Abstract

This paper presents the results of using vacuum ultraviolet excilamps based on the excited inert-gas dimers Xe2* (172 nm), Kr2* (146 nm), and Ar2* (126 nm) in scientific research and commercial practice—namely, in illumination engineering and analytical instrumentation, for the creation of new optical materials, photochemistry, and the modification of surface properties.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Bo?chenko, V. F. Tarasenko, E. A. Fomin, and S. I. Yakovlenko, “Broad-band continua in inert gases and their mixtures with halides,” Kvant. Elektron. (Moscow) 20, No. 1, 7 (1993). [Quantum Electron. 23, 3 (1993)].
  2. T. Oppenländer, “Novel incoherent excimer UV irradiation units for the application in photochemistry, photobiology, photomedicine and for waste water treatment,” Eur. Photochem. Assoc. Newsl. 50, 2 (1994).
  3. A. M. Bo?chenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, Ultraviolet and Vacuum Ultraviolet Excilamps: Physics, Engineering, and Applications (STT, Tomsk, 2001).
  4. B. M. Smirnov, “Excimeric molecules,” Usp. Fiz. Nauk 139, No. 1, 53 (1983). [Phys. Usp. 26, 31 (1983)].
    [CrossRef]
  5. G. N. Gerasimov, B. E. Krylov, A. V. Loginov, and S. A. Shchukin, “Ultraviolet radiation of excited molecules of inert gases,” Usp. Fiz. Nauk 162, No. 5, 123 (1992). [Phys. Usp. 35, 400 (1992)].
    [CrossRef]
  6. M. McKasker, “Eximers of inert gases,” in Excimer Lasers, C. K. Rhodes, ed. (Springer-Verlag, New York, 1979; Mir, Moscow, 1981), pp. 70–117.
  7. LINEX® Linear Excimer LAMP System (123 D05 E 05/03 Co) http://osram.com/_global/pdf/Professional/Display_Optic/Display_Sys tems/123D005GB_PI_LINEX.pdf.
  8. PLANON®, Product Information Bulletin FO135R3.
  9. A. A. Nemodruk and E. V. Bezrogova, Photochemical Reactions in Inorganic Chemistry (Khimiya, Moscow, 1972).
  10. J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, “Vacuum ultraviolet rare gas excimer light source,” Rev. Sci. Instrum. 68, 1360 (1997).
    [CrossRef]
  11. F. Mühlberger, J. Wieser, A. Ulrich, and R. Zimmermann, “Single-photon ionization mass spectrometry with a novel electron-pumped excimer lamp for detection of trace compounds from thermal processes,” Organohalogen Compd. 66, 795 (2004).
  12. M. Wasamoto, M. Katto, M. Kaku, S. Kubodera, and A. Yokotani, “Mass spectrometric study of photo dissociation of organic molecules by vacuum-ultraviolet irradiation for development of analysis technique,” Appl. Surf. Sci. 255, 9861 (2009).
    [CrossRef]
  13. E. A. Sosnin, É. A. Zakharova, and V. N. Batalova, “Using excilamps in analytical chemistry (Review),” Zavodskaya Laboratoriya 71, No. 8, 18 (2005).
  14. M. V. Griechetschkina, N. K. Zaitsev, and A. M. Braun, “VUV-photolysis oxidative degradation of organics inhibiting the inverse-voltammetric determination of heavy metals. 1. Humic substances,” Toxicol. Environ. Chem. 53, 143 (1996).
    [CrossRef]
  15. A. Sheremet, E. Averyaskina, E. Chekmeneva, and S. Ermakov, “Standardless electrochemical method for mercury, cadmium, lead and copper determination in aqueous solution,” Electroanalysis 19, 2222 (2007).
    [CrossRef]
  16. M. Murahara, Y. Ogawa, K. Yoshida, and Y. Okamato, “Photochemical laminating of low refractive index transparent antireflective SiO2 film,” Proc. SPIE 4932, 48 (2003).
    [CrossRef]
  17. K. Asano and M. Murahara, “Photochemical bonding of fluorocarbon and fused silica glass for ultraviolet ray transmitting,” MRS Proc. 796, V3.7 (2003).
    [CrossRef]
  18. M. Murahara, N. Sato, T. Funatsu, and Y. Okamoto, “Water-resistant hard coating on optical material by photooxidation of silicone oil,” Proc. SPIE 5991, 599118 (2005).
    [CrossRef]
  19. G. Baum and T. Oppenländer, “VUV-oxidation of chloroorganic compounds in an excimer flow through photoreactor,” Chemosphere 30, 1781 (1995).
    [CrossRef]
  20. T. Oppenländer, Photochemical Purification of Water and Air (Wiley, Weinheim, 2003).
  21. M. G. Gonzalez, E. Oliveros, M. Wörner, and A. M. Braun, “Vacuum-ultraviolet photolysis of aqueous reaction systems,” J. Photochem. Photobiol. C: Photochem. Rev. 5, 225 (2004).
    [CrossRef]
  22. T. Oppenländer and M. Fradl, “TOC destruction of a phenol/water azeotrope by ‘Photoreactive distillation’ through an incoherent vacuum-UV excimer lamp,” Chem. Eng. Technol. 22, 951 (1999).
    [CrossRef]
  23. T. Oppenländer, C. Walddörfer, J. Burgbacher, M. Kiermeier, K. Lachner, and H. Weinschrott, “Improved vacuum-UV (VUV) photomineralization of organic compounds in water photoreactor (Xe2* lamp, 172 nm) containing an axially centred ceramic oxygenator,” Chemosphere 60, 302 (2005).
    [CrossRef] [PubMed]
  24. E. A. Sosnin, M. V. Erofeev, and V. F. Tarasenko, “Photomineralization of methanol in a Xe2 photoreactor (??172 nm) with aeration of the solution,” Izv. Vyssh. Uchebn. Zaved. Fiz. No. 10, 95 (2006).
  25. E. A. Sosnin and M. V. Erofeev, “Drying of natural gas and photolysis of methanol in flow-through photoreactors based on Xe2 and KrCl excilamps,” in Materials of the Third School Seminar of Young Scientists of Russia (June 8–12, 2004) (Izd. BNTs SO RAN, Ulan-Udé, 2004), pp. 247–248.
  26. A. Yu. Akhmedov, V. I. Erofeev, M. V. Erofeev, V. A. Istomin, S. D. Korovin, Yu. V. Medvedev, Yu. I. Polygalov, V. M. Orlovski?, O. A. Sergeev, E. A. Sosnin, V. P. Stepanov, and V. F. Tarasenko, “Method of drying natural gas, flow-through reactor for drying natural gas,” Russian Patent 2 284 850. Priority 3/9/2006. Reg. No. Pending 2005106634/15 on 3/9/2005, Pub. 10/10/2006, Byul. No. 28.
  27. Yu. V. Medvedev, V. G. Ivanov, N. I. Sereda, Yu. I. Polygalov, V. I. Erofeev, S. D. Korovin, M. V. Erofeev, E. A. Sosnin, A. I. Suslov, V. F. Tarasenko, and V. A. Istomin, “The action of high-power UV radiation on a flow of natural gas in a flow-through reactor,” Nauka Tekh. Gaz. Promysh. No. 3, 83 (2004).
  28. T. Oppenländer and G. Baum, “Wasseraufbereitung mit Vakuum-UV/UV-Excimer-Durchflussphotoreaktoren,” Wasser-Abwasser 137, 321 (1996).
  29. K. Waizenegger and T. Oppenlaender, “Verfahren zur Mediumaufbereitung mit einem Excimer-Strahler und Excimer-Strahler zur Durchfuhrung eines solchen Verfahrens,” Offenlegungsschrift DE 195 07 189. Anmeldtag: 02.03.1995. Offenlegunstag: 12.09.1996.
  30. P. S. Pa, “Optical assistance in thin-film microelectro-removal for touch-panel displays,” J. Electroanal. Chem. 651, 38 (2011).
    [CrossRef]
  31. H. Esrom and U. Kogelschatz, “Modification of surfaces with new excimer UV sources,” Thin Solid Films 218, 231 (1992).
    [CrossRef]
  32. Y. Sato, N. Sato, K. Shimizu, M. Sasou, J.-M. Parel, and M. Murahara, “Photochemical surface-modification method for fibrin-free intraocular lens,” Proc. SPIE 5688, 260 (2005).
    [CrossRef]
  33. J. Heitz, M. Olbrich, S. Moritz, C. Romamin, V. Svorcik, and D. Bäuerle, “Surface modification of polymers by UV irradiation: applications in micro- and biotechnology,” Proc. SPIE 5958, 5958U1 (2005).
  34. J. Y. Zhang and I. W. Boyd, “Rapid photo-oxidation of silicon at room temperature using 126-nm vacuum ultraviolet radiation,” Appl. Surf. Sci. 186, 64 (2002).
    [CrossRef]
  35. U. Kogelschatz, “Silent-discharge driven excimer UV sources and their applications,” Appl. Surf. Sci. 54, 410 (1992).
    [CrossRef]
  36. I. W. Boyd, “Dielectric photoformation of Si and SiGe,” in Advances in Rapid Thermal and Integrated Processes (Kluwer Publ., Dordrecht, 1996), pp. 235–264.
  37. V. Cracium, I. W. Boyd, B. Hutton, and D. Williams, “Characteristics of dielectric layers grown on Ge by low-temperature vacuum-ultraviolet-assisted oxidation,” Appl. Phys. Lett. 75, 1261 (1999).
    [CrossRef]
  38. S. Periyasamy, Gupta Deepti, and M. L. Gulrajani, “Nanoscale surface roughening of mulberry silk by monochromatic VUV excimer lamp,” J. Appl. Polymer Sci. 103, 4102 (2007).
    [CrossRef]
  39. H. Esrom and U. Kogelschatz, “Modification of surfaces with new excimer UV sources,” Thin Solid Films 218, 231 (1992).
    [CrossRef]
  40. F. Kessler, H.-D. Mohring, and G. H. Bauer, “VUV excimer light source for deposition of amorphous semiconductors,” Mater. Res. Soc. Symp. Proc. 192, 559 (1990).
    [CrossRef]
  41. J. Y. Zhang, L. J. Bie, and I. W. Boyd, “Thin tantalum oxide films prepared by 172-nm excimer lamp irradiation using sol–gel method,” Thin Solid Films 318, 252 (1998).
    [CrossRef]
  42. N. Kaliwoh, J. Y. Zhang, and I. W. Boyd, “Titanium dioxide films prepared by photoinduced sol–gel processing using 172-nm excimer lamps,” Surf. Coat. Technol. 125, 424 (2000).
    [CrossRef]
  43. S. L. Miller, “Production of some organic compounds under the possible primitive earth condition,” J. Am. Chem. Soc. 77, 2351 (1955).
    [CrossRef]
  44. M. Terasaki, S. Nomoto, H. Mita, and A. Shimoyama, “A new pathway to aspartic acid from maleic acid affected by ultraviolet light,” Origins Life Evol. Biosphere 32, 91 (2002).
    [CrossRef]
  45. E. Pelizzetti, P. Calza, V. Mariella, V. Maurino, C. Minero, and H. Hidaka, “Different photocatalytic fate of amido nitrogen in formamide and urea,” J. Chem. Soc. Chem. Comm. 13, 1504 (2004).
  46. P. M. Shaber, J. Colson, S. Higgins, E. Dietz, D. Thieilen, and J. Brauer, “Study of the urea thermal-decomposition (pyrolysis) reaction and importance to cyanuric acid production,” Amer. Lab. No. 9, 13 (1999).
  47. R. Navarro-Gonzalez, A. Negron-Mendoza, and E. Chacon, “The ?-irradiation of aqueous solutions of urea,” Origins Life Evol. Biosphere 19, 109 (1989).
    [CrossRef]
  48. E. A. Sosnin, A. Gross, N. Bartnik, T. Oppenländer, and N. Yu. Vasil’eva, “Study of the photodegradation of carbamide in flow-through photoreactors based on UV and VUV excilamps,” in Fundamental Problems of new Technologies in the Third Millenium: Materials of the Third All-Russia Conference of Young Scientists, Tomsk (Izd. Inst. Optiki Atmosf. SO RAN, 2006), pp. 169–172.

