Abstract

Various images of the Müller–Lyer figures have been obtained by digital filtering. The filtered images contained a definite spatial-frequency spectrum, predominantly low, medium, or high frequencies. The filtering was carried out by convolution of the images with wavelets that are the difference of two Gaussoids with half-width differing by a factor of 2. The equalization threshold of the Müller–Lyer figures was measured by presenting images subjected to digital processing and without processing, thereby measuring the threshold for bringing about the illusion. The Müller–Lyer illusion was caused by all the stimuli, but it was reliably larger in response to the presentation of the image with a predominantly low-frequency component. The modelling of the Müller–Lyer illusion must take into account the spatial-frequency spectrum of the test image and the characteristics of the pass-band filtering in the spatial-frequency channels of not only the primary but also the higher divisions of the visual system, which construct the envelope based on the primary filtering of the image.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Gregory, Eye and Brain: the Psychology of Seeing (Princeton University Press, Princeton, New Jersey, 1997; Progress, Moscow, 1970).
  2. J. Predebon, “Length illusions in conventional and single-wing Müller–Lyer stimuli,” Percept. Psychophys. 62, 1086 (2000).
    [CrossRef] [PubMed]
  3. A. W. Pressay and C. A. Pressay, “Attentive fields are related to focal and contextual features: A study of Müller–Lyer distortions,” Percept. Psychophys. 51, 423 (1992).
    [CrossRef] [PubMed]
  4. M. J. Morgan, G. J. Hole, and A. Glennerster, “Biases and sensitivities in geometrical illusion,” Vision Res. 30, 1793 (1990).
    [CrossRef] [PubMed]
  5. A. P. Ginsburg, J. W. Carl, M. Kabrisky, C. F. Hall, and R. A. Gill, “Psychological aspects of a model for the classification of visual image,” in Advances in Cybernetics and Systems, ed., J. Rose(Gordon and Breach, London, 1976), pp. 1289–1305.
  6. A. P. Ginsburg, “Specifying relevant spatial information for image evaluation and display design: An explanation of how we see certain objects,” Proc. Soc. Inf. Display 21, 219 (1980).
  7. A. P. Ginsburg, “Perceptual capabilities, ambiguities and artifacts in man and machine,” Proc. SPIE 283, 78 (1981).
  8. A. P. Ginsburg, “On a filter approach to understanding the perception of visual form,” in Recognition of Pattern and Form, ed., D. G. Albrecht(Springer, Berlin, 1982), pp. 175–192.
  9. A. P. Ginsburg, “Visual form perception based on biological filtering,” in Sensory Experience, Adaptation and Perception, eds., L. Spillmann and B. R. Wooten(Lawrence Erlbaum Associates, Hillsdale, N.J., 1984), pp. 53–72.
  10. A. P. Ginsburg and D. W. Evans, “Predicting visual illusions from filtered images based upon biological data,” J. Opt. Soc. Am. 69, 1443 (1979).
  11. A. N. Bulatov, A. V. Bertulis, A. Belyavichus, and N. Bulatova, “Illusions of length and their description on the basis of the centroid concept,” Sens. Sist. 23, No. 1, 3 (2009).
  12. V. Di Maio, “Perceptual versus cognitive processing in visual perception of geometrical figures: A short review,” Sistema Nervoso e Riabilitazione 1, 35 (2000).
