Abstract

This paper presents the results of growing quantum wells based on HgTe (HgTe/Cd<sub>0.735</sub>Hg<sub>0.265</sub>Te) 16.2 and 21nm thick on substrates of (013) CdTe/ZnTe/GaAs by molecular-beam epitaxy. The composition and thickness of the spacer and of the quantum well were monitored by an ellipsometric technique during growth. Galvanomagnetic studies in a wide range of magnetic fields (1-12T) at temperatures close to that of liquid helium (4.2K) showed that a two-dimensional electron gas is present in the nanostructures and that the levels are quantized. High mobilities were obtained for the two-dimensional electron gas: μ<sub>e</sub>=2×10<sup>5</sup>cm<sup>2</sup>/(V⋅sec) for an electron density of N<sub>s</sub>=1.5×10<sup>11</sup>cm<sup>−2</sup> and μ<sub>e</sub>=5×10<sup>5</sup>cm<sup>2</sup>/(V⋅sec) for N<sub>s</sub>=3.5×10<sup>11</sup>cm<sup>−2</sup>. The circular and linear photogalvanic effects were studied in the quantum wells at room temperature in a wide wavelength interval: from the mid-IR (6-16μm) to the terahertz range (100-500μm).

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Schulman and T. C. McGill, “The CdTe/HgTe superlattice: Proposal for a new infrared material,” Appl. Phys. Lett. 34, 663 (1979).
    [CrossRef]
  2. M. W. Goodwin, M. A. Kinch, and R. J. Koestner, “Metal-insulator-semiconductor properties of HgTe-CdTe superlattices,” J. Vac. Sci. Technol. A 6, 2685 (1988).
    [CrossRef]
  3. J. P. Zanatta, F. Noel, P. Ballet, N. Hidadach, A. Million, G. Destefanis, E. Mottin, C. Kopp, E. Picard, and E. Hadji, “HgCdTe MBE material for microcavity light emitters: application to gas detection in the 2-6μm range,” J. Electron. Mater. 32, 602 (2003).
    [CrossRef]
  4. Y. D. Zhou, C. R. Becker, Y. Selament, Y. Chang, R. Ashokan, R. T. Boreiko, T. Aoki, D. J. Smith, A. L. Betz, and S. Sivananthan, “Far-infrared detector based on HgTe/HgCdTe superlattices,” J. Electron. Mater. 32, 608 (2003).
    [CrossRef]
  5. Y. Selament, Y. D. Zhou, J. Zhao, Y. Chang, C. R. Becker, R. Ashokan, C. H. Grein, and S. Sivananthan, “HgTe/HgCdTe superlattices grown on CdTe/Si by molecular beam epitaxy for infrared detection,” J. Electron. Mater. 33, 503 (2004).
    [CrossRef]
  6. C. H. Grein, H. Jung, R. Singh, and M. E. Flatte, “Comparison of normal and inverted band structure of HgTe/CdTe superlattices for very long-wavelength infrared detector,” J. Electron. Mater. 34, 905 (2005).
    [CrossRef]
  7. S. D. Ganichev and W. Prettl, Intense Terahertz Excitation of Semiconductors (Oxford U. Press, 2006), pp. 75-78.
  8. S. A. Dvoretskiĭ, D. G. Ikusov, D. Kh. Kvon, N. N. Mikhaĭlov, N. Daĭ, R. N. Smirnov, Yu. G. Sidorov, and V. A. Shvets, “Growing HgTe/Cd0.735Hg0.265Te quantum wells by molecular-beam epitaxy,” Avtometriya 43, No. 4, 104 (2007).
  9. E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science International, Harrow, UK, 2005).
  10. S. D. Ganichev and E. L. Ivchenko, Spin Physics in Semiconductors, ed. M.I.Dyakonov (Springer, Berlin, 2008).
  11. B. Wittmann, R. Ravash, H. Diehl, S. N. Danilov, Z. D. Kvon, S. A. Tarasenko, E. L.Ivchenko, N. N. Mikhailov, S. A. Dvoretsky, W. Prettl, and S. D. Ganichev, “Photogalvanic effects in HgTe quantum wells,” arXiv:0708.2169 (2007).
  12. S. D. Ganichev, W. Weber, J. Kiermaier, S. N. Danilov, D. Schuh, W. Wegscheider, Ch. Gerl, D. Bougeard, G. Abstreiter, and W. Prettl, “All-electric detection of the polarization state of terahertz laser radiation,” J. Appl. Phys. 103, 114504 (2008).
    [CrossRef]
  13. X. C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V. Hock, H. Buhmann, C. R. Becker, and G. Landwehr, “Rashba splitting in n-type modulation-doped HgTe quantum wells with an inverted band structure,” Phys. Rev. B 63, 245305 (2001).
    [CrossRef]