2011 (1)

P. S. Pa, “Optical assistance in thin-film microelectro-removal for touch-panel displays,” J. Electroanal. Chem. 651, 38 (2011).
[CrossRef]

2009 (1)

M. Wasamoto, M. Katto, M. Kaku, S. Kubodera, and A. Yokotani, “Mass spectrometric study of photo dissociation of organic molecules by vacuum-ultraviolet irradiation for development of analysis technique,” Appl. Surf. Sci. 255, 9861 (2009).
[CrossRef]

2007 (2)

A. Sheremet, E. Averyaskina, E. Chekmeneva, and S. Ermakov, “Standardless electrochemical method for mercury, cadmium, lead and copper determination in aqueous solution,” Electroanalysis 19, 2222 (2007).
[CrossRef]

S. Periyasamy, Gupta Deepti, and M. L. Gulrajani, “Nanoscale surface roughening of mulberry silk by monochromatic VUV excimer lamp,” J. Appl. Polymer Sci. 103, 4102 (2007).
[CrossRef]

2006 (1)

E. A. Sosnin, M. V. Erofeev, and V. F. Tarasenko, “Photomineralization of methanol in a Xe2 photoreactor (??172 nm) with aeration of the solution,” Izv. Vyssh. Uchebn. Zaved. Fiz. No. 10, 95 (2006).

2005 (5)

M. Murahara, N. Sato, T. Funatsu, and Y. Okamoto, “Water-resistant hard coating on optical material by photooxidation of silicone oil,” Proc. SPIE 5991, 599118 (2005).
[CrossRef]

E. A. Sosnin, É. A. Zakharova, and V. N. Batalova, “Using excilamps in analytical chemistry (Review),” Zavodskaya Laboratoriya 71, No. 8, 18 (2005).

T. Oppenländer, C. Walddörfer, J. Burgbacher, M. Kiermeier, K. Lachner, and H. Weinschrott, “Improved vacuum-UV (VUV) photomineralization of organic compounds in water photoreactor (Xe2* lamp, 172 nm) containing an axially centred ceramic oxygenator,” Chemosphere 60, 302 (2005).
[CrossRef] [PubMed]

Y. Sato, N. Sato, K. Shimizu, M. Sasou, J.-M. Parel, and M. Murahara, “Photochemical surface-modification method for fibrin-free intraocular lens,” Proc. SPIE 5688, 260 (2005).
[CrossRef]

J. Heitz, M. Olbrich, S. Moritz, C. Romamin, V. Svorcik, and D. Bäuerle, “Surface modification of polymers by UV irradiation: applications in micro- and biotechnology,” Proc. SPIE 5958, 5958U1 (2005).

2004 (4)

E. Pelizzetti, P. Calza, V. Mariella, V. Maurino, C. Minero, and H. Hidaka, “Different photocatalytic fate of amido nitrogen in formamide and urea,” J. Chem. Soc. Chem. Comm. 13, 1504 (2004).

F. Mühlberger, J. Wieser, A. Ulrich, and R. Zimmermann, “Single-photon ionization mass spectrometry with a novel electron-pumped excimer lamp for detection of trace compounds from thermal processes,” Organohalogen Compd. 66, 795 (2004).

Yu. V. Medvedev, V. G. Ivanov, N. I. Sereda, Yu. I. Polygalov, V. I. Erofeev, S. D. Korovin, M. V. Erofeev, E. A. Sosnin, A. I. Suslov, V. F. Tarasenko, and V. A. Istomin, “The action of high-power UV radiation on a flow of natural gas in a flow-through reactor,” Nauka Tekh. Gaz. Promysh. No. 3, 83 (2004).

M. G. Gonzalez, E. Oliveros, M. Wörner, and A. M. Braun, “Vacuum-ultraviolet photolysis of aqueous reaction systems,” J. Photochem. Photobiol. C: Photochem. Rev. 5, 225 (2004).
[CrossRef]

2003 (2)

M. Murahara, Y. Ogawa, K. Yoshida, and Y. Okamato, “Photochemical laminating of low refractive index transparent antireflective SiO2 film,” Proc. SPIE 4932, 48 (2003).
[CrossRef]

K. Asano and M. Murahara, “Photochemical bonding of fluorocarbon and fused silica glass for ultraviolet ray transmitting,” MRS Proc. 796, V3.7 (2003).
[CrossRef]

2002 (2)

M. Terasaki, S. Nomoto, H. Mita, and A. Shimoyama, “A new pathway to aspartic acid from maleic acid affected by ultraviolet light,” Origins Life Evol. Biosphere 32, 91 (2002).
[CrossRef]

J. Y. Zhang and I. W. Boyd, “Rapid photo-oxidation of silicon at room temperature using 126-nm vacuum ultraviolet radiation,” Appl. Surf. Sci. 186, 64 (2002).
[CrossRef]

2000 (1)

N. Kaliwoh, J. Y. Zhang, and I. W. Boyd, “Titanium dioxide films prepared by photoinduced sol–gel processing using 172-nm excimer lamps,” Surf. Coat. Technol. 125, 424 (2000).
[CrossRef]

1999 (3)

P. M. Shaber, J. Colson, S. Higgins, E. Dietz, D. Thieilen, and J. Brauer, “Study of the urea thermal-decomposition (pyrolysis) reaction and importance to cyanuric acid production,” Amer. Lab. No. 9, 13 (1999).

V. Cracium, I. W. Boyd, B. Hutton, and D. Williams, “Characteristics of dielectric layers grown on Ge by low-temperature vacuum-ultraviolet-assisted oxidation,” Appl. Phys. Lett. 75, 1261 (1999).
[CrossRef]

T. Oppenländer and M. Fradl, “TOC destruction of a phenol/water azeotrope by ‘Photoreactive distillation’ through an incoherent vacuum-UV excimer lamp,” Chem. Eng. Technol. 22, 951 (1999).
[CrossRef]

1998 (1)

J. Y. Zhang, L. J. Bie, and I. W. Boyd, “Thin tantalum oxide films prepared by 172-nm excimer lamp irradiation using sol–gel method,” Thin Solid Films 318, 252 (1998).
[CrossRef]

1997 (1)

J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, “Vacuum ultraviolet rare gas excimer light source,” Rev. Sci. Instrum. 68, 1360 (1997).
[CrossRef]

1996 (2)

M. V. Griechetschkina, N. K. Zaitsev, and A. M. Braun, “VUV-photolysis oxidative degradation of organics inhibiting the inverse-voltammetric determination of heavy metals. 1. Humic substances,” Toxicol. Environ. Chem. 53, 143 (1996).
[CrossRef]

T. Oppenländer and G. Baum, “Wasseraufbereitung mit Vakuum-UV/UV-Excimer-Durchflussphotoreaktoren,” Wasser-Abwasser 137, 321 (1996).

