Abstract

A theory has been developed for the nonsteady-state absorption of supershort light pulses in bulk materials and heterostructures with quantum wells when two-photon resonance occurs at interband transitions as well as at transitions between discrete states or between size-quantization sublevels (subbands). Analytical expressions have been obtained for the nonlinear polarizabilities that determine how much energy is absorbed from a femtosecond light pulse. The dependences of the absorbed energy on the detunings of the two-photon resonances and on the pulse widths have been obtained.

© 2011 OSA

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription