Abstract

In this paper, the performance of various apodization profiles (uniform, hyperbolic tangent and gaussian) for un-chirped Fiber Bragg Grating is investigated. Apodization techniques are used to get optimized reflection spectra with high side lobe suppression. The simulations are done by solving coupled mode equations in MATLAB using transfer matrix method which explains the relationship between the guided modes. The result shows that Gaussian profile suppresses side lobe level much more efficiently than uniform and hyperbolic tangent profiles. Gaussian apodized Fiber Bragg Grating is used to indicate strain by producing wavelength shift. MATLAB and Opti-grating result gives an idea about the efficiency of the suggested scheme to analyze strain measurements by giving a linear response.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Singh, A. Khare, and S. Kumar, “Fiber Bragg grating modeling, characterization and optimization with different index profiles,” Int. J. Eng. Sci. Technol. 2, No. 9, 4463 (2010).
  2. J. Singh, A. Khare, and S. Kumar, “Design of Gaussian apodized fiber Bragg grating and its applications,” Int. J. Eng. Sci. Technol. 2, No. 5, 1419 (2010).
  3. S. P. Ugale and V. Mishra, “Optimization of fiber Bragg grating length for maximum reflectivity,” IEEE Int. Conf. Commun. Signal Process. (ICCSP) (2011), pp. 28–32.
  4. J. L. Rebola and A. V. T. Cartazo, “Performance optimization of Gaussian apodized fiber Bragg grating filters in WDM systems,” J. Lightwave Technol. 20, No. 8, 1537 (2002).
    [CrossRef]
  5. P. K. Sahu, S. Kumar, C. Gowre, S. Mahapatra, and J. C. Biswas, “Numerical modeling and simulation of fiber Bragg grating based devices for all-optical communication network,” IFIP Int. Conf. Wireless Opt. Commun. Networks (2006).
  6. N. H. Sun, J. J. Liau, Y. W. Kiang, S. C. Lin, R. Y. Ro, J. S. Chiang, and H. W. Chang, “Numerical analysis of apodized fiber Bragg gratings using coupled mode theory,” Prog. Electromagn. Res. 99, 289 (2009).
    [CrossRef]
  7. B. A. Tahir, J. Ali, and R. A. Rahman, “Strain measurements using fibre Bragg grating sensor,” Am. J. Appl. Sci. (Special Issue)40 (2005).
  8. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, No. 8, 1263 (1997).
    [CrossRef]
  9. J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, No. 5, 678 (2002).
    [CrossRef]
  10. O. Frazao, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fiber Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38, No. 14, 693 (2002).
    [CrossRef]
  11. H. Lu, R. Hussain, M. Zhou, and X. Gu, “Fiber Bragg grating sensors for failure detection of flip chip ball grid array in four-point bend tests,” IEEE Sensors J. 9, No. 4, 457 (2009).
    [CrossRef]
  12. J. C. C. Carvalho, M. J. Sousa, C. S. Sales Junior, J. C. W. A. Costa, C. R. L. Frances, and M. E. V. Segatto, “A new acceleration technique for the design of fibre gratings,” Opt. Express 14, No. 2, 10715 (2006).
    [CrossRef] [PubMed]
  13. H. S. Phing, J. Ali, R. A. Rahman, and B. A. Tahir, “Fiber Bragg grating modeling, simulation and characteristics with different grating lengths,” J. Fundam. Sci. 3, No. 2, 167 (2007).
  14. A. Othonosa, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, No. 12, 4309 (1997).
    [CrossRef]
  15. L. H. Kang, D. K. Kim, and J. H. Han, “Estimation of dynamic structural displacements using fiber Bragg grating strain sensors,” J. Sound Vib. No. 3, 534 (2007).
    [CrossRef]
  16. D. H. Kanga, S. O. Park, C. S. Hong, and C. G. Kim, “The signal characteristics of reflected spectra of fiber Bragg grating sensors with strain gradients and grating lengths,” NDT & E Int. 38, No. 8, 712 (2005).
    [CrossRef]
  17. I. Yulianti, A. S. M. Supa’at, S. M. Idrus, and A. M. Al-hetar, “Simulation of apodization pro files performances for unchirped fiber Bragg gratings,” IEEE Int. Conf. Photonics (ICP) (2010), pp. 1–5.
  18. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, No. 8, 1277 (1997).
    [CrossRef]
  19. M. Prabhugoud and K. Peters, “Modified transfer matrix formulation for Bragg grating strain sensors,” J. Lightwave Technol. 22, No. 10, 2302 (2004).
    [CrossRef]
  20. G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE. 1516, 185 (1991).
    [CrossRef]