1995 (1)

G. Baum and T. Oppenländer, “VUV-oxidation of chloroorganic compounds in an excimer flow through photoreactor,” Chemosphere 30, 1781 (1995).
[CrossRef]

1994 (1)

T. Oppenländer, “Novel incoherent excimer UV irradiation units for the application in photochemistry, photobiology, photomedicine and for waste water treatment,” Eur. Photochem. Assoc. Newsl. 50, 2 (1994).

1993 (1)

A. M. Bo?chenko, V. F. Tarasenko, E. A. Fomin, and S. I. Yakovlenko, “Broad-band continua in inert gases and their mixtures with halides,” Kvant. Elektron. (Moscow) 20, No. 1, 7 (1993). [Quantum Electron. 23, 3 (1993)].

1992 (4)

G. N. Gerasimov, B. E. Krylov, A. V. Loginov, and S. A. Shchukin, “Ultraviolet radiation of excited molecules of inert gases,” Usp. Fiz. Nauk 162, No. 5, 123 (1992). [Phys. Usp. 35, 400 (1992)].
[CrossRef]

H. Esrom and U. Kogelschatz, “Modification of surfaces with new excimer UV sources,” Thin Solid Films 218, 231 (1992).
[CrossRef]

H. Esrom and U. Kogelschatz, “Modification of surfaces with new excimer UV sources,” Thin Solid Films 218, 231 (1992).
[CrossRef]

U. Kogelschatz, “Silent-discharge driven excimer UV sources and their applications,” Appl. Surf. Sci. 54, 410 (1992).
[CrossRef]

1990 (1)

F. Kessler, H.-D. Mohring, and G. H. Bauer, “VUV excimer light source for deposition of amorphous semiconductors,” Mater. Res. Soc. Symp. Proc. 192, 559 (1990).
[CrossRef]

1989 (1)

R. Navarro-Gonzalez, A. Negron-Mendoza, and E. Chacon, “The ?-irradiation of aqueous solutions of urea,” Origins Life Evol. Biosphere 19, 109 (1989).
[CrossRef]

1983 (1)

B. M. Smirnov, “Excimeric molecules,” Usp. Fiz. Nauk 139, No. 1, 53 (1983). [Phys. Usp. 26, 31 (1983)].
[CrossRef]

1955 (1)

S. L. Miller, “Production of some organic compounds under the possible primitive earth condition,” J. Am. Chem. Soc. 77, 2351 (1955).
[CrossRef]

Asano, K.

K. Asano and M. Murahara, “Photochemical bonding of fluorocarbon and fused silica glass for ultraviolet ray transmitting,” MRS Proc. 796, V3.7 (2003).
[CrossRef]

Averyaskina, E.

A. Sheremet, E. Averyaskina, E. Chekmeneva, and S. Ermakov, “Standardless electrochemical method for mercury, cadmium, lead and copper determination in aqueous solution,” Electroanalysis 19, 2222 (2007).
[CrossRef]

Bartnik, N.

E. A. Sosnin, A. Gross, N. Bartnik, T. Oppenländer, and N. Yu. Vasil’eva, “Study of the photodegradation of carbamide in flow-through photoreactors based on UV and VUV excilamps,” in Fundamental Problems of new Technologies in the Third Millenium: Materials of the Third All-Russia Conference of Young Scientists, Tomsk (Izd. Inst. Optiki Atmosf. SO RAN, 2006), pp. 169–172.

Batalova, V. N.

E. A. Sosnin, É. A. Zakharova, and V. N. Batalova, “Using excilamps in analytical chemistry (Review),” Zavodskaya Laboratoriya 71, No. 8, 18 (2005).

Bauer, G. H.

F. Kessler, H.-D. Mohring, and G. H. Bauer, “VUV excimer light source for deposition of amorphous semiconductors,” Mater. Res. Soc. Symp. Proc. 192, 559 (1990).
[CrossRef]

Bäuerle, D.

J. Heitz, M. Olbrich, S. Moritz, C. Romamin, V. Svorcik, and D. Bäuerle, “Surface modification of polymers by UV irradiation: applications in micro- and biotechnology,” Proc. SPIE 5958, 5958U1 (2005).

Baum, G.

T. Oppenländer and G. Baum, “Wasseraufbereitung mit Vakuum-UV/UV-Excimer-Durchflussphotoreaktoren,” Wasser-Abwasser 137, 321 (1996).

G. Baum and T. Oppenländer, “VUV-oxidation of chloroorganic compounds in an excimer flow through photoreactor,” Chemosphere 30, 1781 (1995).
[CrossRef]

Bezrogova, E. V.

A. A. Nemodruk and E. V. Bezrogova, Photochemical Reactions in Inorganic Chemistry (Khimiya, Moscow, 1972).

Bie, L. J.

J. Y. Zhang, L. J. Bie, and I. W. Boyd, “Thin tantalum oxide films prepared by 172-nm excimer lamp irradiation using sol–gel method,” Thin Solid Films 318, 252 (1998).
[CrossRef]

Boichenko, A. M.

A. M. Bo?chenko, V. F. Tarasenko, E. A. Fomin, and S. I. Yakovlenko, “Broad-band continua in inert gases and their mixtures with halides,” Kvant. Elektron. (Moscow) 20, No. 1, 7 (1993). [Quantum Electron. 23, 3 (1993)].

A. M. Bo?chenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, Ultraviolet and Vacuum Ultraviolet Excilamps: Physics, Engineering, and Applications (STT, Tomsk, 2001).

Boyd, I. W.

J. Y. Zhang and I. W. Boyd, “Rapid photo-oxidation of silicon at room temperature using 126-nm vacuum ultraviolet radiation,” Appl. Surf. Sci. 186, 64 (2002).
[CrossRef]

N. Kaliwoh, J. Y. Zhang, and I. W. Boyd, “Titanium dioxide films prepared by photoinduced sol–gel processing using 172-nm excimer lamps,” Surf. Coat. Technol. 125, 424 (2000).
[CrossRef]

V. Cracium, I. W. Boyd, B. Hutton, and D. Williams, “Characteristics of dielectric layers grown on Ge by low-temperature vacuum-ultraviolet-assisted oxidation,” Appl. Phys. Lett. 75, 1261 (1999).
[CrossRef]

J. Y. Zhang, L. J. Bie, and I. W. Boyd, “Thin tantalum oxide films prepared by 172-nm excimer lamp irradiation using sol–gel method,” Thin Solid Films 318, 252 (1998).
[CrossRef]

I. W. Boyd, “Dielectric photoformation of Si and SiGe,” in Advances in Rapid Thermal and Integrated Processes (Kluwer Publ., Dordrecht, 1996), pp. 235–264.

Brauer, J.

P. M. Shaber, J. Colson, S. Higgins, E. Dietz, D. Thieilen, and J. Brauer, “Study of the urea thermal-decomposition (pyrolysis) reaction and importance to cyanuric acid production,” Amer. Lab. No. 9, 13 (1999).

Braun, A. M.

M. G. Gonzalez, E. Oliveros, M. Wörner, and A. M. Braun, “Vacuum-ultraviolet photolysis of aqueous reaction systems,” J. Photochem. Photobiol. C: Photochem. Rev. 5, 225 (2004).
[CrossRef]

M. V. Griechetschkina, N. K. Zaitsev, and A. M. Braun, “VUV-photolysis oxidative degradation of organics inhibiting the inverse-voltammetric determination of heavy metals. 1. Humic substances,” Toxicol. Environ. Chem. 53, 143 (1996).
[CrossRef]

Brown, W. L.

J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, “Vacuum ultraviolet rare gas excimer light source,” Rev. Sci. Instrum. 68, 1360 (1997).
[CrossRef]

Burgbacher, J.

T. Oppenländer, C. Walddörfer, J. Burgbacher, M. Kiermeier, K. Lachner, and H. Weinschrott, “Improved vacuum-UV (VUV) photomineralization of organic compounds in water photoreactor (Xe2* lamp, 172 nm) containing an axially centred ceramic oxygenator,” Chemosphere 60, 302 (2005).
[CrossRef] [PubMed]

Calza, P.

E. Pelizzetti, P. Calza, V. Mariella, V. Maurino, C. Minero, and H. Hidaka, “Different photocatalytic fate of amido nitrogen in formamide and urea,” J. Chem. Soc. Chem. Comm. 13, 1504 (2004).

Chacon, E.

R. Navarro-Gonzalez, A. Negron-Mendoza, and E. Chacon, “The ?-irradiation of aqueous solutions of urea,” Origins Life Evol. Biosphere 19, 109 (1989).
[CrossRef]

Chekmeneva, E.

A. Sheremet, E. Averyaskina, E. Chekmeneva, and S. Ermakov, “Standardless electrochemical method for mercury, cadmium, lead and copper determination in aqueous solution,” Electroanalysis 19, 2222 (2007).
[CrossRef]

Colson, J.

P. M. Shaber, J. Colson, S. Higgins, E. Dietz, D. Thieilen, and J. Brauer, “Study of the urea thermal-decomposition (pyrolysis) reaction and importance to cyanuric acid production,” Amer. Lab. No. 9, 13 (1999).

Cracium, V.

V. Cracium, I. W. Boyd, B. Hutton, and D. Williams, “Characteristics of dielectric layers grown on Ge by low-temperature vacuum-ultraviolet-assisted oxidation,” Appl. Phys. Lett. 75, 1261 (1999).
[CrossRef]

Deepti, Gupta

S. Periyasamy, Gupta Deepti, and M. L. Gulrajani, “Nanoscale surface roughening of mulberry silk by monochromatic VUV excimer lamp,” J. Appl. Polymer Sci. 103, 4102 (2007).
[CrossRef]

Dietz, E.

P. M. Shaber, J. Colson, S. Higgins, E. Dietz, D. Thieilen, and J. Brauer, “Study of the urea thermal-decomposition (pyrolysis) reaction and importance to cyanuric acid production,” Amer. Lab. No. 9, 13 (1999).

Ermakov, S.

A. Sheremet, E. Averyaskina, E. Chekmeneva, and S. Ermakov, “Standardless electrochemical method for mercury, cadmium, lead and copper determination in aqueous solution,” Electroanalysis 19, 2222 (2007).
[CrossRef]

Erofeev, M. V.

E. A. Sosnin, M. V. Erofeev, and V. F. Tarasenko, “Photomineralization of methanol in a Xe2 photoreactor (??172 nm) with aeration of the solution,” Izv. Vyssh. Uchebn. Zaved. Fiz. No. 10, 95 (2006).

Yu. V. Medvedev, V. G. Ivanov, N. I. Sereda, Yu. I. Polygalov, V. I. Erofeev, S. D. Korovin, M. V. Erofeev, E. A. Sosnin, A. I. Suslov, V. F. Tarasenko, and V. A. Istomin, “The action of high-power UV radiation on a flow of natural gas in a flow-through reactor,” Nauka Tekh. Gaz. Promysh. No. 3, 83 (2004).

E. A. Sosnin and M. V. Erofeev, “Drying of natural gas and photolysis of methanol in flow-through photoreactors based on Xe2 and KrCl excilamps,” in Materials of the Third School Seminar of Young Scientists of Russia (June 8–12, 2004) (Izd. BNTs SO RAN, Ulan-Udé, 2004), pp. 247–248.

Erofeev, V. I.

Yu. V. Medvedev, V. G. Ivanov, N. I. Sereda, Yu. I. Polygalov, V. I. Erofeev, S. D. Korovin, M. V. Erofeev, E. A. Sosnin, A. I. Suslov, V. F. Tarasenko, and V. A. Istomin, “The action of high-power UV radiation on a flow of natural gas in a flow-through reactor,” Nauka Tekh. Gaz. Promysh. No. 3, 83 (2004).

Esrom, H.

H. Esrom and U. Kogelschatz, “Modification of surfaces with new excimer UV sources,” Thin Solid Films 218, 231 (1992).
[CrossRef]

H. Esrom and U. Kogelschatz, “Modification of surfaces with new excimer UV sources,” Thin Solid Films 218, 231 (1992).
[CrossRef]

Fomin, E. A.

A. M. Bo?chenko, V. F. Tarasenko, E. A. Fomin, and S. I. Yakovlenko, “Broad-band continua in inert gases and their mixtures with halides,” Kvant. Elektron. (Moscow) 20, No. 1, 7 (1993). [Quantum Electron. 23, 3 (1993)].

Fradl, M.

T. Oppenländer and M. Fradl, “TOC destruction of a phenol/water azeotrope by ‘Photoreactive distillation’ through an incoherent vacuum-UV excimer lamp,” Chem. Eng. Technol. 22, 951 (1999).
[CrossRef]

Funatsu, T.

M. Murahara, N. Sato, T. Funatsu, and Y. Okamoto, “Water-resistant hard coating on optical material by photooxidation of silicone oil,” Proc. SPIE 5991, 599118 (2005).
[CrossRef]

Gerasimov, G. N.

G. N. Gerasimov, B. E. Krylov, A. V. Loginov, and S. A. Shchukin, “Ultraviolet radiation of excited molecules of inert gases,” Usp. Fiz. Nauk 162, No. 5, 123 (1992). [Phys. Usp. 35, 400 (1992)].
[CrossRef]

Gonzalez, M. G.

M. G. Gonzalez, E. Oliveros, M. Wörner, and A. M. Braun, “Vacuum-ultraviolet photolysis of aqueous reaction systems,” J. Photochem. Photobiol. C: Photochem. Rev. 5, 225 (2004).
[CrossRef]

Griechetschkina, M. V.

M. V. Griechetschkina, N. K. Zaitsev, and A. M. Braun, “VUV-photolysis oxidative degradation of organics inhibiting the inverse-voltammetric determination of heavy metals. 1. Humic substances,” Toxicol. Environ. Chem. 53, 143 (1996).
[CrossRef]

Gross, A.

E. A. Sosnin, A. Gross, N. Bartnik, T. Oppenländer, and N. Yu. Vasil’eva, “Study of the photodegradation of carbamide in flow-through photoreactors based on UV and VUV excilamps,” in Fundamental Problems of new Technologies in the Third Millenium: Materials of the Third All-Russia Conference of Young Scientists, Tomsk (Izd. Inst. Optiki Atmosf. SO RAN, 2006), pp. 169–172.

Gulrajani, M. L.

S. Periyasamy, Gupta Deepti, and M. L. Gulrajani, “Nanoscale surface roughening of mulberry silk by monochromatic VUV excimer lamp,” J. Appl. Polymer Sci. 103, 4102 (2007).
[CrossRef]

Heitz, J.

J. Heitz, M. Olbrich, S. Moritz, C. Romamin, V. Svorcik, and D. Bäuerle, “Surface modification of polymers by UV irradiation: applications in micro- and biotechnology,” Proc. SPIE 5958, 5958U1 (2005).

Hidaka, H.

E. Pelizzetti, P. Calza, V. Mariella, V. Maurino, C. Minero, and H. Hidaka, “Different photocatalytic fate of amido nitrogen in formamide and urea,” J. Chem. Soc. Chem. Comm. 13, 1504 (2004).

Higgins, S.

P. M. Shaber, J. Colson, S. Higgins, E. Dietz, D. Thieilen, and J. Brauer, “Study of the urea thermal-decomposition (pyrolysis) reaction and importance to cyanuric acid production,” Amer. Lab. No. 9, 13 (1999).

Huggins, H. A.

J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, “Vacuum ultraviolet rare gas excimer light source,” Rev. Sci. Instrum. 68, 1360 (1997).
[CrossRef]

Hutton, B.

V. Cracium, I. W. Boyd, B. Hutton, and D. Williams, “Characteristics of dielectric layers grown on Ge by low-temperature vacuum-ultraviolet-assisted oxidation,” Appl. Phys. Lett. 75, 1261 (1999).
[CrossRef]

Istomin, V. A.

Yu. V. Medvedev, V. G. Ivanov, N. I. Sereda, Yu. I. Polygalov, V. I. Erofeev, S. D. Korovin, M. V. Erofeev, E. A. Sosnin, A. I. Suslov, V. F. Tarasenko, and V. A. Istomin, “The action of high-power UV radiation on a flow of natural gas in a flow-through reactor,” Nauka Tekh. Gaz. Promysh. No. 3, 83 (2004).

Ivanov, V. G.

Yu. V. Medvedev, V. G. Ivanov, N. I. Sereda, Yu. I. Polygalov, V. I. Erofeev, S. D. Korovin, M. V. Erofeev, E. A. Sosnin, A. I. Suslov, V. F. Tarasenko, and V. A. Istomin, “The action of high-power UV radiation on a flow of natural gas in a flow-through reactor,” Nauka Tekh. Gaz. Promysh. No. 3, 83 (2004).

Kaku, M.

M. Wasamoto, M. Katto, M. Kaku, S. Kubodera, and A. Yokotani, “Mass spectrometric study of photo dissociation of organic molecules by vacuum-ultraviolet irradiation for development of analysis technique,” Appl. Surf. Sci. 255, 9861 (2009).
[CrossRef]

Kaliwoh, N.

N. Kaliwoh, J. Y. Zhang, and I. W. Boyd, “Titanium dioxide films prepared by photoinduced sol–gel processing using 172-nm excimer lamps,” Surf. Coat. Technol. 125, 424 (2000).
[CrossRef]

Katto, M.

M. Wasamoto, M. Katto, M. Kaku, S. Kubodera, and A. Yokotani, “Mass spectrometric study of photo dissociation of organic molecules by vacuum-ultraviolet irradiation for development of analysis technique,” Appl. Surf. Sci. 255, 9861 (2009).
[CrossRef]

Kessler, F.

F. Kessler, H.-D. Mohring, and G. H. Bauer, “VUV excimer light source for deposition of amorphous semiconductors,” Mater. Res. Soc. Symp. Proc. 192, 559 (1990).
[CrossRef]

Kiermeier, M.

T. Oppenländer, C. Walddörfer, J. Burgbacher, M. Kiermeier, K. Lachner, and H. Weinschrott, “Improved vacuum-UV (VUV) photomineralization of organic compounds in water photoreactor (Xe2* lamp, 172 nm) containing an axially centred ceramic oxygenator,” Chemosphere 60, 302 (2005).
[CrossRef] [PubMed]

Kogelschatz, U.

H. Esrom and U. Kogelschatz, “Modification of surfaces with new excimer UV sources,” Thin Solid Films 218, 231 (1992).
[CrossRef]

H. Esrom and U. Kogelschatz, “Modification of surfaces with new excimer UV sources,” Thin Solid Films 218, 231 (1992).
[CrossRef]

U. Kogelschatz, “Silent-discharge driven excimer UV sources and their applications,” Appl. Surf. Sci. 54, 410 (1992).
[CrossRef]

Korovin, S. D.

