,” Zh. Analit. Khimii 49, 755 (1994).

1982

Araslanov, Sh.

A. Gilmutdinov, Sh. Araslanov, R. Ibragimov, A. Staroverov, and M. Salakhov, “Fundamental description of spectroanalytical inductively coupled plasmas,” in Third Nordic Conference on Plasma Spectrochemistry, Loen, Norway, 2006, p. 17.

Araslanov, Sh. F.

Sh. F. Araslanov, A. Kh. Gilmutdinov, and M. Sperling, “3D numerical simulation of gas flows in transversely heated graphite tube atomizers,” in CD—Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, ECCOMAS, 2000, p. 20.

Donati, G. L.

G. L. Donati, M. H. Gonzales, J. A. Nobrega, and B. T. Jones, “Multi-wavelength determination of cobalt by tungsten coil atomic emission spectrometry,” Analyt. Lett. 43, 1723 (2010).
[CrossRef]

Elwood, S.

X. Hou, K. E. Levine, A. Salido, B. T. Jones, M. Ezer, S. Elwood, and J. B. Simeonsson, “Tungsten-coil devices in atomic spectrometry: absorption, fluorescence, and emission,” Analyt. Sci. 17, 175 (2001).
[CrossRef]

Ezer, M.

X. Hou, K. E. Levine, A. Salido, B. T. Jones, M. Ezer, S. Elwood, and J. B. Simeonsson, “Tungsten-coil devices in atomic spectrometry: absorption, fluorescence, and emission,” Analyt. Sci. 17, 175 (2001).
[CrossRef]

Fletcher, C. A. J.

C. A. J. Fletcher, Computational Techniques in Fluid Dynamics, Vol. 1 (Springer-Verlag, Berlin, 1990; Mir, Moscow, 1991).

Gil’mutdinov, A. Kh.

A. Kh. Gil’mutdinov, A. V. Voloshin, and K. Yu. Nagulin, “Atomic-absorption spectrometry with spatial resolution,” Usp. Khim. 75, 339 (2006).

K. Yu. Nagulin, A. Kh. Gil’mutdinov, and L. A. Grishin, “Two-stage atomizer for electrothermal atomic-absorption spectroscopy. Dynamics of spatial temperature distribution,” Zh. Analit. Khimii 58, 439 (2003).

K. Yu. Nagulin and A. Kh. Gil’mutdinov, “Recording system with spatial resolution for atomic-absorption spectrophotometers,” Opt. Zh. 66, No. 7, 99 (1999). [J. Opt. Technol. 66, 662 (1999)].

Gilmutdinov, A.

A. Gilmutdinov, Sh. Araslanov, R. Ibragimov, A. Staroverov, and M. Salakhov, “Fundamental description of spectroanalytical inductively coupled plasmas,” in Third Nordic Conference on Plasma Spectrochemistry, Loen, Norway, 2006, p. 17.

Gilmutdinov, A. Kh.

A. Kh. Gilmutdinov, K. Yu. Nagulin, and M. Sperling, “Spatially resolved atomic absorption analysis,” J. Analyt. At. Spectrom. 15, 1375 (2000).
[CrossRef]

Sh. F. Araslanov, A. Kh. Gilmutdinov, and M. Sperling, “3D numerical simulation of gas flows in transversely heated graphite tube atomizers,” in CD—Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, ECCOMAS, 2000, p. 20.

Gonzales, M. H.

G. L. Donati, M. H. Gonzales, J. A. Nobrega, and B. T. Jones, “Multi-wavelength determination of cobalt by tungsten coil atomic emission spectrometry,” Analyt. Lett. 43, 1723 (2010).
[CrossRef]

Grinshtein, I. L.

I. L. Grinshtein, Y. A. Vil’pan, L. A. Vasilieva, and V. A. Kopeikin, “Reduction of matrix interference during the atomic absorption determination of lead and cadmium in strongly interfering matrix samples using a two-step atomizer with vaporizer purging,” Spectrochim. Acta Part B 54, 745 (1999).
[CrossRef]

Grishin, L. A.

K. Yu. Nagulin, A. Kh. Gil’mutdinov, and L. A. Grishin, “Two-stage atomizer for electrothermal atomic-absorption spectroscopy. Dynamics of spatial temperature distribution,” Zh. Analit. Khimii 58, 439 (2003).

Holcombe, J. A.

Hou, X.