2008 (1)

S. D. Ganichev, W. Weber, J. Kiermaier, S. N. Danilov, D. Schuh, W. Wegscheider, Ch. Gerl, D. Bougeard, G. Abstreiter, and W. Prettl, “All-electric detection of the polarization state of terahertz laser radiation,” J. Appl. Phys. 103, 114504 (2008).
[CrossRef]

2007 (1)

S. A. Dvoretskiĭ, D. G. Ikusov, D. Kh. Kvon, N. N. Mikhaĭlov, N. Daĭ, R. N. Smirnov, Yu. G. Sidorov, and V. A. Shvets, “Growing HgTe/Cd0.735Hg0.265Te quantum wells by molecular-beam epitaxy,” Avtometriya 43, No. 4, 104 (2007).

2005 (1)

C. H. Grein, H. Jung, R. Singh, and M. E. Flatte, “Comparison of normal and inverted band structure of HgTe/CdTe superlattices for very long-wavelength infrared detector,” J. Electron. Mater. 34, 905 (2005).
[CrossRef]

2004 (1)

Y. Selament, Y. D. Zhou, J. Zhao, Y. Chang, C. R. Becker, R. Ashokan, C. H. Grein, and S. Sivananthan, “HgTe/HgCdTe superlattices grown on CdTe/Si by molecular beam epitaxy for infrared detection,” J. Electron. Mater. 33, 503 (2004).
[CrossRef]

2003 (2)

J. P. Zanatta, F. Noel, P. Ballet, N. Hidadach, A. Million, G. Destefanis, E. Mottin, C. Kopp, E. Picard, and E. Hadji, “HgCdTe MBE material for microcavity light emitters: application to gas detection in the 2-6μm range,” J. Electron. Mater. 32, 602 (2003).
[CrossRef]

Y. D. Zhou, C. R. Becker, Y. Selament, Y. Chang, R. Ashokan, R. T. Boreiko, T. Aoki, D. J. Smith, A. L. Betz, and S. Sivananthan, “Far-infrared detector based on HgTe/HgCdTe superlattices,” J. Electron. Mater. 32, 608 (2003).
[CrossRef]

2001 (1)

X. C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V. Hock, H. Buhmann, C. R. Becker, and G. Landwehr, “Rashba splitting in n-type modulation-doped HgTe quantum wells with an inverted band structure,” Phys. Rev. B 63, 245305 (2001).
[CrossRef]

1988 (1)

M. W. Goodwin, M. A. Kinch, and R. J. Koestner, “Metal-insulator-semiconductor properties of HgTe-CdTe superlattices,” J. Vac. Sci. Technol. A 6, 2685 (1988).
[CrossRef]

1979 (1)

J. N. Schulman and T. C. McGill, “The CdTe/HgTe superlattice: Proposal for a new infrared material,” Appl. Phys. Lett. 34, 663 (1979).
[CrossRef]

Abstreiter, G.

S. D. Ganichev, W. Weber, J. Kiermaier, S. N. Danilov, D. Schuh, W. Wegscheider, Ch. Gerl, D. Bougeard, G. Abstreiter, and W. Prettl, “All-electric detection of the polarization state of terahertz laser radiation,” J. Appl. Phys. 103, 114504 (2008).
[CrossRef]

Aoki, T.

Y. D. Zhou, C. R. Becker, Y. Selament, Y. Chang, R. Ashokan, R. T. Boreiko, T. Aoki, D. J. Smith, A. L. Betz, and S. Sivananthan, “Far-infrared detector based on HgTe/HgCdTe superlattices,” J. Electron. Mater. 32, 608 (2003).
[CrossRef]

Ashokan, R.

Y. Selament, Y. D. Zhou, J. Zhao, Y. Chang, C. R. Becker, R. Ashokan, C. H. Grein, and S. Sivananthan, “HgTe/HgCdTe superlattices grown on CdTe/Si by molecular beam epitaxy for infrared detection,” J. Electron. Mater. 33, 503 (2004).
[CrossRef]

Y. D. Zhou, C. R. Becker, Y. Selament, Y. Chang, R. Ashokan, R. T. Boreiko, T. Aoki, D. J. Smith, A. L. Betz, and S. Sivananthan, “Far-infrared detector based on HgTe/HgCdTe superlattices,” J. Electron. Mater. 32, 608 (2003).
[CrossRef]

Ballet, P.

J. P. Zanatta, F. Noel, P. Ballet, N. Hidadach, A. Million, G. Destefanis, E. Mottin, C. Kopp, E. Picard, and E. Hadji, “HgCdTe MBE material for microcavity light emitters: application to gas detection in the 2-6μm range,” J. Electron. Mater. 32, 602 (2003).
[CrossRef]

Becker, C. R.

