Abstract

An optical system has been developed for a device for recording biological aerosols, based on a low-power pulsed-periodic UV laser. The possibility of differentiating aerosols of dust, protein, and bacterial spores by means of the given device has been experimentally checked. It has been investigated how the design parameters of the optical system thus developed affect the solution of the problem of classifying aerosols of various substances. Data are presented on the anisotropy of the fluorescence radiation of aerosol particles.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Chang, Y.-L. Pan, R. G. Pinnick, and S. C. Hill, "Method and instrumentation for measuring fluorescence spectra of individual airborne particles sampled from ambient air," US Patent 2004/0125371 A1; 2004.
  2. P. H. Kaye, J. E. Barton, E. Hirst, and J. M. Clark, "Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles," Appl. Opt. 39, 3738 (2000).
    [CrossRef]
  3. P. H. Kaye, W. R. Stanley, and E. Hirst, "Single-particle multichannel bio-aerosol fluorescence sensor," Opt. Express 13, 3583 (2005).
    [CrossRef]
  4. J. Y.-W. Ho, "Fluorescent biological particle detection system," US Patent 5895922; 1999.
  5. P. P. Hairiston and F. R. Quant, "System for detecting fluorescing components in aerosols," US Patent 5999250; 1999.
  6. S. A. Vorob’ev, "Lamp device for determining the composition of aerosols based on fluorescence analysis of individual particles," Russian Federation Patent 2279663; 2006.
  7. T. H. Jeys, W. D. Herzog, J. D. Hybl, R. N. Czerwinski, and A. Sanchez, "Advanced trigger development," Lincoln Lab. J. 17, (1), 29 (2007).
  8. P. H. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrirngton, "Single-particle multichannel bioaerosol fluorescence sensor," Opt. Express 13, 3583 (2005).
    [CrossRef]
  9. G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, and R. K. Chang, "Conditional-firing aerosol-fluorescence spectrum analyzer for individual airborne particles with pulsed 266-nm laser excitation," Opt. Lett. 21, 1307 (1996).
    [CrossRef]
  10. Y.-L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, "Fluorescence spectra of atmospheric aerosol particles using one or two excitation wavelengths: Comparison of classification schemes employing different emission and scattering results," Opt. Express 18, 12436 (2010).
    [CrossRef]
  11. K. J. Grant, J. A. Piper, D. J. Ramsay, and K. L. Williams, "Pulsed lasers in particle detection and sizing," Appl. Opt. 32, 416 (1993).
    [CrossRef]
  12. F. Zarrin and N. J. Dovichi, "Effect of sample stream radius upon light scatter distribution generated with a Gaussian beam light source in the sheath flow cuvette," Anal. Chem. 59, 867 (1987).
  13. K. B. Aptowicz, Y.-L. Pan, R. K. Chang, R. G. Pinnick, S. C. Hill, R. L. Tober, A. Goyal, T. Jeys, and B. Bronk, "Two-dimensional angular optical scattering patterns of microdroplets in the mid-infrared with strong and weak absorption," Opt. Lett. 29, 1965 (2004).
    [CrossRef]
  14. H. B. Steen, "Noise, sensitivity, and resolution of flow cytometers," Cytometry 13, 822 (1992).
    [CrossRef]
  15. S. Khaĭkin, Neural Networks, Vil’yams, Moscow, 2006, p. 66.
  16. J. M. Campbell, D. P. Tremblay, F. Daver, and D. Cousins, "Multiwavelength bioaerosol sensor performance modeling," Proc. SPIE 5990, 59900k1 (2005).
  17. V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, "Multiple UV wavelength excitation and fluorescence of bioaerosols," Opt. Express 12, 4457 (2004).
    [CrossRef]
  18. V. M. Sidorenko, Molecular Spectroscopy of Biological Media, Vysshaya Shkola, Moscow, 2004, pp. 105‒115.
  19. S. C. Hill, Y.-L. Pan, S. Holler, and R. K. Chang, "Enhanced, backward-directed multiphoton-excited fluorescence from dielectric microcavities," Phys. Rev. Lett. 85, 54 (2000).
    [CrossRef]
  20. Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. Chang, and J. R. Bottiger, "Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan," Appl. Opt. 41, 2994 (2002).
    [CrossRef]
  21. R. Domann, "A study of the influence of absorption on the spatial distribution of fluorescence intensity within large droplets using Mie theory, geometrical optics and imaging experiments," Meas. Sci. Technol. 13, 280 (2002).
    [CrossRef]

2010 (1)

2007 (1)

T. H. Jeys, W. D. Herzog, J. D. Hybl, R. N. Czerwinski, and A. Sanchez, "Advanced trigger development," Lincoln Lab. J. 17, (1), 29 (2007).