2010

J. Singh, A. Khare, and S. Kumar, “Fiber Bragg grating modeling, characterization and optimization with different index profiles,” Int. J. Eng. Sci. Technol. 2, No. 9, 4463 (2010).

J. Singh, A. Khare, and S. Kumar, “Design of Gaussian apodized fiber Bragg grating and its applications,” Int. J. Eng. Sci. Technol. 2, No. 5, 1419 (2010).

2009

N. H. Sun, J. J. Liau, Y. W. Kiang, S. C. Lin, R. Y. Ro, J. S. Chiang, and H. W. Chang, “Numerical analysis of apodized fiber Bragg gratings using coupled mode theory,” Prog. Electromagn. Res. 99, 289 (2009).
[CrossRef]

H. Lu, R. Hussain, M. Zhou, and X. Gu, “Fiber Bragg grating sensors for failure detection of flip chip ball grid array in four-point bend tests,” IEEE Sensors J. 9, No. 4, 457 (2009).
[CrossRef]

2007

H. S. Phing, J. Ali, R. A. Rahman, and B. A. Tahir, “Fiber Bragg grating modeling, simulation and characteristics with different grating lengths,” J. Fundam. Sci. 3, No. 2, 167 (2007).

L. H. Kang, D. K. Kim, and J. H. Han, “Estimation of dynamic structural displacements using fiber Bragg grating strain sensors,” J. Sound Vib. No. 3, 534 (2007).
[CrossRef]

2006

2005

B. A. Tahir, J. Ali, and R. A. Rahman, “Strain measurements using fibre Bragg grating sensor,” Am. J. Appl. Sci. (Special Issue)40 (2005).

D. H. Kanga, S. O. Park, C. S. Hong, and C. G. Kim, “The signal characteristics of reflected spectra of fiber Bragg grating sensors with strain gradients and grating lengths,” NDT & E Int. 38, No. 8, 712 (2005).
[CrossRef]

2004

2002

J. L. Rebola and A. V. T. Cartazo, “Performance optimization of Gaussian apodized fiber Bragg grating filters in WDM systems,” J. Lightwave Technol. 20, No. 8, 1537 (2002).
[CrossRef]

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, No. 5, 678 (2002).
[CrossRef]

O. Frazao, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fiber Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38, No. 14, 693 (2002).
[CrossRef]

1997

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, No. 8, 1263 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, No. 8, 1277 (1997).
[CrossRef]

A. Othonosa, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, No. 12, 4309 (1997).
[CrossRef]

1991

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE. 1516, 185 (1991).
[CrossRef]

Al-hetar, A. M.

I. Yulianti, A. S. M. Supa’at, S. M. Idrus, and A. M. Al-hetar, “Simulation of apodization pro files performances for unchirped fiber Bragg gratings,” IEEE Int. Conf. Photonics (ICP) (2010), pp. 1–5.

Ali, J.

H. S. Phing, J. Ali, R. A. Rahman, and B. A. Tahir, “Fiber Bragg grating modeling, simulation and characteristics with different grating lengths,” J. Fundam. Sci. 3, No. 2, 167 (2007).

B. A. Tahir, J. Ali, and R. A. Rahman, “Strain measurements using fibre Bragg grating sensor,” Am. J. Appl. Sci. (Special Issue)40 (2005).

Biswas, J. C.