Y. Selament, Y. D. Zhou, J. Zhao, Y. Chang, C. R. Becker, R. Ashokan, C. H. Grein, and S. Sivananthan, “HgTe/HgCdTe superlattices grown on CdTe/Si by molecular beam epitaxy for infrared detection,” J. Electron. Mater. 33, 503 (2004).
[CrossRef]

Y. D. Zhou, C. R. Becker, Y. Selament, Y. Chang, R. Ashokan, R. T. Boreiko, T. Aoki, D. J. Smith, A. L. Betz, and S. Sivananthan, “Far-infrared detector based on HgTe/HgCdTe superlattices,” J. Electron. Mater. 32, 608 (2003).
[CrossRef]

X. C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V. Hock, H. Buhmann, C. R. Becker, and G. Landwehr, “Rashba splitting in n-type modulation-doped HgTe quantum wells with an inverted band structure,” Phys. Rev. B 63, 245305 (2001).
[CrossRef]

Betz, A. L.

Y. D. Zhou, C. R. Becker, Y. Selament, Y. Chang, R. Ashokan, R. T. Boreiko, T. Aoki, D. J. Smith, A. L. Betz, and S. Sivananthan, “Far-infrared detector based on HgTe/HgCdTe superlattices,” J. Electron. Mater. 32, 608 (2003).
[CrossRef]

Boreiko, R. T.

Y. D. Zhou, C. R. Becker, Y. Selament, Y. Chang, R. Ashokan, R. T. Boreiko, T. Aoki, D. J. Smith, A. L. Betz, and S. Sivananthan, “Far-infrared detector based on HgTe/HgCdTe superlattices,” J. Electron. Mater. 32, 608 (2003).
[CrossRef]

Bougeard, D.

S. D. Ganichev, W. Weber, J. Kiermaier, S. N. Danilov, D. Schuh, W. Wegscheider, Ch. Gerl, D. Bougeard, G. Abstreiter, and W. Prettl, “All-electric detection of the polarization state of terahertz laser radiation,” J. Appl. Phys. 103, 114504 (2008).
[CrossRef]

Buhmann, H.

X. C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V. Hock, H. Buhmann, C. R. Becker, and G. Landwehr, “Rashba splitting in n-type modulation-doped HgTe quantum wells with an inverted band structure,” Phys. Rev. B 63, 245305 (2001).
[CrossRef]

Chang, Y.

Y. Selament, Y. D. Zhou, J. Zhao, Y. Chang, C. R. Becker, R. Ashokan, C. H. Grein, and S. Sivananthan, “HgTe/HgCdTe superlattices grown on CdTe/Si by molecular beam epitaxy for infrared detection,” J. Electron. Mater. 33, 503 (2004).
[CrossRef]

Y. D. Zhou, C. R. Becker, Y. Selament, Y. Chang, R. Ashokan, R. T. Boreiko, T. Aoki, D. J. Smith, A. L. Betz, and S. Sivananthan, “Far-infrared detector based on HgTe/HgCdTe superlattices,” J. Electron. Mater. 32, 608 (2003).
[CrossRef]

Dai, N.

S. A. Dvoretskiĭ, D. G. Ikusov, D. Kh. Kvon, N. N. Mikhaĭlov, N. Daĭ, R. N. Smirnov, Yu. G. Sidorov, and V. A. Shvets, “Growing HgTe/Cd0.735Hg0.265Te quantum wells by molecular-beam epitaxy,” Avtometriya 43, No. 4, 104 (2007).

Danilov, S. N.

S. D. Ganichev, W. Weber, J. Kiermaier, S. N. Danilov, D. Schuh, W. Wegscheider, Ch. Gerl, D. Bougeard, G. Abstreiter, and W. Prettl, “All-electric detection of the polarization state of terahertz laser radiation,” J. Appl. Phys. 103, 114504 (2008).
[CrossRef]

B. Wittmann, R. Ravash, H. Diehl, S. N. Danilov, Z. D. Kvon, S. A. Tarasenko, E. L.Ivchenko, N. N. Mikhailov, S. A. Dvoretsky, W. Prettl, and S. D. Ganichev, “Photogalvanic effects in HgTe quantum wells,” arXiv:0708.2169 (2007).

Destefanis, G.

J. P. Zanatta, F. Noel, P. Ballet, N. Hidadach, A. Million, G. Destefanis, E. Mottin, C. Kopp, E. Picard, and E. Hadji, “HgCdTe MBE material for microcavity light emitters: application to gas detection in the 2-6μm range,” J. Electron. Mater. 32, 602 (2003).
[CrossRef]

Diehl, H.

