Abstract

The results of an experimental investigation of test samples of the key element of a planar device for selective excitation of multimode optical fibers are used to evaluate the device. An analysis of these results confirms that this device is workable within the limits of the so-called O-band for spectral data compression. This is evidence that a three-stage cascade system can be constructed for data compression in multimode fiber-optic communication lines and local networks. In this system, the method of temporal data compression is used in the first stage, spectral compression in the second stage, and mode compression of the data at the third stage. Such a cascade scheme increases the information capacity of both new multimode fiber systems and systems created in the past decade by a large factor.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tur, D. Menashe, Y. Japha, and Y. Danziger, “High-order mode-based dispersion-compensating modules using spatial mode conversion,” J. Opt. Fiber. Commun. Rep. 4, 110 (2007).
    [CrossRef]
  2. M. Duser and P. Bayvel, “2.5-Gbit/s transmission over 4.5 km of 62.5 µm multimode fibre using centre-launch technique,” Electron. Lett. 36, 57 (2000).
    [CrossRef]
  3. C. K. Asawa, “Intrusion-alarmed fiber-optic communication link using a planar waveguide bimodal launcher,” J. Lightwave Technol. 20, 10 (2002).
    [CrossRef]
  4. S. S.-H. Yam and F. Achten, “Single-wavelength 40-Gbit/s transmission over 3.4-km broad-wavelength-window multimode fibre,” Electron. Lett. 42, 592 (2006).
    [CrossRef]
  5. Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38, 1701 (2002).
    [CrossRef]
  6. B.-T. Lee and S.-Y. Shin, “Mode-order converter in a multimode waveguide,” Opt. Lett. 28, 1660 (2003).
    [CrossRef] [PubMed]
  7. D. V. Svistunov, “A planar prism for detection and selective excitation of modes in a multimode channel waveguide,” Pis’ma Zh. Tekh. Fiz. 30, No. 8, 62 (2004). [Tech. Phys. Lett. 30, 332 (2004)].
  8. D. V. Svistunov, “Selective mode launching in a multimode channel waveguide by planar coupler,” J. Opt. A, Pure Appl. Opt. 6, 859 (2004).
    [CrossRef]
  9. S. V. Karpeev, V. S. Pavelyev, S. N. Khonina, N. L. Kazanskiy, A. V. Gavrilov, and V. A. Eropolov, “Fibre sensors based on transverse mode selection,” J. Mod. Opt. 54, 833 (2007).
    [CrossRef]
  10. A. S. Semenov, V. L. Smirnov, and A. V. Shmal’ko, Integrated Optics for Systems for Information Transport and Processing (Radio i Svyaz’, Moscow, 1990).
  11. G. Nykolak, G. Wilder, L. Eskildsen, N. Patel, T. Strasser, M. Tsuda, H. Kobayashi, and D. Carter, “Elimination of self-contamination in high-density low-loss single-mode fiber array connectors,” J. Lightwave Technol. 22, 24 (2004).
    [CrossRef]
  12. T. Tamir, Integrated Optics (Mir, Moscow, 1978).
  13. A. A. Podvyaznyĭ and D. V. Svistunov, “Ion-exchange waveguides formed in glasses using silver-containing melts,” Pis’ma Zh. Tekh. Fiz. 29, No. 11, 35 (2003). [Tech. Phys. Lett. 29, 456 (2003)].
  14. E. M. Zolotov, V. A. Kiselev, and V. M. Pelekhatyĭ, “Determining the characteristics of optical diffuse waveguides,” Kvant. Elektron. (Moscow) 5, 2376 (1978). [Sov. J. Quantum Electron. 8, 1334 (1978)].
  15. D. V. Svistunov, “Determination of profile parameters of planar waveguides,” Proc. SPIE 2648, 215 (1995).
  16. M. J. Adams, An Introduction to Optical Waveguides (Wiley, New York, 1981; Mir, Moscow, 1984).
  17. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983; Radio i Svyaz’, Moscow, 1987).
  18. GOST [State Standard] 13659-78, Colorless optical glass. Physicochemical characteristics. Basic parameters, IPK Izd. Stand., Moscow, 1999.
  19. T. Tamir, ed., Guided-Wave Optoelectronics (Springer Verlag, New York, 1990; Mir, Moscow, 1991).
  20. J. Rodriguez, S. Fernandez, S. L. Palacios, R. D. Crespo, J. M. Fernandez, A. Guinea, J. M. Virgos, and J. Olivares, “Equivalent-optical-waveguide model for the analysis of optical waveguides by means of an asymptotic effective-index method,” Appl. Opt. 34, 6172 (1995).
    [CrossRef] [PubMed]
  21. M. N. Weiss and R. Srivastava, “Determination of ion-exchanged channel waveguide profile parameters by mode-index measurements,” Appl. Opt. 34, 455 (1995).
    [CrossRef] [PubMed]
  22. M. G. Galechyan, N. M. Lyndin, D. Kh. Nurligareev, and A. V. Tishchenko, “Anisotropy of waveguides obtained by the electrodiffusion of Cs and K ions from CsNO3 and KNO3 melts into glass,” Zh. Tekh. Fiz. 60, No. 9, 133 (1990). [Tech. Phys. 35, 1081 (1990)].