P. K. Sahu, S. Kumar, C. Gowre, S. Mahapatra, and J. C. Biswas, “Numerical modeling and simulation of fiber Bragg grating based devices for all-optical communication network,” IFIP Int. Conf. Wireless Opt. Commun. Networks (2006).

Cartazo, A. V. T.

Carvalho, J. C. C.

Chan, C. C.

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, No. 5, 678 (2002).
[CrossRef]

Chang, H. W.

N. H. Sun, J. J. Liau, Y. W. Kiang, S. C. Lin, R. Y. Ro, J. S. Chiang, and H. W. Chang, “Numerical analysis of apodized fiber Bragg gratings using coupled mode theory,” Prog. Electromagn. Res. 99, 289 (2009).
[CrossRef]

Chiang, J. S.

N. H. Sun, J. J. Liau, Y. W. Kiang, S. C. Lin, R. Y. Ro, J. S. Chiang, and H. W. Chang, “Numerical analysis of apodized fiber Bragg gratings using coupled mode theory,” Prog. Electromagn. Res. 99, 289 (2009).
[CrossRef]

Costa, J. C. W. A.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, No. 8, 1277 (1997).
[CrossRef]

Frances, C. R. L.

Frazao, O.

O. Frazao, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fiber Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38, No. 14, 693 (2002).
[CrossRef]

Gong, J. M.

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, No. 5, 678 (2002).
[CrossRef]

Gowre, C.

P. K. Sahu, S. Kumar, C. Gowre, S. Mahapatra, and J. C. Biswas, “Numerical modeling and simulation of fiber Bragg grating based devices for all-optical communication network,” IFIP Int. Conf. Wireless Opt. Commun. Networks (2006).

Gu, X.

H. Lu, R. Hussain, M. Zhou, and X. Gu, “Fiber Bragg grating sensors for failure detection of flip chip ball grid array in four-point bend tests,” IEEE Sensors J. 9, No. 4, 457 (2009).
[CrossRef]

Han, J. H.

L. H. Kang, D. K. Kim, and J. H. Han, “Estimation of dynamic structural displacements using fiber Bragg grating strain sensors,” J. Sound Vib. No. 3, 534 (2007).
[CrossRef]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, No. 8, 1263 (1997).
[CrossRef]

Hong, C. S.

D. H. Kanga, S. O. Park, C. S. Hong, and C. G. Kim, “The signal characteristics of reflected spectra of fiber Bragg grating sensors with strain gradients and grating lengths,” NDT & E Int. 38, No. 8, 712 (2005).
[CrossRef]

Hussain, R.

H. Lu, R. Hussain, M. Zhou, and X. Gu, “Fiber Bragg grating sensors for failure detection of flip chip ball grid array in four-point bend tests,” IEEE Sensors J. 9, No. 4, 457 (2009).
[CrossRef]

Idrus, S. M.

I. Yulianti, A. S. M. Supa’at, S. M. Idrus, and A. M. Al-hetar, “Simulation of apodization pro files performances for unchirped fiber Bragg gratings,” IEEE Int. Conf. Photonics (ICP) (2010), pp. 1–5.

Jin, W.

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, No. 5, 678 (2002).
[CrossRef]

Kang, L. H.

L. H. Kang, D. K. Kim, and J. H. Han, “Estimation of dynamic structural displacements using fiber Bragg grating strain sensors,” J. Sound Vib. No. 3, 534 (2007).
[CrossRef]

Kanga, D. H.

D. H. Kanga, S. O. Park, C. S. Hong, and C. G. Kim, “The signal characteristics of reflected spectra of fiber Bragg grating sensors with strain gradients and grating lengths,” NDT & E Int. 38, No. 8, 712 (2005).
[CrossRef]

Khare, A.

J. Singh, A. Khare, and S. Kumar, “Fiber Bragg grating modeling, characterization and optimization with different index profiles,” Int. J. Eng. Sci. Technol. 2, No. 9, 4463 (2010).