Yu. V. Medvedev, V. G. Ivanov, N. I. Sereda, Yu. I. Polygalov, V. I. Erofeev, S. D. Korovin, M. V. Erofeev, E. A. Sosnin, A. I. Suslov, V. F. Tarasenko, and V. A. Istomin, “The action of high-power UV radiation on a flow of natural gas in a flow-through reactor,” Nauka Tekh. Gaz. Promysh. No. 3, 83 (2004).

Krylov, B. E.

G. N. Gerasimov, B. E. Krylov, A. V. Loginov, and S. A. Shchukin, “Ultraviolet radiation of excited molecules of inert gases,” Usp. Fiz. Nauk 162, No. 5, 123 (1992). [Phys. Usp. 35, 400 (1992)].
[CrossRef]

Kubodera, S.

M. Wasamoto, M. Katto, M. Kaku, S. Kubodera, and A. Yokotani, “Mass spectrometric study of photo dissociation of organic molecules by vacuum-ultraviolet irradiation for development of analysis technique,” Appl. Surf. Sci. 255, 9861 (2009).
[CrossRef]

Lachner, K.

T. Oppenländer, C. Walddörfer, J. Burgbacher, M. Kiermeier, K. Lachner, and H. Weinschrott, “Improved vacuum-UV (VUV) photomineralization of organic compounds in water photoreactor (Xe2* lamp, 172 nm) containing an axially centred ceramic oxygenator,” Chemosphere 60, 302 (2005).
[CrossRef] [PubMed]

Liddle, A.

J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, “Vacuum ultraviolet rare gas excimer light source,” Rev. Sci. Instrum. 68, 1360 (1997).
[CrossRef]

Loginov, A. V.

G. N. Gerasimov, B. E. Krylov, A. V. Loginov, and S. A. Shchukin, “Ultraviolet radiation of excited molecules of inert gases,” Usp. Fiz. Nauk 162, No. 5, 123 (1992). [Phys. Usp. 35, 400 (1992)].
[CrossRef]

Lomaev, M. I.

A. M. Bo?chenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, Ultraviolet and Vacuum Ultraviolet Excilamps: Physics, Engineering, and Applications (STT, Tomsk, 2001).

Mariella, V.

E. Pelizzetti, P. Calza, V. Mariella, V. Maurino, C. Minero, and H. Hidaka, “Different photocatalytic fate of amido nitrogen in formamide and urea,” J. Chem. Soc. Chem. Comm. 13, 1504 (2004).

Maurino, V.

E. Pelizzetti, P. Calza, V. Mariella, V. Maurino, C. Minero, and H. Hidaka, “Different photocatalytic fate of amido nitrogen in formamide and urea,” J. Chem. Soc. Chem. Comm. 13, 1504 (2004).

McKasker, M.

M. McKasker, “Eximers of inert gases,” in Excimer Lasers, C. K. Rhodes, ed. (Springer-Verlag, New York, 1979; Mir, Moscow, 1981), pp. 70–117.

Medvedev, Yu. V.

Yu. V. Medvedev, V. G. Ivanov, N. I. Sereda, Yu. I. Polygalov, V. I. Erofeev, S. D. Korovin, M. V. Erofeev, E. A. Sosnin, A. I. Suslov, V. F. Tarasenko, and V. A. Istomin, “The action of high-power UV radiation on a flow of natural gas in a flow-through reactor,” Nauka Tekh. Gaz. Promysh. No. 3, 83 (2004).

Miller, S. L.

S. L. Miller, “Production of some organic compounds under the possible primitive earth condition,” J. Am. Chem. Soc. 77, 2351 (1955).
[CrossRef]

Minero, C.

E. Pelizzetti, P. Calza, V. Mariella, V. Maurino, C. Minero, and H. Hidaka, “Different photocatalytic fate of amido nitrogen in formamide and urea,” J. Chem. Soc. Chem. Comm. 13, 1504 (2004).

Mita, H.

M. Terasaki, S. Nomoto, H. Mita, and A. Shimoyama, “A new pathway to aspartic acid from maleic acid affected by ultraviolet light,” Origins Life Evol. Biosphere 32, 91 (2002).
[CrossRef]

Mohring, H.-D.

F. Kessler, H.-D. Mohring, and G. H. Bauer, “VUV excimer light source for deposition of amorphous semiconductors,” Mater. Res. Soc. Symp. Proc. 192, 559 (1990).
[CrossRef]

Moritz, S.

J. Heitz, M. Olbrich, S. Moritz, C. Romamin, V. Svorcik, and D. Bäuerle, “Surface modification of polymers by UV irradiation: applications in micro- and biotechnology,” Proc. SPIE 5958, 5958U1 (2005).

Mühlberger, F.

F. Mühlberger, J. Wieser, A. Ulrich, and R. Zimmermann, “Single-photon ionization mass spectrometry with a novel electron-pumped excimer lamp for detection of trace compounds from thermal processes,” Organohalogen Compd. 66, 795 (2004).

Murahara, M.

M. Murahara, N. Sato, T. Funatsu, and Y. Okamoto, “Water-resistant hard coating on optical material by photooxidation of silicone oil,” Proc. SPIE 5991, 599118 (2005).
[CrossRef]

Y. Sato, N. Sato, K. Shimizu, M. Sasou, J.-M. Parel, and M. Murahara, “Photochemical surface-modification method for fibrin-free intraocular lens,” Proc. SPIE 5688, 260 (2005).
[CrossRef]

K. Asano and M. Murahara, “Photochemical bonding of fluorocarbon and fused silica glass for ultraviolet ray transmitting,” MRS Proc. 796, V3.7 (2003).
[CrossRef]

M. Murahara, Y. Ogawa, K. Yoshida, and Y. Okamato, “Photochemical laminating of low refractive index transparent antireflective SiO2 film,” Proc. SPIE 4932, 48 (2003).
[CrossRef]

Murnick, D. E.

J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, “Vacuum ultraviolet rare gas excimer light source,” Rev. Sci. Instrum. 68, 1360 (1997).
[CrossRef]

Navarro-Gonzalez, R.

R. Navarro-Gonzalez, A. Negron-Mendoza, and E. Chacon, “The ?-irradiation of aqueous solutions of urea,” Origins Life Evol. Biosphere 19, 109 (1989).
[CrossRef]

Negron-Mendoza, A.

R. Navarro-Gonzalez, A. Negron-Mendoza, and E. Chacon, “The ?-irradiation of aqueous solutions of urea,” Origins Life Evol. Biosphere 19, 109 (1989).
[CrossRef]

Nemodruk, A. A.

A. A. Nemodruk and E. V. Bezrogova, Photochemical Reactions in Inorganic Chemistry (Khimiya, Moscow, 1972).

Nomoto, S.

M. Terasaki, S. Nomoto, H. Mita, and A. Shimoyama, “A new pathway to aspartic acid from maleic acid affected by ultraviolet light,” Origins Life Evol. Biosphere 32, 91 (2002).
[CrossRef]

Ogawa, Y.

M. Murahara, Y. Ogawa, K. Yoshida, and Y. Okamato, “Photochemical laminating of low refractive index transparent antireflective SiO2 film,” Proc. SPIE 4932, 48 (2003).
[CrossRef]

Okamato, Y.

M. Murahara, Y. Ogawa, K. Yoshida, and Y. Okamato, “Photochemical laminating of low refractive index transparent antireflective SiO2 film,” Proc. SPIE 4932, 48 (2003).
[CrossRef]

Okamoto, Y.

M. Murahara, N. Sato, T. Funatsu, and Y. Okamoto, “Water-resistant hard coating on optical material by photooxidation of silicone oil,” Proc. SPIE 5991, 599118 (2005).
[CrossRef]

Olbrich, M.

J. Heitz, M. Olbrich, S. Moritz, C. Romamin, V. Svorcik, and D. Bäuerle, “Surface modification of polymers by UV irradiation: applications in micro- and biotechnology,” Proc. SPIE 5958, 5958U1 (2005).

Oliveros, E.

M. G. Gonzalez, E. Oliveros, M. Wörner, and A. M. Braun, “Vacuum-ultraviolet photolysis of aqueous reaction systems,” J. Photochem. Photobiol. C: Photochem. Rev. 5, 225 (2004).
[CrossRef]

Oppenlaender, T.

K. Waizenegger and T. Oppenlaender, “Verfahren zur Mediumaufbereitung mit einem Excimer-Strahler und Excimer-Strahler zur Durchfuhrung eines solchen Verfahrens,” Offenlegungsschrift DE 195 07 189. Anmeldtag: 02.03.1995. Offenlegunstag: 12.09.1996.

Oppenländer, T.

T. Oppenländer, C. Walddörfer, J. Burgbacher, M. Kiermeier, K. Lachner, and H. Weinschrott, “Improved vacuum-UV (VUV) photomineralization of organic compounds in water photoreactor (Xe2* lamp, 172 nm) containing an axially centred ceramic oxygenator,” Chemosphere 60, 302 (2005).
[CrossRef] [PubMed]

T. Oppenländer and M. Fradl, “TOC destruction of a phenol/water azeotrope by ‘Photoreactive distillation’ through an incoherent vacuum-UV excimer lamp,” Chem. Eng. Technol. 22, 951 (1999).
[CrossRef]

T. Oppenländer and G. Baum, “Wasseraufbereitung mit Vakuum-UV/UV-Excimer-Durchflussphotoreaktoren,” Wasser-Abwasser 137, 321 (1996).

G. Baum and T. Oppenländer, “VUV-oxidation of chloroorganic compounds in an excimer flow through photoreactor,” Chemosphere 30, 1781 (1995).
[CrossRef]

T. Oppenländer, “Novel incoherent excimer UV irradiation units for the application in photochemistry, photobiology, photomedicine and for waste water treatment,” Eur. Photochem. Assoc. Newsl. 50, 2 (1994).