2007 (2)

M. Tur, D. Menashe, Y. Japha, and Y. Danziger, “High-order mode-based dispersion-compensating modules using spatial mode conversion,” J. Opt. Fiber. Commun. Rep. 4, 110 (2007).
[CrossRef]

S. V. Karpeev, V. S. Pavelyev, S. N. Khonina, N. L. Kazanskiy, A. V. Gavrilov, and V. A. Eropolov, “Fibre sensors based on transverse mode selection,” J. Mod. Opt. 54, 833 (2007).
[CrossRef]

2006 (1)

S. S.-H. Yam and F. Achten, “Single-wavelength 40-Gbit/s transmission over 3.4-km broad-wavelength-window multimode fibre,” Electron. Lett. 42, 592 (2006).
[CrossRef]

2004 (3)

D. V. Svistunov, “A planar prism for detection and selective excitation of modes in a multimode channel waveguide,” Pis’ma Zh. Tekh. Fiz. 30, No. 8, 62 (2004). [Tech. Phys. Lett. 30, 332 (2004)].

D. V. Svistunov, “Selective mode launching in a multimode channel waveguide by planar coupler,” J. Opt. A, Pure Appl. Opt. 6, 859 (2004).
[CrossRef]

G. Nykolak, G. Wilder, L. Eskildsen, N. Patel, T. Strasser, M. Tsuda, H. Kobayashi, and D. Carter, “Elimination of self-contamination in high-density low-loss single-mode fiber array connectors,” J. Lightwave Technol. 22, 24 (2004).
[CrossRef]

2003 (2)

A. A. Podvyaznyĭ and D. V. Svistunov, “Ion-exchange waveguides formed in glasses using silver-containing melts,” Pis’ma Zh. Tekh. Fiz. 29, No. 11, 35 (2003). [Tech. Phys. Lett. 29, 456 (2003)].

B.-T. Lee and S.-Y. Shin, “Mode-order converter in a multimode waveguide,” Opt. Lett. 28, 1660 (2003).
[CrossRef] [PubMed]

2002 (2)

C. K. Asawa, “Intrusion-alarmed fiber-optic communication link using a planar waveguide bimodal launcher,” J. Lightwave Technol. 20, 10 (2002).
[CrossRef]

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38, 1701 (2002).
[CrossRef]

2000 (1)

M. Duser and P. Bayvel, “2.5-Gbit/s transmission over 4.5 km of 62.5 µm multimode fibre using centre-launch technique,” Electron. Lett. 36, 57 (2000).
[CrossRef]

1995 (3)

1990 (1)

M. G. Galechyan, N. M. Lyndin, D. Kh. Nurligareev, and A. V. Tishchenko, “Anisotropy of waveguides obtained by the electrodiffusion of Cs and K ions from CsNO3 and KNO3 melts into glass,” Zh. Tekh. Fiz. 60, No. 9, 133 (1990). [Tech. Phys. 35, 1081 (1990)].

1978 (1)

E. M. Zolotov, V. A. Kiselev, and V. M. Pelekhatyĭ, “Determining the characteristics of optical diffuse waveguides,” Kvant. Elektron. (Moscow) 5, 2376 (1978). [Sov. J. Quantum Electron. 8, 1334 (1978)].

Achten, F.