2005 (3)

2004 (2)

2002 (2)

Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. Chang, and J. R. Bottiger, "Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan," Appl. Opt. 41, 2994 (2002).
[CrossRef]

R. Domann, "A study of the influence of absorption on the spatial distribution of fluorescence intensity within large droplets using Mie theory, geometrical optics and imaging experiments," Meas. Sci. Technol. 13, 280 (2002).
[CrossRef]

2000 (2)

S. C. Hill, Y.-L. Pan, S. Holler, and R. K. Chang, "Enhanced, backward-directed multiphoton-excited fluorescence from dielectric microcavities," Phys. Rev. Lett. 85, 54 (2000).
[CrossRef]

P. H. Kaye, J. E. Barton, E. Hirst, and J. M. Clark, "Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles," Appl. Opt. 39, 3738 (2000).
[CrossRef]

1996 (1)

1993 (1)

1992 (1)

H. B. Steen, "Noise, sensitivity, and resolution of flow cytometers," Cytometry 13, 822 (1992).
[CrossRef]

1987 (1)

F. Zarrin and N. J. Dovichi, "Effect of sample stream radius upon light scatter distribution generated with a Gaussian beam light source in the sheath flow cuvette," Anal. Chem. 59, 867 (1987).

Aptowicz, K. B.

Barrirngton, S. J.

Barton, J. E.

Baxter, K. L.

Bottiger, J. R.

Bronk, B.

Campbell, J. M.

J. M. Campbell, D. P. Tremblay, F. Daver, and D. Cousins, "Multiwavelength bioaerosol sensor performance modeling," Proc. SPIE 5990, 59900k1 (2005).

Chang, R.

Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. Chang, and J. R. Bottiger, "Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan," Appl. Opt. 41, 2994 (2002).
[CrossRef]

R. Chang, Y.-L. Pan, R. G. Pinnick, and S. C. Hill, "Method and instrumentation for measuring fluorescence spectra of individual airborne particles sampled from ambient air," US Patent 2004/0125371 A1; 2004.

Chang, R. K.

Chen, G.

Clark, J. M.

Cousins, D.

J. M. Campbell, D. P. Tremblay, F. Daver, and D. Cousins, "Multiwavelength bioaerosol sensor performance modeling," Proc. SPIE 5990, 59900k1 (2005).

Czerwinski, R. N.

T. H. Jeys, W. D. Herzog, J. D. Hybl, R. N. Czerwinski, and A. Sanchez, "Advanced trigger development," Lincoln Lab. J. 17, (1), 29 (2007).

Daver, F.

J. M. Campbell, D. P. Tremblay, F. Daver, and D. Cousins, "Multiwavelength bioaerosol sensor performance modeling," Proc. SPIE 5990, 59900k1 (2005).

Domann, R.

R. Domann, "A study of the influence of absorption on the spatial distribution of fluorescence intensity within large droplets using Mie theory, geometrical optics and imaging experiments," Meas. Sci. Technol. 13, 280 (2002).
[CrossRef]

Dovichi, N. J.

F. Zarrin and N. J. Dovichi, "Effect of sample stream radius upon light scatter distribution generated with a Gaussian beam light source in the sheath flow cuvette," Anal. Chem. 59, 867 (1987).

Eversole, J. D.

Foot, E. V.

Goyal, A.

Grant, K. J.

Hairiston, P. P.

P. P. Hairiston and F. R. Quant, "System for detecting fluorescing components in aerosols," US Patent 5999250; 1999.

Herzog, W. D.

T. H. Jeys, W. D. Herzog, J. D. Hybl, R. N. Czerwinski, and A. Sanchez, "Advanced trigger development," Lincoln Lab. J. 17, (1), 29 (2007).

Hill, S. C.

Hirst, E.

Ho, J. Y.-W.

J. Y.-W. Ho, "Fluorescent biological particle detection system," US Patent 5895922; 1999.

Holler, S.

Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. Chang, and J. R. Bottiger, "Backward-enhanced fluorescence from clusters of microspheres and particles of tryptophan," Appl. Opt. 41, 2994 (2002).
[CrossRef]

S. C. Hill, Y.-L. Pan, S. Holler, and R. K. Chang, "Enhanced, backward-directed multiphoton-excited fluorescence from dielectric microcavities," Phys. Rev. Lett. 85, 54 (2000).
[CrossRef]

Huang, H.

Huston, A. L.