B. Wittmann, R. Ravash, H. Diehl, S. N. Danilov, Z. D. Kvon, S. A. Tarasenko, E. L.Ivchenko, N. N. Mikhailov, S. A. Dvoretsky, W. Prettl, and S. D. Ganichev, “Photogalvanic effects in HgTe quantum wells,” arXiv:0708.2169 (2007).

Dvoretskii, S. A.

S. A. Dvoretskiĭ, D. G. Ikusov, D. Kh. Kvon, N. N. Mikhaĭlov, N. Daĭ, R. N. Smirnov, Yu. G. Sidorov, and V. A. Shvets, “Growing HgTe/Cd0.735Hg0.265Te quantum wells by molecular-beam epitaxy,” Avtometriya 43, No. 4, 104 (2007).

Dvoretsky, S. A.

B. Wittmann, R. Ravash, H. Diehl, S. N. Danilov, Z. D. Kvon, S. A. Tarasenko, E. L.Ivchenko, N. N. Mikhailov, S. A. Dvoretsky, W. Prettl, and S. D. Ganichev, “Photogalvanic effects in HgTe quantum wells,” arXiv:0708.2169 (2007).

Flatte, M. E.

C. H. Grein, H. Jung, R. Singh, and M. E. Flatte, “Comparison of normal and inverted band structure of HgTe/CdTe superlattices for very long-wavelength infrared detector,” J. Electron. Mater. 34, 905 (2005).
[CrossRef]

Ganichev, S. D.

S. D. Ganichev, W. Weber, J. Kiermaier, S. N. Danilov, D. Schuh, W. Wegscheider, Ch. Gerl, D. Bougeard, G. Abstreiter, and W. Prettl, “All-electric detection of the polarization state of terahertz laser radiation,” J. Appl. Phys. 103, 114504 (2008).
[CrossRef]

B. Wittmann, R. Ravash, H. Diehl, S. N. Danilov, Z. D. Kvon, S. A. Tarasenko, E. L.Ivchenko, N. N. Mikhailov, S. A. Dvoretsky, W. Prettl, and S. D. Ganichev, “Photogalvanic effects in HgTe quantum wells,” arXiv:0708.2169 (2007).

S. D. Ganichev and W. Prettl, Intense Terahertz Excitation of Semiconductors (Oxford U. Press, 2006), pp. 75-78.

S. D. Ganichev and E. L. Ivchenko, Spin Physics in Semiconductors, ed. M.I.Dyakonov (Springer, Berlin, 2008).

Gerl, Ch.

S. D. Ganichev, W. Weber, J. Kiermaier, S. N. Danilov, D. Schuh, W. Wegscheider, Ch. Gerl, D. Bougeard, G. Abstreiter, and W. Prettl, “All-electric detection of the polarization state of terahertz laser radiation,” J. Appl. Phys. 103, 114504 (2008).
[CrossRef]

Goodwin, M. W.

M. W. Goodwin, M. A. Kinch, and R. J. Koestner, “Metal-insulator-semiconductor properties of HgTe-CdTe superlattices,” J. Vac. Sci. Technol. A 6, 2685 (1988).
[CrossRef]

Grein, C. H.

C. H. Grein, H. Jung, R. Singh, and M. E. Flatte, “Comparison of normal and inverted band structure of HgTe/CdTe superlattices for very long-wavelength infrared detector,” J. Electron. Mater. 34, 905 (2005).
[CrossRef]

Y. Selament, Y. D. Zhou, J. Zhao, Y. Chang, C. R. Becker, R. Ashokan, C. H. Grein, and S. Sivananthan, “HgTe/HgCdTe superlattices grown on CdTe/Si by molecular beam epitaxy for infrared detection,” J. Electron. Mater. 33, 503 (2004).
[CrossRef]

Hadji, E.

J. P. Zanatta, F. Noel, P. Ballet, N. Hidadach, A. Million, G. Destefanis, E. Mottin, C. Kopp, E. Picard, and E. Hadji, “HgCdTe MBE material for microcavity light emitters: application to gas detection in the 2-6μm range,” J. Electron. Mater. 32, 602 (2003).
[CrossRef]

Hidadach, N.

J. P. Zanatta, F. Noel, P. Ballet, N. Hidadach, A. Million, G. Destefanis, E. Mottin, C. Kopp, E. Picard, and E. Hadji, “HgCdTe MBE material for microcavity light emitters: application to gas detection in the 2-6μm range,” J. Electron. Mater. 32, 602 (2003).
[CrossRef]

Hock, V.

X. C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V. Hock, H. Buhmann, C. R. Becker, and G. Landwehr, “Rashba splitting in n-type modulation-doped HgTe quantum wells with an inverted band structure,” Phys. Rev. B 63, 245305 (2001).
[CrossRef]

Ikusov, D. G.