J. Singh, A. Khare, and S. Kumar, “Design of Gaussian apodized fiber Bragg grating and its applications,” Int. J. Eng. Sci. Technol. 2, No. 5, 1419 (2010).

Kiang, Y. W.

N. H. Sun, J. J. Liau, Y. W. Kiang, S. C. Lin, R. Y. Ro, J. S. Chiang, and H. W. Chang, “Numerical analysis of apodized fiber Bragg gratings using coupled mode theory,” Prog. Electromagn. Res. 99, 289 (2009).
[CrossRef]

Kim, C. G.

D. H. Kanga, S. O. Park, C. S. Hong, and C. G. Kim, “The signal characteristics of reflected spectra of fiber Bragg grating sensors with strain gradients and grating lengths,” NDT & E Int. 38, No. 8, 712 (2005).
[CrossRef]

Kim, D. K.

L. H. Kang, D. K. Kim, and J. H. Han, “Estimation of dynamic structural displacements using fiber Bragg grating strain sensors,” J. Sound Vib. No. 3, 534 (2007).
[CrossRef]

Kumar, S.

J. Singh, A. Khare, and S. Kumar, “Design of Gaussian apodized fiber Bragg grating and its applications,” Int. J. Eng. Sci. Technol. 2, No. 5, 1419 (2010).

J. Singh, A. Khare, and S. Kumar, “Fiber Bragg grating modeling, characterization and optimization with different index profiles,” Int. J. Eng. Sci. Technol. 2, No. 9, 4463 (2010).

P. K. Sahu, S. Kumar, C. Gowre, S. Mahapatra, and J. C. Biswas, “Numerical modeling and simulation of fiber Bragg grating based devices for all-optical communication network,” IFIP Int. Conf. Wireless Opt. Commun. Networks (2006).

Liao, Y. B.

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, No. 5, 678 (2002).
[CrossRef]

Liau, J. J.

N. H. Sun, J. J. Liau, Y. W. Kiang, S. C. Lin, R. Y. Ro, J. S. Chiang, and H. W. Chang, “Numerical analysis of apodized fiber Bragg gratings using coupled mode theory,” Prog. Electromagn. Res. 99, 289 (2009).
[CrossRef]

Lin, S. C.

N. H. Sun, J. J. Liau, Y. W. Kiang, S. C. Lin, R. Y. Ro, J. S. Chiang, and H. W. Chang, “Numerical analysis of apodized fiber Bragg gratings using coupled mode theory,” Prog. Electromagn. Res. 99, 289 (2009).
[CrossRef]

Lu, H.

H. Lu, R. Hussain, M. Zhou, and X. Gu, “Fiber Bragg grating sensors for failure detection of flip chip ball grid array in four-point bend tests,” IEEE Sensors J. 9, No. 4, 457 (2009).
[CrossRef]

MacAlpine, J. M. K.

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, No. 5, 678 (2002).
[CrossRef]

Mahapatra, S.

P. K. Sahu, S. Kumar, C. Gowre, S. Mahapatra, and J. C. Biswas, “Numerical modeling and simulation of fiber Bragg grating based devices for all-optical communication network,” IFIP Int. Conf. Wireless Opt. Commun. Networks (2006).

Marques, P. V. S.

O. Frazao, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fiber Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38, No. 14, 693 (2002).
[CrossRef]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, No. 8, 1263 (1997).
[CrossRef]

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE. 1516, 185 (1991).
[CrossRef]

Mishra, V.

S. P. Ugale and V. Mishra, “Optimization of fiber Bragg grating length for maximum reflectivity,” IEEE Int. Conf. Commun. Signal Process. (ICCSP) (2011), pp. 28–32.

Morey, W. W.

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE. 1516, 185 (1991).
[CrossRef]

Othonosa, A.

A. Othonosa, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, No. 12, 4309 (1997).
[CrossRef]

Park, S. O.