X. Hou, K. E. Levine, A. Salido, B. T. Jones, M. Ezer, S. Elwood, and J. B. Simeonsson, “Tungsten-coil devices in atomic spectrometry: absorption, fluorescence, and emission,” Analyt. Sci. 17, 175 (2001).
[CrossRef]

Ibragimov, R.

A. Gilmutdinov, Sh. Araslanov, R. Ibragimov, A. Staroverov, and M. Salakhov, “Fundamental description of spectroanalytical inductively coupled plasmas,” in Third Nordic Conference on Plasma Spectrochemistry, Loen, Norway, 2006, p. 17.

Jones, B. T.

G. L. Donati, M. H. Gonzales, J. A. Nobrega, and B. T. Jones, “Multi-wavelength determination of cobalt by tungsten coil atomic emission spectrometry,” Analyt. Lett. 43, 1723 (2010).
[CrossRef]

X. Hou, K. E. Levine, A. Salido, B. T. Jones, M. Ezer, S. Elwood, and J. B. Simeonsson, “Tungsten-coil devices in atomic spectrometry: absorption, fluorescence, and emission,” Analyt. Sci. 17, 175 (2001).
[CrossRef]

Kopeikin, V. A.

I. L. Grinshtein, Y. A. Vil’pan, L. A. Vasilieva, and V. A. Kopeikin, “Reduction of matrix interference during the atomic absorption determination of lead and cadmium in strongly interfering matrix samples using a two-step atomizer with vaporizer purging,” Spectrochim. Acta Part B 54, 745 (1999).
[CrossRef]

Krug, F.

Z. Queiroz, P. Oliveira, J. Nobrega, C. Silva, I. Rufini, S. Sousa, and F. Krug, “Surface and gas-phase temperatures of a tungsten-coil atomizer,” Spectrochim. Acta Part B 57, 1789 (2002).
[CrossRef]

L’vov, B. V.

B. V. L’vov, Atomic Absorption Spectral Analysis (Nauka, Moscow, 1966).

Levine, K. E.

X. Hou, K. E. Levine, A. Salido, B. T. Jones, M. Ezer, S. Elwood, and J. B. Simeonsson, “Tungsten-coil devices in atomic spectrometry: absorption, fluorescence, and emission,” Analyt. Sci. 17, 175 (2001).
[CrossRef]

Nagulin, K. Yu.

A. Kh. Gil’mutdinov, A. V. Voloshin, and K. Yu. Nagulin, “Atomic-absorption spectrometry with spatial resolution,” Usp. Khim. 75, 339 (2006).

K. Yu. Nagulin, A. Kh. Gil’mutdinov, and L. A. Grishin, “Two-stage atomizer for electrothermal atomic-absorption spectroscopy. Dynamics of spatial temperature distribution,” Zh. Analit. Khimii 58, 439 (2003).

A. Kh. Gilmutdinov, K. Yu. Nagulin, and M. Sperling, “Spatially resolved atomic absorption analysis,” J. Analyt. At. Spectrom. 15, 1375 (2000).
[CrossRef]

K. Yu. Nagulin and A. Kh. Gil’mutdinov, “Recording system with spatial resolution for atomic-absorption spectrophotometers,” Opt. Zh. 66, No. 7, 99 (1999). [J. Opt. Technol. 66, 662 (1999)].

Nobrega, J.

Z. Queiroz, P. Oliveira, J. Nobrega, C. Silva, I. Rufini, S. Sousa, and F. Krug, “Surface and gas-phase temperatures of a tungsten-coil atomizer,” Spectrochim. Acta Part B 57, 1789 (2002).
[CrossRef]

Nobrega, J. A.

G. L. Donati, M. H. Gonzales, J. A. Nobrega, and B. T. Jones, “Multi-wavelength determination of cobalt by tungsten coil atomic emission spectrometry,” Analyt. Lett. 43, 1723 (2010).
[CrossRef]

Oliveira, P.

Z. Queiroz, P. Oliveira, J. Nobrega, C. Silva, I. Rufini, S. Sousa, and F. Krug, “Surface and gas-phase temperatures of a tungsten-coil atomizer,” Spectrochim. Acta Part B 57, 1789 (2002).
[CrossRef]

Oreshkin, V. N.

V. N. Oreshkin, G. I. Tsizin, and G. L. Vnukovskaya, “Sorption-atomic-absorption determination of tracks of metals (Ag, Bi, In, Cd, Pb and Tl) in natural waters, using a two-chamber powder atomizer,” Zh. Analit. Khimii 49, 755 (1994).

Popov, Yu. P.