T. Oppenländer, Photochemical Purification of Water and Air (Wiley, Weinheim, 2003).

E. A. Sosnin, A. Gross, N. Bartnik, T. Oppenländer, and N. Yu. Vasil’eva, “Study of the photodegradation of carbamide in flow-through photoreactors based on UV and VUV excilamps,” in Fundamental Problems of new Technologies in the Third Millenium: Materials of the Third All-Russia Conference of Young Scientists, Tomsk (Izd. Inst. Optiki Atmosf. SO RAN, 2006), pp. 169–172.

Pa, P. S.

P. S. Pa, “Optical assistance in thin-film microelectro-removal for touch-panel displays,” J. Electroanal. Chem. 651, 38 (2011).
[CrossRef]

Panchenko, A. N.

A. M. Bo?chenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, Ultraviolet and Vacuum Ultraviolet Excilamps: Physics, Engineering, and Applications (STT, Tomsk, 2001).

Parel, J.-M.

Y. Sato, N. Sato, K. Shimizu, M. Sasou, J.-M. Parel, and M. Murahara, “Photochemical surface-modification method for fibrin-free intraocular lens,” Proc. SPIE 5688, 260 (2005).
[CrossRef]

Pelizzetti, E.

E. Pelizzetti, P. Calza, V. Mariella, V. Maurino, C. Minero, and H. Hidaka, “Different photocatalytic fate of amido nitrogen in formamide and urea,” J. Chem. Soc. Chem. Comm. 13, 1504 (2004).

Periyasamy, S.

S. Periyasamy, Gupta Deepti, and M. L. Gulrajani, “Nanoscale surface roughening of mulberry silk by monochromatic VUV excimer lamp,” J. Appl. Polymer Sci. 103, 4102 (2007).
[CrossRef]

Polygalov, Yu. I.

Yu. V. Medvedev, V. G. Ivanov, N. I. Sereda, Yu. I. Polygalov, V. I. Erofeev, S. D. Korovin, M. V. Erofeev, E. A. Sosnin, A. I. Suslov, V. F. Tarasenko, and V. A. Istomin, “The action of high-power UV radiation on a flow of natural gas in a flow-through reactor,” Nauka Tekh. Gaz. Promysh. No. 3, 83 (2004).

Romamin, C.

J. Heitz, M. Olbrich, S. Moritz, C. Romamin, V. Svorcik, and D. Bäuerle, “Surface modification of polymers by UV irradiation: applications in micro- and biotechnology,” Proc. SPIE 5958, 5958U1 (2005).

Sasou, M.

Y. Sato, N. Sato, K. Shimizu, M. Sasou, J.-M. Parel, and M. Murahara, “Photochemical surface-modification method for fibrin-free intraocular lens,” Proc. SPIE 5688, 260 (2005).
[CrossRef]

Sato, N.

Y. Sato, N. Sato, K. Shimizu, M. Sasou, J.-M. Parel, and M. Murahara, “Photochemical surface-modification method for fibrin-free intraocular lens,” Proc. SPIE 5688, 260 (2005).
[CrossRef]

M. Murahara, N. Sato, T. Funatsu, and Y. Okamoto, “Water-resistant hard coating on optical material by photooxidation of silicone oil,” Proc. SPIE 5991, 599118 (2005).
[CrossRef]

Sato, Y.

Y. Sato, N. Sato, K. Shimizu, M. Sasou, J.-M. Parel, and M. Murahara, “Photochemical surface-modification method for fibrin-free intraocular lens,” Proc. SPIE 5688, 260 (2005).
[CrossRef]

Sereda, N. I.

Yu. V. Medvedev, V. G. Ivanov, N. I. Sereda, Yu. I. Polygalov, V. I. Erofeev, S. D. Korovin, M. V. Erofeev, E. A. Sosnin, A. I. Suslov, V. F. Tarasenko, and V. A. Istomin, “The action of high-power UV radiation on a flow of natural gas in a flow-through reactor,” Nauka Tekh. Gaz. Promysh. No. 3, 83 (2004).

Shaber, P. M.

P. M. Shaber, J. Colson, S. Higgins, E. Dietz, D. Thieilen, and J. Brauer, “Study of the urea thermal-decomposition (pyrolysis) reaction and importance to cyanuric acid production,” Amer. Lab. No. 9, 13 (1999).

Shchukin, S. A.

G. N. Gerasimov, B. E. Krylov, A. V. Loginov, and S. A. Shchukin, “Ultraviolet radiation of excited molecules of inert gases,” Usp. Fiz. Nauk 162, No. 5, 123 (1992). [Phys. Usp. 35, 400 (1992)].
[CrossRef]

Sheremet, A.

A. Sheremet, E. Averyaskina, E. Chekmeneva, and S. Ermakov, “Standardless electrochemical method for mercury, cadmium, lead and copper determination in aqueous solution,” Electroanalysis 19, 2222 (2007).
[CrossRef]

Shimizu, K.

Y. Sato, N. Sato, K. Shimizu, M. Sasou, J.-M. Parel, and M. Murahara, “Photochemical surface-modification method for fibrin-free intraocular lens,” Proc. SPIE 5688, 260 (2005).
[CrossRef]

Shimoyama, A.

M. Terasaki, S. Nomoto, H. Mita, and A. Shimoyama, “A new pathway to aspartic acid from maleic acid affected by ultraviolet light,” Origins Life Evol. Biosphere 32, 91 (2002).
[CrossRef]

Smirnov, B. M.

B. M. Smirnov, “Excimeric molecules,” Usp. Fiz. Nauk 139, No. 1, 53 (1983). [Phys. Usp. 26, 31 (1983)].
[CrossRef]

Sosnin, E. A.

E. A. Sosnin, M. V. Erofeev, and V. F. Tarasenko, “Photomineralization of methanol in a Xe2 photoreactor (??172 nm) with aeration of the solution,” Izv. Vyssh. Uchebn. Zaved. Fiz. No. 10, 95 (2006).

E. A. Sosnin, É. A. Zakharova, and V. N. Batalova, “Using excilamps in analytical chemistry (Review),” Zavodskaya Laboratoriya 71, No. 8, 18 (2005).

Yu. V. Medvedev, V. G. Ivanov, N. I. Sereda, Yu. I. Polygalov, V. I. Erofeev, S. D. Korovin, M. V. Erofeev, E. A. Sosnin, A. I. Suslov, V. F. Tarasenko, and V. A. Istomin, “The action of high-power UV radiation on a flow of natural gas in a flow-through reactor,” Nauka Tekh. Gaz. Promysh. No. 3, 83 (2004).

E. A. Sosnin and M. V. Erofeev, “Drying of natural gas and photolysis of methanol in flow-through photoreactors based on Xe2 and KrCl excilamps,” in Materials of the Third School Seminar of Young Scientists of Russia (June 8–12, 2004) (Izd. BNTs SO RAN, Ulan-Udé, 2004), pp. 247–248.

A. M. Bo?chenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, Ultraviolet and Vacuum Ultraviolet Excilamps: Physics, Engineering, and Applications (STT, Tomsk, 2001).

E. A. Sosnin, A. Gross, N. Bartnik, T. Oppenländer, and N. Yu. Vasil’eva, “Study of the photodegradation of carbamide in flow-through photoreactors based on UV and VUV excilamps,” in Fundamental Problems of new Technologies in the Third Millenium: Materials of the Third All-Russia Conference of Young Scientists, Tomsk (Izd. Inst. Optiki Atmosf. SO RAN, 2006), pp. 169–172.

Suslov, A. I.

Yu. V. Medvedev, V. G. Ivanov, N. I. Sereda, Yu. I. Polygalov, V. I. Erofeev, S. D. Korovin, M. V. Erofeev, E. A. Sosnin, A. I. Suslov, V. F. Tarasenko, and V. A. Istomin, “The action of high-power UV radiation on a flow of natural gas in a flow-through reactor,” Nauka Tekh. Gaz. Promysh. No. 3, 83 (2004).

Svorcik, V.

J. Heitz, M. Olbrich, S. Moritz, C. Romamin, V. Svorcik, and D. Bäuerle, “Surface modification of polymers by UV irradiation: applications in micro- and biotechnology,” Proc. SPIE 5958, 5958U1 (2005).

Tarasenko, V. F.

E. A. Sosnin, M. V. Erofeev, and V. F. Tarasenko, “Photomineralization of methanol in a Xe2 photoreactor (??172 nm) with aeration of the solution,” Izv. Vyssh. Uchebn. Zaved. Fiz. No. 10, 95 (2006).

Yu. V. Medvedev, V. G. Ivanov, N. I. Sereda, Yu. I. Polygalov, V. I. Erofeev, S. D. Korovin, M. V. Erofeev, E. A. Sosnin, A. I. Suslov, V. F. Tarasenko, and V. A. Istomin, “The action of high-power UV radiation on a flow of natural gas in a flow-through reactor,” Nauka Tekh. Gaz. Promysh. No. 3, 83 (2004).

A. M. Bo?chenko, V. F. Tarasenko, E. A. Fomin, and S. I. Yakovlenko, “Broad-band continua in inert gases and their mixtures with halides,” Kvant. Elektron. (Moscow) 20, No. 1, 7 (1993). [Quantum Electron. 23, 3 (1993)].

A. M. Bo?chenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, Ultraviolet and Vacuum Ultraviolet Excilamps: Physics, Engineering, and Applications (STT, Tomsk, 2001).

Terasaki, M.