  13. A. N. Bulatov, A. V. Bertulis, and L. I. Mitskene, “Quantitative studies of geometrical illusions,” Sens. Sist. 9, 79 (1995).
  14. V. V. Ognivov, G. I. Rozhkova, V. S. Tokareva, and V. A. Bastakov, “Mean value and variability of the Müller–Lyer illusion in comparison with visual estimation in children and adults,” Sens. Sist. 20, 288 (2006).
  15. M. Carrasco, J. G. Figueroa, and J. D. Willen, “A test of the spatial-frequency explanation of the Müller–Lyer illusion,” Perception 15, 553 (1986).
    [CrossRef] [PubMed]
  16. A. Gutauskas, A. Bertulis, and A. Bulatov, “Shape recognition thresholds: Correlation with spatial frequency spectrum of the stimuli,” Perception 22, 99 (1993).
  17. V. Di Maio and P. Lansky, “The Müller–Lyer illusion in interpolated figures,” Percept. Mot. Skills 87, 499 (1998).
    [CrossRef] [PubMed]
  18. B. C. Skottun, “Amplitude and phase in the Müller–Lyer illusion,” Perception 29, 201 (2000).
    [CrossRef] [PubMed]
  19. C. Blakemore and F. W. Campbell, “On the existence of neurons in the human visual system selectivity sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237 (1969).
  20. D. J. Tolhurst and I. D. Thompson, “On the variety of spatial-frequency selectivities shown by neurons in area 17 of the cat,” Proc. R. Soc. London 213, 183 (1982).
    [CrossRef]
  21. R. L. DeValois, D. G. Albrecht, and L. G. Thorell, “Spatial-frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545 (1982).
    [CrossRef] [PubMed]
  22. C. E. Bredfeldt and D. L. Ringach, “Dynamics of spatial-frequency tuning in macaque V1,” J. Neurosci. 22, 1976 (2002).
    [PubMed]
  23. Yu. E. Shelepin, “Spatial-frequency responses of the receptor fields of the neurons of the lateral suprasylvian region,” Neĭrofiz. 14, 608 (1982).
  24. Yu. E. Shelepin, “Comparison of the topographic and spatial-frequency responses of the lateral suprasylvian and striated cortex of the cat,” Neĭrofiz. 16, 35 (1984).
  25. Yu. E. Shelepin, “Localization of the regions of the visual cortex of the cat that give an invariant answer as the image size varies,” Neĭrofiz. 5, 115 (1973).
  26. Yu. E. Shelepin, “Filtration properties of the receptor fields of the neurons of the visual cortex,” Dok. Akad. Nauk SSSR 261, 1506 (1981).
  27. Yu. E. Shelepin, L. N. Kolesnikova, and Yu. I. Levkovich, Visible Contrastometry (Measuring the Spatial Transfer Functions of the Visual System) (Nauka, Leningrad, 1985).
  28. Yu. E. Shelepin, V. B. Makulov, N. N. Krasil’nikov, V. N. Chikhman, S. V. Pronin, V. F. Danilichev, and S. A. Koskin, “Iconics and methods of estimating the functional possibilities of the visual system,” Sens. Sist.319 (1998).
  29. Yu. E. Shelepin, V. N. Chikhman, and N. Foreman, “Analysis of the studies of the perception of fragmented images: integral perception and perception from local attributes,” Fiziolog. Zh. 94, 758 (2008).
  30. Yu. E. Shelepin and V. N. Chikhman, Local and Global Analysis in the Visual System, ed., V. A. Barabanshchikov(Inst. Psikhol. RAN, Moscow, 2009), pp. 310–335.
  31. C. R. Carlson, J. R. Moeller, and C. H. Anderson, “Visual illusions without low spatial frequencies,” Vision Res. 24, 1407 (1984).
    [CrossRef]