S. A. Dvoretskiĭ, D. G. Ikusov, D. Kh. Kvon, N. N. Mikhaĭlov, N. Daĭ, R. N. Smirnov, Yu. G. Sidorov, and V. A. Shvets, “Growing HgTe/Cd0.735Hg0.265Te quantum wells by molecular-beam epitaxy,” Avtometriya 43, No. 4, 104 (2007).

Ivchenko, E. L.

S. D. Ganichev and E. L. Ivchenko, Spin Physics in Semiconductors, ed. M.I.Dyakonov (Springer, Berlin, 2008).

E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science International, Harrow, UK, 2005).

B. Wittmann, R. Ravash, H. Diehl, S. N. Danilov, Z. D. Kvon, S. A. Tarasenko, E. L.Ivchenko, N. N. Mikhailov, S. A. Dvoretsky, W. Prettl, and S. D. Ganichev, “Photogalvanic effects in HgTe quantum wells,” arXiv:0708.2169 (2007).

Jung, H.

C. H. Grein, H. Jung, R. Singh, and M. E. Flatte, “Comparison of normal and inverted band structure of HgTe/CdTe superlattices for very long-wavelength infrared detector,” J. Electron. Mater. 34, 905 (2005).
[CrossRef]

Kh. Kvon, D.

S. A. Dvoretskiĭ, D. G. Ikusov, D. Kh. Kvon, N. N. Mikhaĭlov, N. Daĭ, R. N. Smirnov, Yu. G. Sidorov, and V. A. Shvets, “Growing HgTe/Cd0.735Hg0.265Te quantum wells by molecular-beam epitaxy,” Avtometriya 43, No. 4, 104 (2007).

Kiermaier, J.

S. D. Ganichev, W. Weber, J. Kiermaier, S. N. Danilov, D. Schuh, W. Wegscheider, Ch. Gerl, D. Bougeard, G. Abstreiter, and W. Prettl, “All-electric detection of the polarization state of terahertz laser radiation,” J. Appl. Phys. 103, 114504 (2008).
[CrossRef]

Kinch, M. A.

M. W. Goodwin, M. A. Kinch, and R. J. Koestner, “Metal-insulator-semiconductor properties of HgTe-CdTe superlattices,” J. Vac. Sci. Technol. A 6, 2685 (1988).
[CrossRef]

Koestner, R. J.

M. W. Goodwin, M. A. Kinch, and R. J. Koestner, “Metal-insulator-semiconductor properties of HgTe-CdTe superlattices,” J. Vac. Sci. Technol. A 6, 2685 (1988).
[CrossRef]

Kopp, C.

J. P. Zanatta, F. Noel, P. Ballet, N. Hidadach, A. Million, G. Destefanis, E. Mottin, C. Kopp, E. Picard, and E. Hadji, “HgCdTe MBE material for microcavity light emitters: application to gas detection in the 2-6μm range,” J. Electron. Mater. 32, 602 (2003).
[CrossRef]

Kvon, Z. D.

B. Wittmann, R. Ravash, H. Diehl, S. N. Danilov, Z. D. Kvon, S. A. Tarasenko, E. L.Ivchenko, N. N. Mikhailov, S. A. Dvoretsky, W. Prettl, and S. D. Ganichev, “Photogalvanic effects in HgTe quantum wells,” arXiv:0708.2169 (2007).

Landwehr, G.

X. C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V. Hock, H. Buhmann, C. R. Becker, and G. Landwehr, “Rashba splitting in n-type modulation-doped HgTe quantum wells with an inverted band structure,” Phys. Rev. B 63, 245305 (2001).
[CrossRef]

McGill, T. C.

J. N. Schulman and T. C. McGill, “The CdTe/HgTe superlattice: Proposal for a new infrared material,” Appl. Phys. Lett. 34, 663 (1979).
[CrossRef]

Mikhailov, N. N.

S. A. Dvoretskiĭ, D. G. Ikusov, D. Kh. Kvon, N. N. Mikhaĭlov, N. Daĭ, R. N. Smirnov, Yu. G. Sidorov, and V. A. Shvets, “Growing HgTe/Cd0.735Hg0.265Te quantum wells by molecular-beam epitaxy,” Avtometriya 43, No. 4, 104 (2007).

B. Wittmann, R. Ravash, H. Diehl, S. N. Danilov, Z. D. Kvon, S. A. Tarasenko, E. L.Ivchenko, N. N. Mikhailov, S. A. Dvoretsky, W. Prettl, and S. D. Ganichev, “Photogalvanic effects in HgTe quantum wells,” arXiv:0708.2169 (2007).