S. S.-H. Yam and F. Achten, “Single-wavelength 40-Gbit/s transmission over 3.4-km broad-wavelength-window multimode fibre,” Electron. Lett. 42, 592 (2006).
[CrossRef]

Adams, M. J.

M. J. Adams, An Introduction to Optical Waveguides (Wiley, New York, 1981; Mir, Moscow, 1984).

Asawa, C. K.

Bayvel, P.

M. Duser and P. Bayvel, “2.5-Gbit/s transmission over 4.5 km of 62.5 µm multimode fibre using centre-launch technique,” Electron. Lett. 36, 57 (2000).
[CrossRef]

Carter, D.

Crespo, R. D.

Danziger, Y.

M. Tur, D. Menashe, Y. Japha, and Y. Danziger, “High-order mode-based dispersion-compensating modules using spatial mode conversion,” J. Opt. Fiber. Commun. Rep. 4, 110 (2007).
[CrossRef]

Duser, M.

M. Duser and P. Bayvel, “2.5-Gbit/s transmission over 4.5 km of 62.5 µm multimode fibre using centre-launch technique,” Electron. Lett. 36, 57 (2000).
[CrossRef]

Eropolov, V. A.

S. V. Karpeev, V. S. Pavelyev, S. N. Khonina, N. L. Kazanskiy, A. V. Gavrilov, and V. A. Eropolov, “Fibre sensors based on transverse mode selection,” J. Mod. Opt. 54, 833 (2007).
[CrossRef]

Eskildsen, L.

Fernandez, J. M.

Fernandez, S.

Galechyan, M. G.

M. G. Galechyan, N. M. Lyndin, D. Kh. Nurligareev, and A. V. Tishchenko, “Anisotropy of waveguides obtained by the electrodiffusion of Cs and K ions from CsNO3 and KNO3 melts into glass,” Zh. Tekh. Fiz. 60, No. 9, 133 (1990). [Tech. Phys. 35, 1081 (1990)].

Gavrilov, A. V.

S. V. Karpeev, V. S. Pavelyev, S. N. Khonina, N. L. Kazanskiy, A. V. Gavrilov, and V. A. Eropolov, “Fibre sensors based on transverse mode selection,” J. Mod. Opt. 54, 833 (2007).
[CrossRef]

Guinea, A.

Japha, Y.

M. Tur, D. Menashe, Y. Japha, and Y. Danziger, “High-order mode-based dispersion-compensating modules using spatial mode conversion,” J. Opt. Fiber. Commun. Rep. 4, 110 (2007).
[CrossRef]

Karpeev, S. V.

S. V. Karpeev, V. S. Pavelyev, S. N. Khonina, N. L. Kazanskiy, A. V. Gavrilov, and V. A. Eropolov, “Fibre sensors based on transverse mode selection,” J. Mod. Opt. 54, 833 (2007).
[CrossRef]

Kawaguchi, Y.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38, 1701 (2002).
[CrossRef]

Kazanskiy, N. L.

S. V. Karpeev, V. S. Pavelyev, S. N. Khonina, N. L. Kazanskiy, A. V. Gavrilov, and V. A. Eropolov, “Fibre sensors based on transverse mode selection,” J. Mod. Opt. 54, 833 (2007).
[CrossRef]

Khonina, S. N.

S. V. Karpeev, V. S. Pavelyev, S. N. Khonina, N. L. Kazanskiy, A. V. Gavrilov, and V. A. Eropolov, “Fibre sensors based on transverse mode selection,” J. Mod. Opt. 54, 833 (2007).
[CrossRef]

Kiselev, V. A.

E. M. Zolotov, V. A. Kiselev, and V. M. Pelekhatyĭ, “Determining the characteristics of optical diffuse waveguides,” Kvant. Elektron. (Moscow) 5, 2376 (1978). [Sov. J. Quantum Electron. 8, 1334 (1978)].

Kobayashi, H.

Lee, B.-T.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983; Radio i Svyaz’, Moscow, 1987).

Lyndin, N. M.

M. G. Galechyan, N. M. Lyndin, D. Kh. Nurligareev, and A. V. Tishchenko, “Anisotropy of waveguides obtained by the electrodiffusion of Cs and K ions from CsNO3 and KNO3 melts into glass,” Zh. Tekh. Fiz. 60, No. 9, 133 (1990). [Tech. Phys. 35, 1081 (1990)].