2009

A. N. Bulatov, A. V. Bertulis, A. Belyavichus, and N. Bulatova, “Illusions of length and their description on the basis of the centroid concept,” Sens. Sist. 23, No. 1, 3 (2009).

2008

Yu. E. Shelepin, V. N. Chikhman, and N. Foreman, “Analysis of the studies of the perception of fragmented images: integral perception and perception from local attributes,” Fiziolog. Zh. 94, 758 (2008).

2006

V. V. Ognivov, G. I. Rozhkova, V. S. Tokareva, and V. A. Bastakov, “Mean value and variability of the Müller–Lyer illusion in comparison with visual estimation in children and adults,” Sens. Sist. 20, 288 (2006).

2002

C. E. Bredfeldt and D. L. Ringach, “Dynamics of spatial-frequency tuning in macaque V1,” J. Neurosci. 22, 1976 (2002).
[PubMed]

2000

B. C. Skottun, “Amplitude and phase in the Müller–Lyer illusion,” Perception 29, 201 (2000).
[CrossRef] [PubMed]

V. Di Maio, “Perceptual versus cognitive processing in visual perception of geometrical figures: A short review,” Sistema Nervoso e Riabilitazione 1, 35 (2000).

J. Predebon, “Length illusions in conventional and single-wing Müller–Lyer stimuli,” Percept. Psychophys. 62, 1086 (2000).
[CrossRef] [PubMed]

1998

V. Di Maio and P. Lansky, “The Müller–Lyer illusion in interpolated figures,” Percept. Mot. Skills 87, 499 (1998).
[CrossRef] [PubMed]

Yu. E. Shelepin, V. B. Makulov, N. N. Krasil’nikov, V. N. Chikhman, S. V. Pronin, V. F. Danilichev, and S. A. Koskin, “Iconics and methods of estimating the functional possibilities of the visual system,” Sens. Sist.319 (1998).

1995

A. N. Bulatov, A. V. Bertulis, and L. I. Mitskene, “Quantitative studies of geometrical illusions,” Sens. Sist. 9, 79 (1995).

1993

A. Gutauskas, A. Bertulis, and A. Bulatov, “Shape recognition thresholds: Correlation with spatial frequency spectrum of the stimuli,” Perception 22, 99 (1993).

1992

A. W. Pressay and C. A. Pressay, “Attentive fields are related to focal and contextual features: A study of Müller–Lyer distortions,” Percept. Psychophys. 51, 423 (1992).
[CrossRef] [PubMed]

1990

M. J. Morgan, G. J. Hole, and A. Glennerster, “Biases and sensitivities in geometrical illusion,” Vision Res. 30, 1793 (1990).
[CrossRef] [PubMed]

1986

M. Carrasco, J. G. Figueroa, and J. D. Willen, “A test of the spatial-frequency explanation of the Müller–Lyer illusion,” Perception 15, 553 (1986).
[CrossRef] [PubMed]

1984

C. R. Carlson, J. R. Moeller, and C. H. Anderson, “Visual illusions without low spatial frequencies,” Vision Res. 24, 1407 (1984).
[CrossRef]

Yu. E. Shelepin, “Comparison of the topographic and spatial-frequency responses of the lateral suprasylvian and striated cortex of the cat,” Neĭrofiz. 16, 35 (1984).

1982

Yu. E. Shelepin, “Spatial-frequency responses of the receptor fields of the neurons of the lateral suprasylvian region,” Neĭrofiz. 14, 608 (1982).

D. J. Tolhurst and I. D. Thompson, “On the variety of spatial-frequency selectivities shown by neurons in area 17 of the cat,” Proc. R. Soc. London 213, 183 (1982).
[CrossRef]

R. L. DeValois, D. G. Albrecht, and L. G. Thorell, “Spatial-frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545 (1982).
[CrossRef] [PubMed]

1981

A. P. Ginsburg, “Perceptual capabilities, ambiguities and artifacts in man and machine,” Proc. SPIE 283, 78 (1981).

Yu. E. Shelepin, “Filtration properties of the receptor fields of the neurons of the visual cortex,” Dok. Akad. Nauk SSSR 261, 1506 (1981).

1980

A. P. Ginsburg, “Specifying relevant spatial information for image evaluation and display design: An explanation of how we see certain objects,” Proc. Soc. Inf. Display 21, 219 (1980).

1979

A. P. Ginsburg and D. W. Evans, “Predicting visual illusions from filtered images based upon biological data,” J. Opt. Soc. Am. 69, 1443 (1979).

1973

Yu. E. Shelepin, “Localization of the regions of the visual cortex of the cat that give an invariant answer as the image size varies,” Neĭrofiz. 5, 115 (1973).

1969

C. Blakemore and F. W. Campbell, “On the existence of neurons in the human visual system selectivity sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237 (1969).

Albrecht, D. G.

R. L. DeValois, D. G. Albrecht, and L. G. Thorell, “Spatial-frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545 (1982).
[CrossRef] [PubMed]

Anderson, C. H.

C. R. Carlson, J. R. Moeller, and C. H. Anderson, “Visual illusions without low spatial frequencies,” Vision Res. 24, 1407 (1984).
[CrossRef]

Bastakov, V. A.

V. V. Ognivov, G. I. Rozhkova, V. S. Tokareva, and V. A. Bastakov, “Mean value and variability of the Müller–Lyer illusion in comparison with visual estimation in children and adults,” Sens. Sist. 20, 288 (2006).

Belyavichus, A.

A. N. Bulatov, A. V. Bertulis, A. Belyavichus, and N. Bulatova, “Illusions of length and their description on the basis of the centroid concept,” Sens. Sist. 23, No. 1, 3 (2009).

Bertulis, A.