M. Terasaki, S. Nomoto, H. Mita, and A. Shimoyama, “A new pathway to aspartic acid from maleic acid affected by ultraviolet light,” Origins Life Evol. Biosphere 32, 91 (2002).
[CrossRef]

Thieilen, D.

P. M. Shaber, J. Colson, S. Higgins, E. Dietz, D. Thieilen, and J. Brauer, “Study of the urea thermal-decomposition (pyrolysis) reaction and importance to cyanuric acid production,” Amer. Lab. No. 9, 13 (1999).

Ulrich, A.

F. Mühlberger, J. Wieser, A. Ulrich, and R. Zimmermann, “Single-photon ionization mass spectrometry with a novel electron-pumped excimer lamp for detection of trace compounds from thermal processes,” Organohalogen Compd. 66, 795 (2004).

J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, “Vacuum ultraviolet rare gas excimer light source,” Rev. Sci. Instrum. 68, 1360 (1997).
[CrossRef]

Vasil’eva, N. Yu.

E. A. Sosnin, A. Gross, N. Bartnik, T. Oppenländer, and N. Yu. Vasil’eva, “Study of the photodegradation of carbamide in flow-through photoreactors based on UV and VUV excilamps,” in Fundamental Problems of new Technologies in the Third Millenium: Materials of the Third All-Russia Conference of Young Scientists, Tomsk (Izd. Inst. Optiki Atmosf. SO RAN, 2006), pp. 169–172.

Waizenegger, K.

K. Waizenegger and T. Oppenlaender, “Verfahren zur Mediumaufbereitung mit einem Excimer-Strahler und Excimer-Strahler zur Durchfuhrung eines solchen Verfahrens,” Offenlegungsschrift DE 195 07 189. Anmeldtag: 02.03.1995. Offenlegunstag: 12.09.1996.

Walddörfer, C.

T. Oppenländer, C. Walddörfer, J. Burgbacher, M. Kiermeier, K. Lachner, and H. Weinschrott, “Improved vacuum-UV (VUV) photomineralization of organic compounds in water photoreactor (Xe2* lamp, 172 nm) containing an axially centred ceramic oxygenator,” Chemosphere 60, 302 (2005).
[CrossRef] [PubMed]

Wasamoto, M.

M. Wasamoto, M. Katto, M. Kaku, S. Kubodera, and A. Yokotani, “Mass spectrometric study of photo dissociation of organic molecules by vacuum-ultraviolet irradiation for development of analysis technique,” Appl. Surf. Sci. 255, 9861 (2009).
[CrossRef]

Weinschrott, H.

T. Oppenländer, C. Walddörfer, J. Burgbacher, M. Kiermeier, K. Lachner, and H. Weinschrott, “Improved vacuum-UV (VUV) photomineralization of organic compounds in water photoreactor (Xe2* lamp, 172 nm) containing an axially centred ceramic oxygenator,” Chemosphere 60, 302 (2005).
[CrossRef] [PubMed]

Wieser, J.

F. Mühlberger, J. Wieser, A. Ulrich, and R. Zimmermann, “Single-photon ionization mass spectrometry with a novel electron-pumped excimer lamp for detection of trace compounds from thermal processes,” Organohalogen Compd. 66, 795 (2004).

J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, “Vacuum ultraviolet rare gas excimer light source,” Rev. Sci. Instrum. 68, 1360 (1997).
[CrossRef]

Williams, D.

V. Cracium, I. W. Boyd, B. Hutton, and D. Williams, “Characteristics of dielectric layers grown on Ge by low-temperature vacuum-ultraviolet-assisted oxidation,” Appl. Phys. Lett. 75, 1261 (1999).
[CrossRef]

Wörner, M.

M. G. Gonzalez, E. Oliveros, M. Wörner, and A. M. Braun, “Vacuum-ultraviolet photolysis of aqueous reaction systems,” J. Photochem. Photobiol. C: Photochem. Rev. 5, 225 (2004).
[CrossRef]

Yakovlenko, S. I.

A. M. Bo?chenko, V. F. Tarasenko, E. A. Fomin, and S. I. Yakovlenko, “Broad-band continua in inert gases and their mixtures with halides,” Kvant. Elektron. (Moscow) 20, No. 1, 7 (1993). [Quantum Electron. 23, 3 (1993)].

Yokotani, A.

M. Wasamoto, M. Katto, M. Kaku, S. Kubodera, and A. Yokotani, “Mass spectrometric study of photo dissociation of organic molecules by vacuum-ultraviolet irradiation for development of analysis technique,” Appl. Surf. Sci. 255, 9861 (2009).
[CrossRef]

Yoshida, K.

M. Murahara, Y. Ogawa, K. Yoshida, and Y. Okamato, “Photochemical laminating of low refractive index transparent antireflective SiO2 film,” Proc. SPIE 4932, 48 (2003).
[CrossRef]

Zaitsev, N. K.

M. V. Griechetschkina, N. K. Zaitsev, and A. M. Braun, “VUV-photolysis oxidative degradation of organics inhibiting the inverse-voltammetric determination of heavy metals. 1. Humic substances,” Toxicol. Environ. Chem. 53, 143 (1996).
[CrossRef]

Zakharova, É. A.

E. A. Sosnin, É. A. Zakharova, and V. N. Batalova, “Using excilamps in analytical chemistry (Review),” Zavodskaya Laboratoriya 71, No. 8, 18 (2005).

Zhang, J. Y.

J. Y. Zhang and I. W. Boyd, “Rapid photo-oxidation of silicon at room temperature using 126-nm vacuum ultraviolet radiation,” Appl. Surf. Sci. 186, 64 (2002).
[CrossRef]

N. Kaliwoh, J. Y. Zhang, and I. W. Boyd, “Titanium dioxide films prepared by photoinduced sol–gel processing using 172-nm excimer lamps,” Surf. Coat. Technol. 125, 424 (2000).
[CrossRef]

J. Y. Zhang, L. J. Bie, and I. W. Boyd, “Thin tantalum oxide films prepared by 172-nm excimer lamp irradiation using sol–gel method,” Thin Solid Films 318, 252 (1998).
[CrossRef]

Zimmermann, R.

F. Mühlberger, J. Wieser, A. Ulrich, and R. Zimmermann, “Single-photon ionization mass spectrometry with a novel electron-pumped excimer lamp for detection of trace compounds from thermal processes,” Organohalogen Compd. 66, 795 (2004).

Amer. Lab. (1)

P. M. Shaber, J. Colson, S. Higgins, E. Dietz, D. Thieilen, and J. Brauer, “Study of the urea thermal-decomposition (pyrolysis) reaction and importance to cyanuric acid production,” Amer. Lab. No. 9, 13 (1999).

Appl. Phys. Lett. (1)

V. Cracium, I. W. Boyd, B. Hutton, and D. Williams, “Characteristics of dielectric layers grown on Ge by low-temperature vacuum-ultraviolet-assisted oxidation,” Appl. Phys. Lett. 75, 1261 (1999).
[CrossRef]

Appl. Surf. Sci. (3)

J. Y. Zhang and I. W. Boyd, “Rapid photo-oxidation of silicon at room temperature using 126-nm vacuum ultraviolet radiation,” Appl. Surf. Sci. 186, 64 (2002).
[CrossRef]

U. Kogelschatz, “Silent-discharge driven excimer UV sources and their applications,” Appl. Surf. Sci. 54, 410 (1992).
[CrossRef]

M. Wasamoto, M. Katto, M. Kaku, S. Kubodera, and A. Yokotani, “Mass spectrometric study of photo dissociation of organic molecules by vacuum-ultraviolet irradiation for development of analysis technique,” Appl. Surf. Sci. 255, 9861 (2009).
[CrossRef]

Chem. Eng. Technol. (1)

T. Oppenländer and M. Fradl, “TOC destruction of a phenol/water azeotrope by ‘Photoreactive distillation’ through an incoherent vacuum-UV excimer lamp,” Chem. Eng. Technol. 22, 951 (1999).
[CrossRef]

Chemosphere (2)

T. Oppenländer, C. Walddörfer, J. Burgbacher, M. Kiermeier, K. Lachner, and H. Weinschrott, “Improved vacuum-UV (VUV) photomineralization of organic compounds in water photoreactor (Xe2* lamp, 172 nm) containing an axially centred ceramic oxygenator,” Chemosphere 60, 302 (2005).
[CrossRef] [PubMed]

G. Baum and T. Oppenländer, “VUV-oxidation of chloroorganic compounds in an excimer flow through photoreactor,” Chemosphere 30, 1781 (1995).
[CrossRef]

Electroanalysis (1)

A. Sheremet, E. Averyaskina, E. Chekmeneva, and S. Ermakov, “Standardless electrochemical method for mercury, cadmium, lead and copper determination in aqueous solution,” Electroanalysis 19, 2222 (2007).
[CrossRef]

Eur. Photochem. Assoc. Newsl. (1)

T. Oppenländer, “Novel incoherent excimer UV irradiation units for the application in photochemistry, photobiology, photomedicine and for waste water treatment,” Eur. Photochem. Assoc. Newsl. 50, 2 (1994).

Izv. Vyssh. Uchebn. Zaved. Fiz. (1)

E. A. Sosnin, M. V. Erofeev, and V. F. Tarasenko, “Photomineralization of methanol in a Xe2 photoreactor (??172 nm) with aeration of the solution,” Izv. Vyssh. Uchebn. Zaved. Fiz. No. 10, 95 (2006).