Menashe, D.

M. Tur, D. Menashe, Y. Japha, and Y. Danziger, “High-order mode-based dispersion-compensating modules using spatial mode conversion,” J. Opt. Fiber. Commun. Rep. 4, 110 (2007).
[CrossRef]

Nurligareev, D. Kh.

M. G. Galechyan, N. M. Lyndin, D. Kh. Nurligareev, and A. V. Tishchenko, “Anisotropy of waveguides obtained by the electrodiffusion of Cs and K ions from CsNO3 and KNO3 melts into glass,” Zh. Tekh. Fiz. 60, No. 9, 133 (1990). [Tech. Phys. 35, 1081 (1990)].

Nykolak, G.

Olivares, J.

Palacios, S. L.

Patel, N.

Pavelyev, V. S.

S. V. Karpeev, V. S. Pavelyev, S. N. Khonina, N. L. Kazanskiy, A. V. Gavrilov, and V. A. Eropolov, “Fibre sensors based on transverse mode selection,” J. Mod. Opt. 54, 833 (2007).
[CrossRef]

Pelekhatyi, V. M.

E. M. Zolotov, V. A. Kiselev, and V. M. Pelekhatyĭ, “Determining the characteristics of optical diffuse waveguides,” Kvant. Elektron. (Moscow) 5, 2376 (1978). [Sov. J. Quantum Electron. 8, 1334 (1978)].

Podvyaznyi, A. A.

A. A. Podvyaznyĭ and D. V. Svistunov, “Ion-exchange waveguides formed in glasses using silver-containing melts,” Pis’ma Zh. Tekh. Fiz. 29, No. 11, 35 (2003). [Tech. Phys. Lett. 29, 456 (2003)].

Rodriguez, J.

Semenov, A. S.

A. S. Semenov, V. L. Smirnov, and A. V. Shmal’ko, Integrated Optics for Systems for Information Transport and Processing (Radio i Svyaz’, Moscow, 1990).

Shin, S.-Y.

Shmal’ko, A. V.

A. S. Semenov, V. L. Smirnov, and A. V. Shmal’ko, Integrated Optics for Systems for Information Transport and Processing (Radio i Svyaz’, Moscow, 1990).

Smirnov, V. L.

A. S. Semenov, V. L. Smirnov, and A. V. Shmal’ko, Integrated Optics for Systems for Information Transport and Processing (Radio i Svyaz’, Moscow, 1990).

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983; Radio i Svyaz’, Moscow, 1987).

Srivastava, R.

Strasser, T.

Svistunov, D. V.

D. V. Svistunov, “A planar prism for detection and selective excitation of modes in a multimode channel waveguide,” Pis’ma Zh. Tekh. Fiz. 30, No. 8, 62 (2004). [Tech. Phys. Lett. 30, 332 (2004)].

D. V. Svistunov, “Selective mode launching in a multimode channel waveguide by planar coupler,” J. Opt. A, Pure Appl. Opt. 6, 859 (2004).
[CrossRef]

A. A. Podvyaznyĭ and D. V. Svistunov, “Ion-exchange waveguides formed in glasses using silver-containing melts,” Pis’ma Zh. Tekh. Fiz. 29, No. 11, 35 (2003). [Tech. Phys. Lett. 29, 456 (2003)].

D. V. Svistunov, “Determination of profile parameters of planar waveguides,” Proc. SPIE 2648, 215 (1995).

Tamir, T.

T. Tamir, Integrated Optics (Mir, Moscow, 1978).

Tishchenko, A. V.

M. G. Galechyan, N. M. Lyndin, D. Kh. Nurligareev, and A. V. Tishchenko, “Anisotropy of waveguides obtained by the electrodiffusion of Cs and K ions from CsNO3 and KNO3 melts into glass,” Zh. Tekh. Fiz. 60, No. 9, 133 (1990). [Tech. Phys. 35, 1081 (1990)].

Tsuda, M.

Tsutsumi, K.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38, 1701 (2002).
[CrossRef]

Tur, M.

M. Tur, D. Menashe, Y. Japha, and Y. Danziger, “High-order mode-based dispersion-compensating modules using spatial mode conversion,” J. Opt. Fiber. Commun. Rep. 4, 110 (2007).
[CrossRef]

Virgos, J. M.