A. Gutauskas, A. Bertulis, and A. Bulatov, “Shape recognition thresholds: Correlation with spatial frequency spectrum of the stimuli,” Perception 22, 99 (1993).

Bertulis, A. V.

A. N. Bulatov, A. V. Bertulis, A. Belyavichus, and N. Bulatova, “Illusions of length and their description on the basis of the centroid concept,” Sens. Sist. 23, No. 1, 3 (2009).

A. N. Bulatov, A. V. Bertulis, and L. I. Mitskene, “Quantitative studies of geometrical illusions,” Sens. Sist. 9, 79 (1995).

Blakemore, C.

C. Blakemore and F. W. Campbell, “On the existence of neurons in the human visual system selectivity sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237 (1969).

Bredfeldt, C. E.

C. E. Bredfeldt and D. L. Ringach, “Dynamics of spatial-frequency tuning in macaque V1,” J. Neurosci. 22, 1976 (2002).
[PubMed]

Bulatov, A.

A. Gutauskas, A. Bertulis, and A. Bulatov, “Shape recognition thresholds: Correlation with spatial frequency spectrum of the stimuli,” Perception 22, 99 (1993).

Bulatov, A. N.

A. N. Bulatov, A. V. Bertulis, A. Belyavichus, and N. Bulatova, “Illusions of length and their description on the basis of the centroid concept,” Sens. Sist. 23, No. 1, 3 (2009).

A. N. Bulatov, A. V. Bertulis, and L. I. Mitskene, “Quantitative studies of geometrical illusions,” Sens. Sist. 9, 79 (1995).

Bulatova, N.

A. N. Bulatov, A. V. Bertulis, A. Belyavichus, and N. Bulatova, “Illusions of length and their description on the basis of the centroid concept,” Sens. Sist. 23, No. 1, 3 (2009).

Campbell, F. W.

C. Blakemore and F. W. Campbell, “On the existence of neurons in the human visual system selectivity sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237 (1969).

Carl, J. W.

A. P. Ginsburg, J. W. Carl, M. Kabrisky, C. F. Hall, and R. A. Gill, “Psychological aspects of a model for the classification of visual image,” in Advances in Cybernetics and Systems, ed., J. Rose(Gordon and Breach, London, 1976), pp. 1289–1305.

Carlson, C. R.

C. R. Carlson, J. R. Moeller, and C. H. Anderson, “Visual illusions without low spatial frequencies,” Vision Res. 24, 1407 (1984).
[CrossRef]

Carrasco, M.

M. Carrasco, J. G. Figueroa, and J. D. Willen, “A test of the spatial-frequency explanation of the Müller–Lyer illusion,” Perception 15, 553 (1986).
[CrossRef] [PubMed]

Chikhman, V. N.

Yu. E. Shelepin, V. N. Chikhman, and N. Foreman, “Analysis of the studies of the perception of fragmented images: integral perception and perception from local attributes,” Fiziolog. Zh. 94, 758 (2008).

Yu. E. Shelepin, V. B. Makulov, N. N. Krasil’nikov, V. N. Chikhman, S. V. Pronin, V. F. Danilichev, and S. A. Koskin, “Iconics and methods of estimating the functional possibilities of the visual system,” Sens. Sist.319 (1998).

Yu. E. Shelepin and V. N. Chikhman, Local and Global Analysis in the Visual System, ed., V. A. Barabanshchikov(Inst. Psikhol. RAN, Moscow, 2009), pp. 310–335.

Danilichev, V. F.

Yu. E. Shelepin, V. B. Makulov, N. N. Krasil’nikov, V. N. Chikhman, S. V. Pronin, V. F. Danilichev, and S. A. Koskin, “Iconics and methods of estimating the functional possibilities of the visual system,” Sens. Sist.319 (1998).

DeValois, R. L.

R. L. DeValois, D. G. Albrecht, and L. G. Thorell, “Spatial-frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545 (1982).
[CrossRef] [PubMed]

Di Maio, V.

V. Di Maio, “Perceptual versus cognitive processing in visual perception of geometrical figures: A short review,” Sistema Nervoso e Riabilitazione 1, 35 (2000).

V. Di Maio and P. Lansky, “The Müller–Lyer illusion in interpolated figures,” Percept. Mot. Skills 87, 499 (1998).
[CrossRef] [PubMed]

Evans, D. W.