A. A. Samarskiĭ and Yu. P. Popov, Difference Methods of Solving Problems of Gas Dynamics (Nauka, Moscow, 1980).

Queiroz, Z.

Z. Queiroz, P. Oliveira, J. Nobrega, C. Silva, I. Rufini, S. Sousa, and F. Krug, “Surface and gas-phase temperatures of a tungsten-coil atomizer,” Spectrochim. Acta Part B 57, 1789 (2002).
[CrossRef]

Rufini, I.

Z. Queiroz, P. Oliveira, J. Nobrega, C. Silva, I. Rufini, S. Sousa, and F. Krug, “Surface and gas-phase temperatures of a tungsten-coil atomizer,” Spectrochim. Acta Part B 57, 1789 (2002).
[CrossRef]

Salakhov, M.

A. Gilmutdinov, Sh. Araslanov, R. Ibragimov, A. Staroverov, and M. Salakhov, “Fundamental description of spectroanalytical inductively coupled plasmas,” in Third Nordic Conference on Plasma Spectrochemistry, Loen, Norway, 2006, p. 17.

Salido, A.

X. Hou, K. E. Levine, A. Salido, B. T. Jones, M. Ezer, S. Elwood, and J. B. Simeonsson, “Tungsten-coil devices in atomic spectrometry: absorption, fluorescence, and emission,” Analyt. Sci. 17, 175 (2001).
[CrossRef]

Samarskii, A. A.

A. A. Samarskiĭ and Yu. P. Popov, Difference Methods of Solving Problems of Gas Dynamics (Nauka, Moscow, 1980).

Sheehan, M. T.

Silva, C.

Z. Queiroz, P. Oliveira, J. Nobrega, C. Silva, I. Rufini, S. Sousa, and F. Krug, “Surface and gas-phase temperatures of a tungsten-coil atomizer,” Spectrochim. Acta Part B 57, 1789 (2002).
[CrossRef]

Simeonsson, J. B.

X. Hou, K. E. Levine, A. Salido, B. T. Jones, M. Ezer, S. Elwood, and J. B. Simeonsson, “Tungsten-coil devices in atomic spectrometry: absorption, fluorescence, and emission,” Analyt. Sci. 17, 175 (2001).
[CrossRef]

Sousa, S.

Z. Queiroz, P. Oliveira, J. Nobrega, C. Silva, I. Rufini, S. Sousa, and F. Krug, “Surface and gas-phase temperatures of a tungsten-coil atomizer,” Spectrochim. Acta Part B 57, 1789 (2002).
[CrossRef]

Sperling, M.

A. Kh. Gilmutdinov, K. Yu. Nagulin, and M. Sperling, “Spatially resolved atomic absorption analysis,” J. Analyt. At. Spectrom. 15, 1375 (2000).
[CrossRef]

Sh. F. Araslanov, A. Kh. Gilmutdinov, and M. Sperling, “3D numerical simulation of gas flows in transversely heated graphite tube atomizers,” in CD—Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, ECCOMAS, 2000, p. 20.

Staroverov, A.

A. Gilmutdinov, Sh. Araslanov, R. Ibragimov, A. Staroverov, and M. Salakhov, “Fundamental description of spectroanalytical inductively coupled plasmas,” in Third Nordic Conference on Plasma Spectrochemistry, Loen, Norway, 2006, p. 17.

Tsizin, G. I.

V. N. Oreshkin, G. I. Tsizin, and G. L. Vnukovskaya, “Sorption-atomic-absorption determination of tracks of metals (Ag, Bi, In, Cd, Pb and Tl) in natural waters, using a two-chamber powder atomizer,” Zh. Analit. Khimii 49, 755 (1994).

Vasilieva, L. A.

I. L. Grinshtein, Y. A. Vil’pan, L. A. Vasilieva, and V. A. Kopeikin, “Reduction of matrix interference during the atomic absorption determination of lead and cadmium in strongly interfering matrix samples using a two-step atomizer with vaporizer purging,” Spectrochim. Acta Part B 54, 745 (1999).
[CrossRef]

Vil’pan, Y. A.

I. L. Grinshtein, Y. A. Vil’pan, L. A. Vasilieva, and V. A. Kopeikin, “Reduction of matrix interference during the atomic absorption determination of lead and cadmium in strongly interfering matrix samples using a two-step atomizer with vaporizer purging,” Spectrochim. Acta Part B 54, 745 (1999).
[CrossRef]

Vnukovskaya, G. L.