Hybl, J. D.

T. H. Jeys, W. D. Herzog, J. D. Hybl, R. N. Czerwinski, and A. Sanchez, "Advanced trigger development," Lincoln Lab. J. 17, (1), 29 (2007).

Jeys, T.

Jeys, T. H.

T. H. Jeys, W. D. Herzog, J. D. Hybl, R. N. Czerwinski, and A. Sanchez, "Advanced trigger development," Lincoln Lab. J. 17, (1), 29 (2007).

Kaye, P. H.

Khaikin, S.

S. Khaĭkin, Neural Networks, Vil’yams, Moscow, 2006, p. 66.

Nachman, P.

Pan, Y.-L.

Pinnick, R. G.

Piper, J. A.

Quant, F. R.

P. P. Hairiston and F. R. Quant, "System for detecting fluorescing components in aerosols," US Patent 5999250; 1999.

Ramsay, D. J.

Sanchez, A.

T. H. Jeys, W. D. Herzog, J. D. Hybl, R. N. Czerwinski, and A. Sanchez, "Advanced trigger development," Lincoln Lab. J. 17, (1), 29 (2007).

Scotto, C.

Sidorenko, V. M.

V. M. Sidorenko, Molecular Spectroscopy of Biological Media, Vysshaya Shkola, Moscow, 2004, pp. 105‒115.

Sivaprakasam, V.

Stanley, W. R.

Steen, H. B.

H. B. Steen, "Noise, sensitivity, and resolution of flow cytometers," Cytometry 13, 822 (1992).
[CrossRef]

Tober, R. L.

Tremblay, D. P.

J. M. Campbell, D. P. Tremblay, F. Daver, and D. Cousins, "Multiwavelength bioaerosol sensor performance modeling," Proc. SPIE 5990, 59900k1 (2005).

Vorob’ev, S. A.

S. A. Vorob’ev, "Lamp device for determining the composition of aerosols based on fluorescence analysis of individual particles," Russian Federation Patent 2279663; 2006.

Williams, K. L.

Wolf, J.-P.

Zarrin, F.

F. Zarrin and N. J. Dovichi, "Effect of sample stream radius upon light scatter distribution generated with a Gaussian beam light source in the sheath flow cuvette," Anal. Chem. 59, 867 (1987).

Anal. Chem. (1)

F. Zarrin and N. J. Dovichi, "Effect of sample stream radius upon light scatter distribution generated with a Gaussian beam light source in the sheath flow cuvette," Anal. Chem. 59, 867 (1987).

Appl. Opt. (3)

Cytometry (1)

H. B. Steen, "Noise, sensitivity, and resolution of flow cytometers," Cytometry 13, 822 (1992).
[CrossRef]

Lincoln Lab. J. (1)

T. H. Jeys, W. D. Herzog, J. D. Hybl, R. N. Czerwinski, and A. Sanchez, "Advanced trigger development," Lincoln Lab. J. 17, (1), 29 (2007).

Meas. Sci. Technol. (1)

R. Domann, "A study of the influence of absorption on the spatial distribution of fluorescence intensity within large droplets using Mie theory, geometrical optics and imaging experiments," Meas. Sci. Technol. 13, 280 (2002).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

S. C. Hill, Y.-L. Pan, S. Holler, and R. K. Chang, "Enhanced, backward-directed multiphoton-excited fluorescence from dielectric microcavities," Phys. Rev. Lett. 85, 54 (2000).
[CrossRef]

Proc. SPIE (1)

J. M. Campbell, D. P. Tremblay, F. Daver, and D. Cousins, "Multiwavelength bioaerosol sensor performance modeling," Proc. SPIE 5990, 59900k1 (2005).

Other (6)

R. Chang, Y.-L. Pan, R. G. Pinnick, and S. C. Hill, "Method and instrumentation for measuring fluorescence spectra of individual airborne particles sampled from ambient air," US Patent 2004/0125371 A1; 2004.

J. Y.-W. Ho, "Fluorescent biological particle detection system," US Patent 5895922; 1999.

P. P. Hairiston and F. R. Quant, "System for detecting fluorescing components in aerosols," US Patent 5999250; 1999.

S. A. Vorob’ev, "Lamp device for determining the composition of aerosols based on fluorescence analysis of individual particles," Russian Federation Patent 2279663; 2006.

S. Khaĭkin, Neural Networks, Vil’yams, Moscow, 2006, p. 66.

V. M. Sidorenko, Molecular Spectroscopy of Biological Media, Vysshaya Shkola, Moscow, 2004, pp. 105‒115.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.