J. Am. Chem. Soc. (1)

S. L. Miller, “Production of some organic compounds under the possible primitive earth condition,” J. Am. Chem. Soc. 77, 2351 (1955).
[CrossRef]

J. Appl. Polymer Sci. (1)

S. Periyasamy, Gupta Deepti, and M. L. Gulrajani, “Nanoscale surface roughening of mulberry silk by monochromatic VUV excimer lamp,” J. Appl. Polymer Sci. 103, 4102 (2007).
[CrossRef]

J. Chem. Soc. Chem. Comm. (1)

E. Pelizzetti, P. Calza, V. Mariella, V. Maurino, C. Minero, and H. Hidaka, “Different photocatalytic fate of amido nitrogen in formamide and urea,” J. Chem. Soc. Chem. Comm. 13, 1504 (2004).

J. Electroanal. Chem. (1)

P. S. Pa, “Optical assistance in thin-film microelectro-removal for touch-panel displays,” J. Electroanal. Chem. 651, 38 (2011).
[CrossRef]

J. Photochem. Photobiol. C: Photochem. Rev. (1)

M. G. Gonzalez, E. Oliveros, M. Wörner, and A. M. Braun, “Vacuum-ultraviolet photolysis of aqueous reaction systems,” J. Photochem. Photobiol. C: Photochem. Rev. 5, 225 (2004).
[CrossRef]

Kvant. Elektron. (Moscow) (1)

A. M. Bo?chenko, V. F. Tarasenko, E. A. Fomin, and S. I. Yakovlenko, “Broad-band continua in inert gases and their mixtures with halides,” Kvant. Elektron. (Moscow) 20, No. 1, 7 (1993). [Quantum Electron. 23, 3 (1993)].

Mater. Res. Soc. Symp. Proc. (1)

F. Kessler, H.-D. Mohring, and G. H. Bauer, “VUV excimer light source for deposition of amorphous semiconductors,” Mater. Res. Soc. Symp. Proc. 192, 559 (1990).
[CrossRef]

MRS Proc. (1)

K. Asano and M. Murahara, “Photochemical bonding of fluorocarbon and fused silica glass for ultraviolet ray transmitting,” MRS Proc. 796, V3.7 (2003).
[CrossRef]

Nauka Tekh. Gaz. Promysh. (1)

Yu. V. Medvedev, V. G. Ivanov, N. I. Sereda, Yu. I. Polygalov, V. I. Erofeev, S. D. Korovin, M. V. Erofeev, E. A. Sosnin, A. I. Suslov, V. F. Tarasenko, and V. A. Istomin, “The action of high-power UV radiation on a flow of natural gas in a flow-through reactor,” Nauka Tekh. Gaz. Promysh. No. 3, 83 (2004).

Organohalogen Compd. (1)

F. Mühlberger, J. Wieser, A. Ulrich, and R. Zimmermann, “Single-photon ionization mass spectrometry with a novel electron-pumped excimer lamp for detection of trace compounds from thermal processes,” Organohalogen Compd. 66, 795 (2004).

Origins Life Evol. Biosphere (2)

M. Terasaki, S. Nomoto, H. Mita, and A. Shimoyama, “A new pathway to aspartic acid from maleic acid affected by ultraviolet light,” Origins Life Evol. Biosphere 32, 91 (2002).
[CrossRef]

R. Navarro-Gonzalez, A. Negron-Mendoza, and E. Chacon, “The ?-irradiation of aqueous solutions of urea,” Origins Life Evol. Biosphere 19, 109 (1989).
[CrossRef]

Proc. SPIE (4)

M. Murahara, N. Sato, T. Funatsu, and Y. Okamoto, “Water-resistant hard coating on optical material by photooxidation of silicone oil,” Proc. SPIE 5991, 599118 (2005).
[CrossRef]

M. Murahara, Y. Ogawa, K. Yoshida, and Y. Okamato, “Photochemical laminating of low refractive index transparent antireflective SiO2 film,” Proc. SPIE 4932, 48 (2003).
[CrossRef]

Y. Sato, N. Sato, K. Shimizu, M. Sasou, J.-M. Parel, and M. Murahara, “Photochemical surface-modification method for fibrin-free intraocular lens,” Proc. SPIE 5688, 260 (2005).
[CrossRef]

J. Heitz, M. Olbrich, S. Moritz, C. Romamin, V. Svorcik, and D. Bäuerle, “Surface modification of polymers by UV irradiation: applications in micro- and biotechnology,” Proc. SPIE 5958, 5958U1 (2005).

Rev. Sci. Instrum. (1)

J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, “Vacuum ultraviolet rare gas excimer light source,” Rev. Sci. Instrum. 68, 1360 (1997).
[CrossRef]

Surf. Coat. Technol. (1)

N. Kaliwoh, J. Y. Zhang, and I. W. Boyd, “Titanium dioxide films prepared by photoinduced sol–gel processing using 172-nm excimer lamps,” Surf. Coat. Technol. 125, 424 (2000).
[CrossRef]

Thin Solid Films (3)

J. Y. Zhang, L. J. Bie, and I. W. Boyd, “Thin tantalum oxide films prepared by 172-nm excimer lamp irradiation using sol–gel method,” Thin Solid Films 318, 252 (1998).
[CrossRef]

H. Esrom and U. Kogelschatz, “Modification of surfaces with new excimer UV sources,” Thin Solid Films 218, 231 (1992).
[CrossRef]

H. Esrom and U. Kogelschatz, “Modification of surfaces with new excimer UV sources,” Thin Solid Films 218, 231 (1992).
[CrossRef]

Toxicol. Environ. Chem. (1)

M. V. Griechetschkina, N. K. Zaitsev, and A. M. Braun, “VUV-photolysis oxidative degradation of organics inhibiting the inverse-voltammetric determination of heavy metals. 1. Humic substances,” Toxicol. Environ. Chem. 53, 143 (1996).
[CrossRef]

Usp. Fiz. Nauk (2)

B. M. Smirnov, “Excimeric molecules,” Usp. Fiz. Nauk 139, No. 1, 53 (1983). [Phys. Usp. 26, 31 (1983)].
[CrossRef]

G. N. Gerasimov, B. E. Krylov, A. V. Loginov, and S. A. Shchukin, “Ultraviolet radiation of excited molecules of inert gases,” Usp. Fiz. Nauk 162, No. 5, 123 (1992). [Phys. Usp. 35, 400 (1992)].
[CrossRef]

Wasser-Abwasser (1)

T. Oppenländer and G. Baum, “Wasseraufbereitung mit Vakuum-UV/UV-Excimer-Durchflussphotoreaktoren,” Wasser-Abwasser 137, 321 (1996).

Zavodskaya Laboratoriya (1)

E. A. Sosnin, É. A. Zakharova, and V. N. Batalova, “Using excilamps in analytical chemistry (Review),” Zavodskaya Laboratoriya 71, No. 8, 18 (2005).

Other (11)

M. McKasker, “Eximers of inert gases,” in Excimer Lasers, C. K. Rhodes, ed. (Springer-Verlag, New York, 1979; Mir, Moscow, 1981), pp. 70–117.

LINEX® Linear Excimer LAMP System (123 D05 E 05/03 Co) http://osram.com/_global/pdf/Professional/Display_Optic/Display_Sys tems/123D005GB_PI_LINEX.pdf.

PLANON®, Product Information Bulletin FO135R3.

A. A. Nemodruk and E. V. Bezrogova, Photochemical Reactions in Inorganic Chemistry (Khimiya, Moscow, 1972).

A. M. Bo?chenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, Ultraviolet and Vacuum Ultraviolet Excilamps: Physics, Engineering, and Applications (STT, Tomsk, 2001).

K. Waizenegger and T. Oppenlaender, “Verfahren zur Mediumaufbereitung mit einem Excimer-Strahler und Excimer-Strahler zur Durchfuhrung eines solchen Verfahrens,” Offenlegungsschrift DE 195 07 189. Anmeldtag: 02.03.1995. Offenlegunstag: 12.09.1996.

T. Oppenländer, Photochemical Purification of Water and Air (Wiley, Weinheim, 2003).

E. A. Sosnin and M. V. Erofeev, “Drying of natural gas and photolysis of methanol in flow-through photoreactors based on Xe2 and KrCl excilamps,” in Materials of the Third School Seminar of Young Scientists of Russia (June 8–12, 2004) (Izd. BNTs SO RAN, Ulan-Udé, 2004), pp. 247–248.

A. Yu. Akhmedov, V. I. Erofeev, M. V. Erofeev, V. A. Istomin, S. D. Korovin, Yu. V. Medvedev, Yu. I. Polygalov, V. M. Orlovski?, O. A. Sergeev, E. A. Sosnin, V. P. Stepanov, and V. F. Tarasenko, “Method of drying natural gas, flow-through reactor for drying natural gas,” Russian Patent 2 284 850. Priority 3/9/2006. Reg. No. Pending 2005106634/15 on 3/9/2005, Pub. 10/10/2006, Byul. No. 28.

I. W. Boyd, “Dielectric photoformation of Si and SiGe,” in Advances in Rapid Thermal and Integrated Processes (Kluwer Publ., Dordrecht, 1996), pp. 235–264.

E. A. Sosnin, A. Gross, N. Bartnik, T. Oppenländer, and N. Yu. Vasil’eva, “Study of the photodegradation of carbamide in flow-through photoreactors based on UV and VUV excilamps,” in Fundamental Problems of new Technologies in the Third Millenium: Materials of the Third All-Russia Conference of Young Scientists, Tomsk (Izd. Inst. Optiki Atmosf. SO RAN, 2006), pp. 169–172.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.