A. P. Ginsburg and D. W. Evans, “Predicting visual illusions from filtered images based upon biological data,” J. Opt. Soc. Am. 69, 1443 (1979).

Figueroa, J. G.

M. Carrasco, J. G. Figueroa, and J. D. Willen, “A test of the spatial-frequency explanation of the Müller–Lyer illusion,” Perception 15, 553 (1986).
[CrossRef] [PubMed]

Foreman, N.

Yu. E. Shelepin, V. N. Chikhman, and N. Foreman, “Analysis of the studies of the perception of fragmented images: integral perception and perception from local attributes,” Fiziolog. Zh. 94, 758 (2008).

Gill, R. A.

A. P. Ginsburg, J. W. Carl, M. Kabrisky, C. F. Hall, and R. A. Gill, “Psychological aspects of a model for the classification of visual image,” in Advances in Cybernetics and Systems, ed., J. Rose(Gordon and Breach, London, 1976), pp. 1289–1305.

Ginsburg, A. P.

A. P. Ginsburg, “Perceptual capabilities, ambiguities and artifacts in man and machine,” Proc. SPIE 283, 78 (1981).

A. P. Ginsburg, “Specifying relevant spatial information for image evaluation and display design: An explanation of how we see certain objects,” Proc. Soc. Inf. Display 21, 219 (1980).

A. P. Ginsburg and D. W. Evans, “Predicting visual illusions from filtered images based upon biological data,” J. Opt. Soc. Am. 69, 1443 (1979).

A. P. Ginsburg, “On a filter approach to understanding the perception of visual form,” in Recognition of Pattern and Form, ed., D. G. Albrecht(Springer, Berlin, 1982), pp. 175–192.

A. P. Ginsburg, “Visual form perception based on biological filtering,” in Sensory Experience, Adaptation and Perception, eds., L. Spillmann and B. R. Wooten(Lawrence Erlbaum Associates, Hillsdale, N.J., 1984), pp. 53–72.

A. P. Ginsburg, J. W. Carl, M. Kabrisky, C. F. Hall, and R. A. Gill, “Psychological aspects of a model for the classification of visual image,” in Advances in Cybernetics and Systems, ed., J. Rose(Gordon and Breach, London, 1976), pp. 1289–1305.

Glennerster, A.

M. J. Morgan, G. J. Hole, and A. Glennerster, “Biases and sensitivities in geometrical illusion,” Vision Res. 30, 1793 (1990).
[CrossRef] [PubMed]

Gregory, R. L.

R. L. Gregory, Eye and Brain: the Psychology of Seeing (Princeton University Press, Princeton, New Jersey, 1997; Progress, Moscow, 1970).

Gutauskas, A.

A. Gutauskas, A. Bertulis, and A. Bulatov, “Shape recognition thresholds: Correlation with spatial frequency spectrum of the stimuli,” Perception 22, 99 (1993).

Hall, C. F.

A. P. Ginsburg, J. W. Carl, M. Kabrisky, C. F. Hall, and R. A. Gill, “Psychological aspects of a model for the classification of visual image,” in Advances in Cybernetics and Systems, ed., J. Rose(Gordon and Breach, London, 1976), pp. 1289–1305.

Hole, G. J.

M. J. Morgan, G. J. Hole, and A. Glennerster, “Biases and sensitivities in geometrical illusion,” Vision Res. 30, 1793 (1990).
[CrossRef] [PubMed]

Kabrisky, M.

A. P. Ginsburg, J. W. Carl, M. Kabrisky, C. F. Hall, and R. A. Gill, “Psychological aspects of a model for the classification of visual image,” in Advances in Cybernetics and Systems, ed., J. Rose(Gordon and Breach, London, 1976), pp. 1289–1305.

Kolesnikova, L. N.

Yu. E. Shelepin, L. N. Kolesnikova, and Yu. I. Levkovich, Visible Contrastometry (Measuring the Spatial Transfer Functions of the Visual System) (Nauka, Leningrad, 1985).

Koskin, S. A.

Yu. E. Shelepin, V. B. Makulov, N. N. Krasil’nikov, V. N. Chikhman, S. V. Pronin, V. F. Danilichev, and S. A. Koskin, “Iconics and methods of estimating the functional possibilities of the visual system,” Sens. Sist.319 (1998).

Krasil’nikov, N. N.

