Abstract

A metal-dielectric grating consists of alternating metal and dielectric materials with period less than single wavelength of visible radiations. Optical behaviors of reflection spectra of this grating for s-polarized and p-polarized incident white light are studied systematically. For reflected light, it is the p-polarized light rather than s-polarization shows unusual optical behaviors with characteristics of single-peak spectra, higher peak efficiencies of higher than 75% and lower off-resonant efficiencies. The spectral width of p-polarized light with desirable frequency-selective functions is much wider. There exist two resonant areas for p-polarizations extending toward each other as filling factors increase, and positions of the resonances are mainly determined by grating periods existing linear relationships between them. For making positions of resonances occur in visible wavelengths, filling factors and grating periods should be respectively designed between 0.5 and 0.6 and between 0.25 and 0.45 µm. The newly observed properties of p-polarized lights can be used to exploit novel devices for reflection applications in the fields of optical securities and color filters.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
    [CrossRef]
  2. N. P. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using coated sub-wavelength gratings,” Opt. Express 18, 5525 (2010).
    [CrossRef]
  3. J. E. Foulkes and R. J. Blaikie, “Influence of polarization on absorbance modulated subwavelength grating structures,” J. Vac. Sci. Technol. B 27, 2941 (2009).
    [CrossRef]
  4. G. M. Raquel, L. Marine, and J. S. Juan, “Extraordinary optical reflection from sub-wavelength cylinder arrays,” Opt. Express 14, 3730 (2006).
    [CrossRef]
  5. W. R. Tompkin, A. Schilling, and R. Staub, “Color-shifting features for optically variable devices,” Proc. SPIE 5310, 244 (2004).
    [CrossRef]
  6. W. R. Tompkin, A. Schilling, and H. P. Herzig, “Zero-order gratings for optically variable devices,” Proc. SPIE 4677, 227 (2002).
    [CrossRef]
  7. R. Magnusson, M. Shokooh-Saremi, and E. G. Johnson, “Guided-mode resonant wave plates,” Opt. Lett. 35, 2472 (2010).
    [CrossRef]
  8. W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
    [CrossRef]
  9. M. R. Gadsdon, I. R. Hooper, A. P. Hibbins, and J. R. Sambles, “Surface plasmon polaritons on deep, narrow-ridged rectangular gratings,” J. Opt. Soc. Am. B 26, 1228 (2009).
    [CrossRef]
  10. H. Andersson, B. Kågedal, and C. F. Mandenius, “Monitoring of troponin release from cardiomyocytes during exposure to toxic substances using surface plasmon resonance biosensing,” Anal. Bioanal. Chem. 398, 1395 (2010).
    [CrossRef]
  11. J. Andkjr, S. Nishiwaki, T. Nomura, and O. Sigmund, “Topology optimization of grating couplers for the efficient excitation of surface plasmons,” J. Opt. Soc. Am. B 27, 1828 (2010).
    [CrossRef]
  12. I. Chremmos, “Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal,” J. Opt. Soc. Am. A 26, 2623 (2009).
    [CrossRef]
  13. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).
  14. K. H. Brenner, “Aspects for calculating local absorption with the rigorous coupled-wave method,” Opt. Express 18, 10369 (2010).
    [CrossRef]
  15. D. Yang, H. H. Lu, B. Chen, and C. W. Lin, “Surface plasmon resonance of SnO2/Au Bi-layer films for gas sensing applications,” Sens. Actuators B 145, 832 (2010).
    [CrossRef]

2010 (6)

2009 (3)

2007 (1)

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

2006 (1)

2004 (1)

W. R. Tompkin, A. Schilling, and R. Staub, “Color-shifting features for optically variable devices,” Proc. SPIE 5310, 244 (2004).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[CrossRef]

2002 (1)

W. R. Tompkin, A. Schilling, and H. P. Herzig, “Zero-order gratings for optically variable devices,” Proc. SPIE 4677, 227 (2002).
[CrossRef]

Agrawal, M.

Andersson, H.

H. Andersson, B. Kågedal, and C. F. Mandenius, “Monitoring of troponin release from cardiomyocytes during exposure to toxic substances using surface plasmon resonance biosensing,” Anal. Bioanal. Chem. 398, 1395 (2010).
[CrossRef]

Andkjr, J.

Azad, A. K.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[CrossRef]

Blaikie, R. J.

J. E. Foulkes and R. J. Blaikie, “Influence of polarization on absorbance modulated subwavelength grating structures,” J. Vac. Sci. Technol. B 27, 2941 (2009).
[CrossRef]

Brenner, K. H.

Chen, B.