D. H. Kanga, S. O. Park, C. S. Hong, and C. G. Kim, “The signal characteristics of reflected spectra of fiber Bragg grating sensors with strain gradients and grating lengths,” NDT & E Int. 38, No. 8, 712 (2005).
[CrossRef]

Peters, K.

Phing, H. S.

H. S. Phing, J. Ali, R. A. Rahman, and B. A. Tahir, “Fiber Bragg grating modeling, simulation and characteristics with different grating lengths,” J. Fundam. Sci. 3, No. 2, 167 (2007).

Prabhugoud, M.

Rahman, R. A.

H. S. Phing, J. Ali, R. A. Rahman, and B. A. Tahir, “Fiber Bragg grating modeling, simulation and characteristics with different grating lengths,” J. Fundam. Sci. 3, No. 2, 167 (2007).

B. A. Tahir, J. Ali, and R. A. Rahman, “Strain measurements using fibre Bragg grating sensor,” Am. J. Appl. Sci. (Special Issue)40 (2005).

Rebola, J. L.

Rego, G.

O. Frazao, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fiber Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38, No. 14, 693 (2002).
[CrossRef]

Ro, R. Y.

N. H. Sun, J. J. Liau, Y. W. Kiang, S. C. Lin, R. Y. Ro, J. S. Chiang, and H. W. Chang, “Numerical analysis of apodized fiber Bragg gratings using coupled mode theory,” Prog. Electromagn. Res. 99, 289 (2009).
[CrossRef]

Romero, R.

O. Frazao, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fiber Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38, No. 14, 693 (2002).
[CrossRef]

Sahu, P. K.

P. K. Sahu, S. Kumar, C. Gowre, S. Mahapatra, and J. C. Biswas, “Numerical modeling and simulation of fiber Bragg grating based devices for all-optical communication network,” IFIP Int. Conf. Wireless Opt. Commun. Networks (2006).

Sales Junior, C. S.

Salgado, H. M.

O. Frazao, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fiber Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38, No. 14, 693 (2002).
[CrossRef]

Santos, J. L.

O. Frazao, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fiber Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38, No. 14, 693 (2002).
[CrossRef]

Segatto, M. E. V.

Singh, J.

J. Singh, A. Khare, and S. Kumar, “Design of Gaussian apodized fiber Bragg grating and its applications,” Int. J. Eng. Sci. Technol. 2, No. 5, 1419 (2010).

J. Singh, A. Khare, and S. Kumar, “Fiber Bragg grating modeling, characterization and optimization with different index profiles,” Int. J. Eng. Sci. Technol. 2, No. 9, 4463 (2010).

Sousa, M. J.

Sun, N. H.

N. H. Sun, J. J. Liau, Y. W. Kiang, S. C. Lin, R. Y. Ro, J. S. Chiang, and H. W. Chang, “Numerical analysis of apodized fiber Bragg gratings using coupled mode theory,” Prog. Electromagn. Res. 99, 289 (2009).
[CrossRef]

Supa’at, A. S. M.

I. Yulianti, A. S. M. Supa’at, S. M. Idrus, and A. M. Al-hetar, “Simulation of apodization pro files performances for unchirped fiber Bragg gratings,” IEEE Int. Conf. Photonics (ICP) (2010), pp. 1–5.

Tahir, B. A.

H. S. Phing, J. Ali, R. A. Rahman, and B. A. Tahir, “Fiber Bragg grating modeling, simulation and characteristics with different grating lengths,” J. Fundam. Sci. 3, No. 2, 167 (2007).

B. A. Tahir, J. Ali, and R. A. Rahman, “Strain measurements using fibre Bragg grating sensor,” Am. J. Appl. Sci. (Special Issue)40 (2005).

Ugale, S. P.

S. P. Ugale and V. Mishra, “Optimization of fiber Bragg grating length for maximum reflectivity,” IEEE Int. Conf. Commun. Signal Process. (ICCSP) (2011), pp. 28–32.

Yulianti, I.

I. Yulianti, A. S. M. Supa’at, S. M. Idrus, and A. M. Al-hetar, “Simulation of apodization pro files performances for unchirped fiber Bragg gratings,” IEEE Int. Conf. Photonics (ICP) (2010), pp. 1–5.