Yu. E. Shelepin, V. B. Makulov, N. N. Krasil’nikov, V. N. Chikhman, S. V. Pronin, V. F. Danilichev, and S. A. Koskin, “Iconics and methods of estimating the functional possibilities of the visual system,” Sens. Sist.319 (1998).

Lansky, P.

V. Di Maio and P. Lansky, “The Müller–Lyer illusion in interpolated figures,” Percept. Mot. Skills 87, 499 (1998).
[CrossRef] [PubMed]

Levkovich, Yu. I.

Yu. E. Shelepin, L. N. Kolesnikova, and Yu. I. Levkovich, Visible Contrastometry (Measuring the Spatial Transfer Functions of the Visual System) (Nauka, Leningrad, 1985).

Makulov, V. B.

Yu. E. Shelepin, V. B. Makulov, N. N. Krasil’nikov, V. N. Chikhman, S. V. Pronin, V. F. Danilichev, and S. A. Koskin, “Iconics and methods of estimating the functional possibilities of the visual system,” Sens. Sist.319 (1998).

Mitskene, L. I.

A. N. Bulatov, A. V. Bertulis, and L. I. Mitskene, “Quantitative studies of geometrical illusions,” Sens. Sist. 9, 79 (1995).

Moeller, J. R.

C. R. Carlson, J. R. Moeller, and C. H. Anderson, “Visual illusions without low spatial frequencies,” Vision Res. 24, 1407 (1984).
[CrossRef]

Morgan, M. J.

M. J. Morgan, G. J. Hole, and A. Glennerster, “Biases and sensitivities in geometrical illusion,” Vision Res. 30, 1793 (1990).
[CrossRef] [PubMed]

Ognivov, V. V.

V. V. Ognivov, G. I. Rozhkova, V. S. Tokareva, and V. A. Bastakov, “Mean value and variability of the Müller–Lyer illusion in comparison with visual estimation in children and adults,” Sens. Sist. 20, 288 (2006).

Predebon, J.

J. Predebon, “Length illusions in conventional and single-wing Müller–Lyer stimuli,” Percept. Psychophys. 62, 1086 (2000).
[CrossRef] [PubMed]

Pressay, A. W.

A. W. Pressay and C. A. Pressay, “Attentive fields are related to focal and contextual features: A study of Müller–Lyer distortions,” Percept. Psychophys. 51, 423 (1992).
[CrossRef] [PubMed]

Pressay, C. A.

A. W. Pressay and C. A. Pressay, “Attentive fields are related to focal and contextual features: A study of Müller–Lyer distortions,” Percept. Psychophys. 51, 423 (1992).
[CrossRef] [PubMed]

Pronin, S. V.

Yu. E. Shelepin, V. B. Makulov, N. N. Krasil’nikov, V. N. Chikhman, S. V. Pronin, V. F. Danilichev, and S. A. Koskin, “Iconics and methods of estimating the functional possibilities of the visual system,” Sens. Sist.319 (1998).

Ringach, D. L.

C. E. Bredfeldt and D. L. Ringach, “Dynamics of spatial-frequency tuning in macaque V1,” J. Neurosci. 22, 1976 (2002).
[PubMed]

Rozhkova, G. I.

V. V. Ognivov, G. I. Rozhkova, V. S. Tokareva, and V. A. Bastakov, “Mean value and variability of the Müller–Lyer illusion in comparison with visual estimation in children and adults,” Sens. Sist. 20, 288 (2006).

Shelepin, Yu. E.

Yu. E. Shelepin, V. N. Chikhman, and N. Foreman, “Analysis of the studies of the perception of fragmented images: integral perception and perception from local attributes,” Fiziolog. Zh. 94, 758 (2008).

Yu. E. Shelepin, V. B. Makulov, N. N. Krasil’nikov, V. N. Chikhman, S. V. Pronin, V. F. Danilichev, and S. A. Koskin, “Iconics and methods of estimating the functional possibilities of the visual system,” Sens. Sist.319 (1998).

Yu. E. Shelepin, “Comparison of the topographic and spatial-frequency responses of the lateral suprasylvian and striated cortex of the cat,” Neĭrofiz. 16, 35 (1984).

Yu. E. Shelepin, “Spatial-frequency responses of the receptor fields of the neurons of the lateral suprasylvian region,” Neĭrofiz. 14, 608 (1982).