D. Yang, H. H. Lu, B. Chen, and C. W. Lin, “Surface plasmon resonance of SnO2/Au Bi-layer films for gas sensing applications,” Sens. Actuators B 145, 832 (2010).
[CrossRef]

Chen, J.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

Chremmos, I.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[CrossRef]

Foulkes, J. E.

J. E. Foulkes and R. J. Blaikie, “Influence of polarization on absorbance modulated subwavelength grating structures,” J. Vac. Sci. Technol. B 27, 2941 (2009).
[CrossRef]

Gadsdon, M. R.

Han, J.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

Herzig, H. P.

W. R. Tompkin, A. Schilling, and H. P. Herzig, “Zero-order gratings for optically variable devices,” Proc. SPIE 4677, 227 (2002).
[CrossRef]

Hibbins, A. P.

Hooper, I. R.

Johnson, E. G.

Juan, J. S.

Kågedal, B.

H. Andersson, B. Kågedal, and C. F. Mandenius, “Monitoring of troponin release from cardiomyocytes during exposure to toxic substances using surface plasmon resonance biosensing,” Anal. Bioanal. Chem. 398, 1395 (2010).
[CrossRef]

Lin, C. W.

D. Yang, H. H. Lu, B. Chen, and C. W. Lin, “Surface plasmon resonance of SnO2/Au Bi-layer films for gas sensing applications,” Sens. Actuators B 145, 832 (2010).
[CrossRef]

Lu, H. H.

D. Yang, H. H. Lu, B. Chen, and C. W. Lin, “Surface plasmon resonance of SnO2/Au Bi-layer films for gas sensing applications,” Sens. Actuators B 145, 832 (2010).
[CrossRef]

Magnusson, R.

Mandenius, C. F.

H. Andersson, B. Kågedal, and C. F. Mandenius, “Monitoring of troponin release from cardiomyocytes during exposure to toxic substances using surface plasmon resonance biosensing,” Anal. Bioanal. Chem. 398, 1395 (2010).
[CrossRef]

Marine, L.

Nishiwaki, S.

Nomura, T.

Peumans, P.

Raquel, G. M.

Sambles, J. R.

Schilling, A.

W. R. Tompkin, A. Schilling, and R. Staub, “Color-shifting features for optically variable devices,” Proc. SPIE 5310, 244 (2004).
[CrossRef]

W. R. Tompkin, A. Schilling, and H. P. Herzig, “Zero-order gratings for optically variable devices,” Proc. SPIE 4677, 227 (2002).
[CrossRef]

Sergeant, N. P.

Shokooh-Saremi, M.

Sigmund, O.

Staub, R.

W. R. Tompkin, A. Schilling, and R. Staub, “Color-shifting features for optically variable devices,” Proc. SPIE 5310, 244 (2004).
[CrossRef]

Tompkin, W. R.

W. R. Tompkin, A. Schilling, and R. Staub, “Color-shifting features for optically variable devices,” Proc. SPIE 5310, 244 (2004).
[CrossRef]

W. R. Tompkin, A. Schilling, and H. P. Herzig, “Zero-order gratings for optically variable devices,” Proc. SPIE 4677, 227 (2002).
[CrossRef]

Xu, J.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

Yang, D.

D. Yang, H. H. Lu, B. Chen, and C. W. Lin, “Surface plasmon resonance of SnO2/Au Bi-layer films for gas sensing applications,” Sens. Actuators B 145, 832 (2010).
[CrossRef]

Zhang, W.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

Zhang, X.-C.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

Anal. Bioanal. Chem. (1)

H. Andersson, B. Kågedal, and C. F. Mandenius, “Monitoring of troponin release from cardiomyocytes during exposure to toxic substances using surface plasmon resonance biosensing,” Anal. Bioanal. Chem. 398, 1395 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Vac. Sci. Technol. B (1)

J. E. Foulkes and R. J. Blaikie, “Influence of polarization on absorbance modulated subwavelength grating structures,” J. Vac. Sci. Technol. B 27, 2941 (2009).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

Proc. SPIE (2)

W. R. Tompkin, A. Schilling, and R. Staub, “Color-shifting features for optically variable devices,” Proc. SPIE 5310, 244 (2004).
[CrossRef]

W. R. Tompkin, A. Schilling, and H. P. Herzig, “Zero-order gratings for optically variable devices,” Proc. SPIE 4677, 227 (2002).
[CrossRef]

Sens. Actuators B (1)

D. Yang, H. H. Lu, B. Chen, and C. W. Lin, “Surface plasmon resonance of SnO2/Au Bi-layer films for gas sensing applications,” Sens. Actuators B 145, 832 (2010).
[CrossRef]

Other (1)

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.