Million, A.

J. P. Zanatta, F. Noel, P. Ballet, N. Hidadach, A. Million, G. Destefanis, E. Mottin, C. Kopp, E. Picard, and E. Hadji, “HgCdTe MBE material for microcavity light emitters: application to gas detection in the 2-6μm range,” J. Electron. Mater. 32, 602 (2003).
[CrossRef]

Mottin, E.

J. P. Zanatta, F. Noel, P. Ballet, N. Hidadach, A. Million, G. Destefanis, E. Mottin, C. Kopp, E. Picard, and E. Hadji, “HgCdTe MBE material for microcavity light emitters: application to gas detection in the 2-6μm range,” J. Electron. Mater. 32, 602 (2003).
[CrossRef]

Noel, F.

J. P. Zanatta, F. Noel, P. Ballet, N. Hidadach, A. Million, G. Destefanis, E. Mottin, C. Kopp, E. Picard, and E. Hadji, “HgCdTe MBE material for microcavity light emitters: application to gas detection in the 2-6μm range,” J. Electron. Mater. 32, 602 (2003).
[CrossRef]

Ortner, K.

X. C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V. Hock, H. Buhmann, C. R. Becker, and G. Landwehr, “Rashba splitting in n-type modulation-doped HgTe quantum wells with an inverted band structure,” Phys. Rev. B 63, 245305 (2001).
[CrossRef]

Pfeuffer-Jeschke, A.

X. C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V. Hock, H. Buhmann, C. R. Becker, and G. Landwehr, “Rashba splitting in n-type modulation-doped HgTe quantum wells with an inverted band structure,” Phys. Rev. B 63, 245305 (2001).
[CrossRef]

Picard, E.

J. P. Zanatta, F. Noel, P. Ballet, N. Hidadach, A. Million, G. Destefanis, E. Mottin, C. Kopp, E. Picard, and E. Hadji, “HgCdTe MBE material for microcavity light emitters: application to gas detection in the 2-6μm range,” J. Electron. Mater. 32, 602 (2003).
[CrossRef]

Prettl, W.

S. D. Ganichev, W. Weber, J. Kiermaier, S. N. Danilov, D. Schuh, W. Wegscheider, Ch. Gerl, D. Bougeard, G. Abstreiter, and W. Prettl, “All-electric detection of the polarization state of terahertz laser radiation,” J. Appl. Phys. 103, 114504 (2008).
[CrossRef]

B. Wittmann, R. Ravash, H. Diehl, S. N. Danilov, Z. D. Kvon, S. A. Tarasenko, E. L.Ivchenko, N. N. Mikhailov, S. A. Dvoretsky, W. Prettl, and S. D. Ganichev, “Photogalvanic effects in HgTe quantum wells,” arXiv:0708.2169 (2007).

S. D. Ganichev and W. Prettl, Intense Terahertz Excitation of Semiconductors (Oxford U. Press, 2006), pp. 75-78.

Ravash, R.

B. Wittmann, R. Ravash, H. Diehl, S. N. Danilov, Z. D. Kvon, S. A. Tarasenko, E. L.Ivchenko, N. N. Mikhailov, S. A. Dvoretsky, W. Prettl, and S. D. Ganichev, “Photogalvanic effects in HgTe quantum wells,” arXiv:0708.2169 (2007).

Schuh, D.

S. D. Ganichev, W. Weber, J. Kiermaier, S. N. Danilov, D. Schuh, W. Wegscheider, Ch. Gerl, D. Bougeard, G. Abstreiter, and W. Prettl, “All-electric detection of the polarization state of terahertz laser radiation,” J. Appl. Phys. 103, 114504 (2008).
[CrossRef]

Schulman, J. N.

J. N. Schulman and T. C. McGill, “The CdTe/HgTe superlattice: Proposal for a new infrared material,” Appl. Phys. Lett. 34, 663 (1979).
[CrossRef]

Selament, Y.

Y. Selament, Y. D. Zhou, J. Zhao, Y. Chang, C. R. Becker, R. Ashokan, C. H. Grein, and S. Sivananthan, “HgTe/HgCdTe superlattices grown on CdTe/Si by molecular beam epitaxy for infrared detection,” J. Electron. Mater. 33, 503 (2004).
[CrossRef]

Y. D. Zhou, C. R. Becker, Y. Selament, Y. Chang, R. Ashokan, R. T. Boreiko, T. Aoki, D. J. Smith, A. L. Betz, and S. Sivananthan, “Far-infrared detector based on HgTe/HgCdTe superlattices,” J. Electron. Mater. 32, 608 (2003).
[CrossRef]

Shvets, V. A.