Yu. E. Shelepin, “Filtration properties of the receptor fields of the neurons of the visual cortex,” Dok. Akad. Nauk SSSR 261, 1506 (1981).

Yu. E. Shelepin, “Localization of the regions of the visual cortex of the cat that give an invariant answer as the image size varies,” Neĭrofiz. 5, 115 (1973).

Yu. E. Shelepin, L. N. Kolesnikova, and Yu. I. Levkovich, Visible Contrastometry (Measuring the Spatial Transfer Functions of the Visual System) (Nauka, Leningrad, 1985).

Yu. E. Shelepin and V. N. Chikhman, Local and Global Analysis in the Visual System, ed., V. A. Barabanshchikov(Inst. Psikhol. RAN, Moscow, 2009), pp. 310–335.

Skottun, B. C.

B. C. Skottun, “Amplitude and phase in the Müller–Lyer illusion,” Perception 29, 201 (2000).
[CrossRef] [PubMed]

Thompson, I. D.

D. J. Tolhurst and I. D. Thompson, “On the variety of spatial-frequency selectivities shown by neurons in area 17 of the cat,” Proc. R. Soc. London 213, 183 (1982).
[CrossRef]

Thorell, L. G.

R. L. DeValois, D. G. Albrecht, and L. G. Thorell, “Spatial-frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545 (1982).
[CrossRef] [PubMed]

Tokareva, V. S.

V. V. Ognivov, G. I. Rozhkova, V. S. Tokareva, and V. A. Bastakov, “Mean value and variability of the Müller–Lyer illusion in comparison with visual estimation in children and adults,” Sens. Sist. 20, 288 (2006).

Tolhurst, D. J.

D. J. Tolhurst and I. D. Thompson, “On the variety of spatial-frequency selectivities shown by neurons in area 17 of the cat,” Proc. R. Soc. London 213, 183 (1982).
[CrossRef]

Willen, J. D.

M. Carrasco, J. G. Figueroa, and J. D. Willen, “A test of the spatial-frequency explanation of the Müller–Lyer illusion,” Perception 15, 553 (1986).
[CrossRef] [PubMed]

Dok. Akad. Nauk SSSR

Yu. E. Shelepin, “Filtration properties of the receptor fields of the neurons of the visual cortex,” Dok. Akad. Nauk SSSR 261, 1506 (1981).

Fiziolog. Zh.

Yu. E. Shelepin, V. N. Chikhman, and N. Foreman, “Analysis of the studies of the perception of fragmented images: integral perception and perception from local attributes,” Fiziolog. Zh. 94, 758 (2008).

J. Neurosci.

C. E. Bredfeldt and D. L. Ringach, “Dynamics of spatial-frequency tuning in macaque V1,” J. Neurosci. 22, 1976 (2002).
[PubMed]

J. Opt. Soc. Am.

A. P. Ginsburg and D. W. Evans, “Predicting visual illusions from filtered images based upon biological data,” J. Opt. Soc. Am. 69, 1443 (1979).

J. Physiol. (London)

C. Blakemore and F. W. Campbell, “On the existence of neurons in the human visual system selectivity sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237 (1969).

Neirofiz.

Yu. E. Shelepin, “Spatial-frequency responses of the receptor fields of the neurons of the lateral suprasylvian region,” Neĭrofiz. 14, 608 (1982).

Yu. E. Shelepin, “Comparison of the topographic and spatial-frequency responses of the lateral suprasylvian and striated cortex of the cat,” Neĭrofiz. 16, 35 (1984).

Yu. E. Shelepin, “Localization of the regions of the visual cortex of the cat that give an invariant answer as the image size varies,” Neĭrofiz. 5, 115 (1973).

Percept. Mot. Skills

V. Di Maio and P. Lansky, “The Müller–Lyer illusion in interpolated figures,” Percept. Mot. Skills 87, 499 (1998).
[CrossRef] [PubMed]

Percept. Psychophys.