V. N. Oreshkin, G. I. Tsizin, and G. L. Vnukovskaya, “Sorption-atomic-absorption determination of tracks of metals (Ag, Bi, In, Cd, Pb and Tl) in natural waters, using a two-chamber powder atomizer,” Zh. Analit. Khimii 49, 755 (1994).

Voloshin, A. V.

A. Kh. Gil’mutdinov, A. V. Voloshin, and K. Yu. Nagulin, “Atomic-absorption spectrometry with spatial resolution,” Usp. Khim. 75, 339 (2006).

Analyt. Lett.

G. L. Donati, M. H. Gonzales, J. A. Nobrega, and B. T. Jones, “Multi-wavelength determination of cobalt by tungsten coil atomic emission spectrometry,” Analyt. Lett. 43, 1723 (2010).
[CrossRef]

Analyt. Sci.

X. Hou, K. E. Levine, A. Salido, B. T. Jones, M. Ezer, S. Elwood, and J. B. Simeonsson, “Tungsten-coil devices in atomic spectrometry: absorption, fluorescence, and emission,” Analyt. Sci. 17, 175 (2001).
[CrossRef]

Appl. Spectrosc.

J. Analyt. At. Spectrom.

A. Kh. Gilmutdinov, K. Yu. Nagulin, and M. Sperling, “Spatially resolved atomic absorption analysis,” J. Analyt. At. Spectrom. 15, 1375 (2000).
[CrossRef]

Opt. Zh.

K. Yu. Nagulin and A. Kh. Gil’mutdinov, “Recording system with spatial resolution for atomic-absorption spectrophotometers,” Opt. Zh. 66, No. 7, 99 (1999). [J. Opt. Technol. 66, 662 (1999)].

Spectrochim. Acta Part B

I. L. Grinshtein, Y. A. Vil’pan, L. A. Vasilieva, and V. A. Kopeikin, “Reduction of matrix interference during the atomic absorption determination of lead and cadmium in strongly interfering matrix samples using a two-step atomizer with vaporizer purging,” Spectrochim. Acta Part B 54, 745 (1999).
[CrossRef]

Z. Queiroz, P. Oliveira, J. Nobrega, C. Silva, I. Rufini, S. Sousa, and F. Krug, “Surface and gas-phase temperatures of a tungsten-coil atomizer,” Spectrochim. Acta Part B 57, 1789 (2002).
[CrossRef]

Usp. Khim.

A. Kh. Gil’mutdinov, A. V. Voloshin, and K. Yu. Nagulin, “Atomic-absorption spectrometry with spatial resolution,” Usp. Khim. 75, 339 (2006).

Zh. Analit. Khimii

K. Yu. Nagulin, A. Kh. Gil’mutdinov, and L. A. Grishin, “Two-stage atomizer for electrothermal atomic-absorption spectroscopy. Dynamics of spatial temperature distribution,” Zh. Analit. Khimii 58, 439 (2003).

V. N. Oreshkin, G. I. Tsizin, and G. L. Vnukovskaya, “Sorption-atomic-absorption determination of tracks of metals (Ag, Bi, In, Cd, Pb and Tl) in natural waters, using a two-chamber powder atomizer,” Zh. Analit. Khimii 49, 755 (1994).

Other

B. V. L’vov, Atomic Absorption Spectral Analysis (Nauka, Moscow, 1966).

A. Kh. Gil’mutdinov and K. Yu. Nagulin, “Method of elementary analysis of a substance and a device for implementing it,” Russian Patent No. 2 370 755 (2007).

Sh. F. Araslanov, A. Kh. Gilmutdinov, and M. Sperling, “3D numerical simulation of gas flows in transversely heated graphite tube atomizers,” in CD—Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, ECCOMAS, 2000, p. 20.

A. Gilmutdinov, Sh. Araslanov, R. Ibragimov, A. Staroverov, and M. Salakhov, “Fundamental description of spectroanalytical inductively coupled plasmas,” in Third Nordic Conference on Plasma Spectrochemistry, Loen, Norway, 2006, p. 17.

A. A. Samarskiĭ and Yu. P. Popov, Difference Methods of Solving Problems of Gas Dynamics (Nauka, Moscow, 1980).

C. A. J. Fletcher, Computational Techniques in Fluid Dynamics, Vol. 1 (Springer-Verlag, Berlin, 1990; Mir, Moscow, 1991).

Yu. A. Zakharov and O. B. Kokorina, “Method of spectral analysis,” Russian Patent No. 2 274 848 (2004).

A. Kh. Gilmutdinov, “Electrothermal atomization means for analytical spectrometry,” U. S. Patent No. 5 981 912 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.