S. A. Dvoretskiĭ, D. G. Ikusov, D. Kh. Kvon, N. N. Mikhaĭlov, N. Daĭ, R. N. Smirnov, Yu. G. Sidorov, and V. A. Shvets, “Growing HgTe/Cd0.735Hg0.265Te quantum wells by molecular-beam epitaxy,” Avtometriya 43, No. 4, 104 (2007).

Sidorov, Yu. G.

S. A. Dvoretskiĭ, D. G. Ikusov, D. Kh. Kvon, N. N. Mikhaĭlov, N. Daĭ, R. N. Smirnov, Yu. G. Sidorov, and V. A. Shvets, “Growing HgTe/Cd0.735Hg0.265Te quantum wells by molecular-beam epitaxy,” Avtometriya 43, No. 4, 104 (2007).

Singh, R.

C. H. Grein, H. Jung, R. Singh, and M. E. Flatte, “Comparison of normal and inverted band structure of HgTe/CdTe superlattices for very long-wavelength infrared detector,” J. Electron. Mater. 34, 905 (2005).
[CrossRef]

Sivananthan, S.

Y. Selament, Y. D. Zhou, J. Zhao, Y. Chang, C. R. Becker, R. Ashokan, C. H. Grein, and S. Sivananthan, “HgTe/HgCdTe superlattices grown on CdTe/Si by molecular beam epitaxy for infrared detection,” J. Electron. Mater. 33, 503 (2004).
[CrossRef]

Y. D. Zhou, C. R. Becker, Y. Selament, Y. Chang, R. Ashokan, R. T. Boreiko, T. Aoki, D. J. Smith, A. L. Betz, and S. Sivananthan, “Far-infrared detector based on HgTe/HgCdTe superlattices,” J. Electron. Mater. 32, 608 (2003).
[CrossRef]

Smirnov, R. N.

S. A. Dvoretskiĭ, D. G. Ikusov, D. Kh. Kvon, N. N. Mikhaĭlov, N. Daĭ, R. N. Smirnov, Yu. G. Sidorov, and V. A. Shvets, “Growing HgTe/Cd0.735Hg0.265Te quantum wells by molecular-beam epitaxy,” Avtometriya 43, No. 4, 104 (2007).

Smith, D. J.

Y. D. Zhou, C. R. Becker, Y. Selament, Y. Chang, R. Ashokan, R. T. Boreiko, T. Aoki, D. J. Smith, A. L. Betz, and S. Sivananthan, “Far-infrared detector based on HgTe/HgCdTe superlattices,” J. Electron. Mater. 32, 608 (2003).
[CrossRef]

Tarasenko, S. A.

B. Wittmann, R. Ravash, H. Diehl, S. N. Danilov, Z. D. Kvon, S. A. Tarasenko, E. L.Ivchenko, N. N. Mikhailov, S. A. Dvoretsky, W. Prettl, and S. D. Ganichev, “Photogalvanic effects in HgTe quantum wells,” arXiv:0708.2169 (2007).

Weber, W.

S. D. Ganichev, W. Weber, J. Kiermaier, S. N. Danilov, D. Schuh, W. Wegscheider, Ch. Gerl, D. Bougeard, G. Abstreiter, and W. Prettl, “All-electric detection of the polarization state of terahertz laser radiation,” J. Appl. Phys. 103, 114504 (2008).
[CrossRef]

Wegscheider, W.

S. D. Ganichev, W. Weber, J. Kiermaier, S. N. Danilov, D. Schuh, W. Wegscheider, Ch. Gerl, D. Bougeard, G. Abstreiter, and W. Prettl, “All-electric detection of the polarization state of terahertz laser radiation,” J. Appl. Phys. 103, 114504 (2008).
[CrossRef]

Wittmann, B.

B. Wittmann, R. Ravash, H. Diehl, S. N. Danilov, Z. D. Kvon, S. A. Tarasenko, E. L.Ivchenko, N. N. Mikhailov, S. A. Dvoretsky, W. Prettl, and S. D. Ganichev, “Photogalvanic effects in HgTe quantum wells,” arXiv:0708.2169 (2007).

Zanatta, J. P.

J. P. Zanatta, F. Noel, P. Ballet, N. Hidadach, A. Million, G. Destefanis, E. Mottin, C. Kopp, E. Picard, and E. Hadji, “HgCdTe MBE material for microcavity light emitters: application to gas detection in the 2-6μm range,” J. Electron. Mater. 32, 602 (2003).
[CrossRef]

Zhang, X. C.

X. C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V. Hock, H. Buhmann, C. R. Becker, and G. Landwehr, “Rashba splitting in n-type modulation-doped HgTe quantum wells with an inverted band structure,” Phys. Rev. B 63, 245305 (2001).
[CrossRef]

Zhao, J.