J. Predebon, “Length illusions in conventional and single-wing Müller–Lyer stimuli,” Percept. Psychophys. 62, 1086 (2000).
[CrossRef] [PubMed]

A. W. Pressay and C. A. Pressay, “Attentive fields are related to focal and contextual features: A study of Müller–Lyer distortions,” Percept. Psychophys. 51, 423 (1992).
[CrossRef] [PubMed]

Perception

B. C. Skottun, “Amplitude and phase in the Müller–Lyer illusion,” Perception 29, 201 (2000).
[CrossRef] [PubMed]

M. Carrasco, J. G. Figueroa, and J. D. Willen, “A test of the spatial-frequency explanation of the Müller–Lyer illusion,” Perception 15, 553 (1986).
[CrossRef] [PubMed]

A. Gutauskas, A. Bertulis, and A. Bulatov, “Shape recognition thresholds: Correlation with spatial frequency spectrum of the stimuli,” Perception 22, 99 (1993).

Proc. R. Soc. London

D. J. Tolhurst and I. D. Thompson, “On the variety of spatial-frequency selectivities shown by neurons in area 17 of the cat,” Proc. R. Soc. London 213, 183 (1982).
[CrossRef]

Proc. Soc. Inf. Display

A. P. Ginsburg, “Specifying relevant spatial information for image evaluation and display design: An explanation of how we see certain objects,” Proc. Soc. Inf. Display 21, 219 (1980).

Proc. SPIE

A. P. Ginsburg, “Perceptual capabilities, ambiguities and artifacts in man and machine,” Proc. SPIE 283, 78 (1981).

Sens. Sist.

A. N. Bulatov, A. V. Bertulis, A. Belyavichus, and N. Bulatova, “Illusions of length and their description on the basis of the centroid concept,” Sens. Sist. 23, No. 1, 3 (2009).

A. N. Bulatov, A. V. Bertulis, and L. I. Mitskene, “Quantitative studies of geometrical illusions,” Sens. Sist. 9, 79 (1995).

V. V. Ognivov, G. I. Rozhkova, V. S. Tokareva, and V. A. Bastakov, “Mean value and variability of the Müller–Lyer illusion in comparison with visual estimation in children and adults,” Sens. Sist. 20, 288 (2006).

Yu. E. Shelepin, V. B. Makulov, N. N. Krasil’nikov, V. N. Chikhman, S. V. Pronin, V. F. Danilichev, and S. A. Koskin, “Iconics and methods of estimating the functional possibilities of the visual system,” Sens. Sist.319 (1998).

Sistema Nervoso e Riabilitazione

V. Di Maio, “Perceptual versus cognitive processing in visual perception of geometrical figures: A short review,” Sistema Nervoso e Riabilitazione 1, 35 (2000).

Vision Res.

M. J. Morgan, G. J. Hole, and A. Glennerster, “Biases and sensitivities in geometrical illusion,” Vision Res. 30, 1793 (1990).
[CrossRef] [PubMed]

C. R. Carlson, J. R. Moeller, and C. H. Anderson, “Visual illusions without low spatial frequencies,” Vision Res. 24, 1407 (1984).
[CrossRef]

R. L. DeValois, D. G. Albrecht, and L. G. Thorell, “Spatial-frequency selectivity of cells in macaque visual cortex,” Vision Res. 22, 545 (1982).
[CrossRef] [PubMed]

Other

Yu. E. Shelepin, L. N. Kolesnikova, and Yu. I. Levkovich, Visible Contrastometry (Measuring the Spatial Transfer Functions of the Visual System) (Nauka, Leningrad, 1985).

R. L. Gregory, Eye and Brain: the Psychology of Seeing (Princeton University Press, Princeton, New Jersey, 1997; Progress, Moscow, 1970).

Yu. E. Shelepin and V. N. Chikhman, Local and Global Analysis in the Visual System, ed., V. A. Barabanshchikov(Inst. Psikhol. RAN, Moscow, 2009), pp. 310–335.

A. P. Ginsburg, J. W. Carl, M. Kabrisky, C. F. Hall, and R. A. Gill, “Psychological aspects of a model for the classification of visual image,” in Advances in Cybernetics and Systems, ed., J. Rose(Gordon and Breach, London, 1976), pp. 1289–1305.

A. P. Ginsburg, “On a filter approach to understanding the perception of visual form,” in Recognition of Pattern and Form, ed., D. G. Albrecht(Springer, Berlin, 1982), pp. 175–192.

A. P. Ginsburg, “Visual form perception based on biological filtering,” in Sensory Experience, Adaptation and Perception, eds., L. Spillmann and B. R. Wooten(Lawrence Erlbaum Associates, Hillsdale, N.J., 1984), pp. 53–72.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.