Weiss, M. N.

Wilder, G.

Yam, S. S.-H.

S. S.-H. Yam and F. Achten, “Single-wavelength 40-Gbit/s transmission over 3.4-km broad-wavelength-window multimode fibre,” Electron. Lett. 42, 592 (2006).
[CrossRef]

Zolotov, E. M.

E. M. Zolotov, V. A. Kiselev, and V. M. Pelekhatyĭ, “Determining the characteristics of optical diffuse waveguides,” Kvant. Elektron. (Moscow) 5, 2376 (1978). [Sov. J. Quantum Electron. 8, 1334 (1978)].

Appl. Opt. (2)

Electron. Lett. (3)

S. S.-H. Yam and F. Achten, “Single-wavelength 40-Gbit/s transmission over 3.4-km broad-wavelength-window multimode fibre,” Electron. Lett. 42, 592 (2006).
[CrossRef]

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38, 1701 (2002).
[CrossRef]

M. Duser and P. Bayvel, “2.5-Gbit/s transmission over 4.5 km of 62.5 µm multimode fibre using centre-launch technique,” Electron. Lett. 36, 57 (2000).
[CrossRef]

J. Lightwave Technol. (2)

J. Mod. Opt. (1)

S. V. Karpeev, V. S. Pavelyev, S. N. Khonina, N. L. Kazanskiy, A. V. Gavrilov, and V. A. Eropolov, “Fibre sensors based on transverse mode selection,” J. Mod. Opt. 54, 833 (2007).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

D. V. Svistunov, “Selective mode launching in a multimode channel waveguide by planar coupler,” J. Opt. A, Pure Appl. Opt. 6, 859 (2004).
[CrossRef]

J. Opt. Fiber. Commun. Rep. (1)

M. Tur, D. Menashe, Y. Japha, and Y. Danziger, “High-order mode-based dispersion-compensating modules using spatial mode conversion,” J. Opt. Fiber. Commun. Rep. 4, 110 (2007).
[CrossRef]

Kvant. Elektron. (Moscow) (1)

E. M. Zolotov, V. A. Kiselev, and V. M. Pelekhatyĭ, “Determining the characteristics of optical diffuse waveguides,” Kvant. Elektron. (Moscow) 5, 2376 (1978). [Sov. J. Quantum Electron. 8, 1334 (1978)].

Opt. Lett. (1)

Pis’ma Zh. Tekh. Fiz. (2)

D. V. Svistunov, “A planar prism for detection and selective excitation of modes in a multimode channel waveguide,” Pis’ma Zh. Tekh. Fiz. 30, No. 8, 62 (2004). [Tech. Phys. Lett. 30, 332 (2004)].

A. A. Podvyaznyĭ and D. V. Svistunov, “Ion-exchange waveguides formed in glasses using silver-containing melts,” Pis’ma Zh. Tekh. Fiz. 29, No. 11, 35 (2003). [Tech. Phys. Lett. 29, 456 (2003)].

Proc. SPIE (1)

D. V. Svistunov, “Determination of profile parameters of planar waveguides,” Proc. SPIE 2648, 215 (1995).

Zh. Tekh. Fiz. (1)

M. G. Galechyan, N. M. Lyndin, D. Kh. Nurligareev, and A. V. Tishchenko, “Anisotropy of waveguides obtained by the electrodiffusion of Cs and K ions from CsNO3 and KNO3 melts into glass,” Zh. Tekh. Fiz. 60, No. 9, 133 (1990). [Tech. Phys. 35, 1081 (1990)].

Other (6)

M. J. Adams, An Introduction to Optical Waveguides (Wiley, New York, 1981; Mir, Moscow, 1984).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983; Radio i Svyaz’, Moscow, 1987).

GOST [State Standard] 13659-78, Colorless optical glass. Physicochemical characteristics. Basic parameters, IPK Izd. Stand., Moscow, 1999.

T. Tamir, ed., Guided-Wave Optoelectronics (Springer Verlag, New York, 1990; Mir, Moscow, 1991).

A. S. Semenov, V. L. Smirnov, and A. V. Shmal’ko, Integrated Optics for Systems for Information Transport and Processing (Radio i Svyaz’, Moscow, 1990).

T. Tamir, Integrated Optics (Mir, Moscow, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.