Y. Selament, Y. D. Zhou, J. Zhao, Y. Chang, C. R. Becker, R. Ashokan, C. H. Grein, and S. Sivananthan, “HgTe/HgCdTe superlattices grown on CdTe/Si by molecular beam epitaxy for infrared detection,” J. Electron. Mater. 33, 503 (2004).
[CrossRef]

Zhou, Y. D.

Y. Selament, Y. D. Zhou, J. Zhao, Y. Chang, C. R. Becker, R. Ashokan, C. H. Grein, and S. Sivananthan, “HgTe/HgCdTe superlattices grown on CdTe/Si by molecular beam epitaxy for infrared detection,” J. Electron. Mater. 33, 503 (2004).
[CrossRef]

Y. D. Zhou, C. R. Becker, Y. Selament, Y. Chang, R. Ashokan, R. T. Boreiko, T. Aoki, D. J. Smith, A. L. Betz, and S. Sivananthan, “Far-infrared detector based on HgTe/HgCdTe superlattices,” J. Electron. Mater. 32, 608 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

J. N. Schulman and T. C. McGill, “The CdTe/HgTe superlattice: Proposal for a new infrared material,” Appl. Phys. Lett. 34, 663 (1979).
[CrossRef]

Avtometriya (1)

S. A. Dvoretskiĭ, D. G. Ikusov, D. Kh. Kvon, N. N. Mikhaĭlov, N. Daĭ, R. N. Smirnov, Yu. G. Sidorov, and V. A. Shvets, “Growing HgTe/Cd0.735Hg0.265Te quantum wells by molecular-beam epitaxy,” Avtometriya 43, No. 4, 104 (2007).

J. Appl. Phys. (1)

S. D. Ganichev, W. Weber, J. Kiermaier, S. N. Danilov, D. Schuh, W. Wegscheider, Ch. Gerl, D. Bougeard, G. Abstreiter, and W. Prettl, “All-electric detection of the polarization state of terahertz laser radiation,” J. Appl. Phys. 103, 114504 (2008).
[CrossRef]

J. Electron. Mater. (4)

J. P. Zanatta, F. Noel, P. Ballet, N. Hidadach, A. Million, G. Destefanis, E. Mottin, C. Kopp, E. Picard, and E. Hadji, “HgCdTe MBE material for microcavity light emitters: application to gas detection in the 2-6μm range,” J. Electron. Mater. 32, 602 (2003).
[CrossRef]

Y. D. Zhou, C. R. Becker, Y. Selament, Y. Chang, R. Ashokan, R. T. Boreiko, T. Aoki, D. J. Smith, A. L. Betz, and S. Sivananthan, “Far-infrared detector based on HgTe/HgCdTe superlattices,” J. Electron. Mater. 32, 608 (2003).
[CrossRef]

Y. Selament, Y. D. Zhou, J. Zhao, Y. Chang, C. R. Becker, R. Ashokan, C. H. Grein, and S. Sivananthan, “HgTe/HgCdTe superlattices grown on CdTe/Si by molecular beam epitaxy for infrared detection,” J. Electron. Mater. 33, 503 (2004).
[CrossRef]

C. H. Grein, H. Jung, R. Singh, and M. E. Flatte, “Comparison of normal and inverted band structure of HgTe/CdTe superlattices for very long-wavelength infrared detector,” J. Electron. Mater. 34, 905 (2005).
[CrossRef]

J. Vac. Sci. Technol. A (1)

M. W. Goodwin, M. A. Kinch, and R. J. Koestner, “Metal-insulator-semiconductor properties of HgTe-CdTe superlattices,” J. Vac. Sci. Technol. A 6, 2685 (1988).
[CrossRef]

Phys. Rev. B (1)

X. C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V. Hock, H. Buhmann, C. R. Becker, and G. Landwehr, “Rashba splitting in n-type modulation-doped HgTe quantum wells with an inverted band structure,” Phys. Rev. B 63, 245305 (2001).
[CrossRef]

Other (4)

S. D. Ganichev and W. Prettl, Intense Terahertz Excitation of Semiconductors (Oxford U. Press, 2006), pp. 75-78.

E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science International, Harrow, UK, 2005).

S. D. Ganichev and E. L. Ivchenko, Spin Physics in Semiconductors, ed. M.I.Dyakonov (Springer, Berlin, 2008).

B. Wittmann, R. Ravash, H. Diehl, S. N. Danilov, Z. D. Kvon, S. A. Tarasenko, E. L.Ivchenko, N. N. Mikhailov, S. A. Dvoretsky, W. Prettl, and S. D. Ganichev, “Photogalvanic effects in HgTe quantum wells,” arXiv:0708.2169 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.