Zhang, M.

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, No. 5, 678 (2002).
[CrossRef]

Zhou, M.

H. Lu, R. Hussain, M. Zhou, and X. Gu, “Fiber Bragg grating sensors for failure detection of flip chip ball grid array in four-point bend tests,” IEEE Sensors J. 9, No. 4, 457 (2009).
[CrossRef]

Am. J. Appl. Sci. (Special Issue)

B. A. Tahir, J. Ali, and R. A. Rahman, “Strain measurements using fibre Bragg grating sensor,” Am. J. Appl. Sci. (Special Issue)40 (2005).

Electron. Lett.

O. Frazao, R. Romero, G. Rego, P. V. S. Marques, H. M. Salgado, and J. L. Santos, “Sampled fiber Bragg grating sensors for simultaneous strain and temperature measurement,” Electron. Lett. 38, No. 14, 693 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

J. M. Gong, J. M. K. MacAlpine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, No. 5, 678 (2002).
[CrossRef]

IEEE Sensors J.

H. Lu, R. Hussain, M. Zhou, and X. Gu, “Fiber Bragg grating sensors for failure detection of flip chip ball grid array in four-point bend tests,” IEEE Sensors J. 9, No. 4, 457 (2009).
[CrossRef]

Int. J. Eng. Sci. Technol.

J. Singh, A. Khare, and S. Kumar, “Fiber Bragg grating modeling, characterization and optimization with different index profiles,” Int. J. Eng. Sci. Technol. 2, No. 9, 4463 (2010).

J. Singh, A. Khare, and S. Kumar, “Design of Gaussian apodized fiber Bragg grating and its applications,” Int. J. Eng. Sci. Technol. 2, No. 5, 1419 (2010).

J. Fundam. Sci.

H. S. Phing, J. Ali, R. A. Rahman, and B. A. Tahir, “Fiber Bragg grating modeling, simulation and characteristics with different grating lengths,” J. Fundam. Sci. 3, No. 2, 167 (2007).

J. Lightwave Technol.

J. Sound Vib.

L. H. Kang, D. K. Kim, and J. H. Han, “Estimation of dynamic structural displacements using fiber Bragg grating strain sensors,” J. Sound Vib. No. 3, 534 (2007).
[CrossRef]

NDT & E Int.

D. H. Kanga, S. O. Park, C. S. Hong, and C. G. Kim, “The signal characteristics of reflected spectra of fiber Bragg grating sensors with strain gradients and grating lengths,” NDT & E Int. 38, No. 8, 712 (2005).
[CrossRef]

Opt. Express

Proc. SPIE.

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE. 1516, 185 (1991).
[CrossRef]

Prog. Electromagn. Res.

N. H. Sun, J. J. Liau, Y. W. Kiang, S. C. Lin, R. Y. Ro, J. S. Chiang, and H. W. Chang, “Numerical analysis of apodized fiber Bragg gratings using coupled mode theory,” Prog. Electromagn. Res. 99, 289 (2009).
[CrossRef]

Rev. Sci. Instrum.

A. Othonosa, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, No. 12, 4309 (1997).
[CrossRef]

Other

I. Yulianti, A. S. M. Supa’at, S. M. Idrus, and A. M. Al-hetar, “Simulation of apodization pro files performances for unchirped fiber Bragg gratings,” IEEE Int. Conf. Photonics (ICP) (2010), pp. 1–5.

P. K. Sahu, S. Kumar, C. Gowre, S. Mahapatra, and J. C. Biswas, “Numerical modeling and simulation of fiber Bragg grating based devices for all-optical communication network,” IFIP Int. Conf. Wireless Opt. Commun. Networks (2006).

S. P. Ugale and V. Mishra, “Optimization of fiber Bragg grating length for maximum reflectivity,” IEEE Int. Conf. Commun. Signal Process. (ICCSP) (2011), pp. 28–32.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.