Abstract

This paper discusses the principles and theoretical foundations of the construction of various types of adaptive lenses based on liquid crystals. It is shown how they have evolved from lenses that operate in polarized light with long focusing times to lenses that operate in unpolarized light with increased aperture and response rate and enhanced image quality. The possibilities of using them in optical systems are discussed.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Berreman, “Variable-focus LC-lens system,” US Patent 4 190 330 (1980).
  2. S. Sato, “LC lens-cell with variable focal length,” Jpn. J. Appl. Phys. 18, 1679 (1979).
    [CrossRef]
  3. S. T. Kowel and D. S. Cleverly, “Focusing by electrical modulation of refraction in a LC cell,” Proceedings of NASA Conference on Optical Information Processing for Aerospace Applications, Virginia, USA, 1981, pp. 329-340.
  4. N. A. Riza and M. C. DeJule, “3-terminal adaptive NLC lens device,” Opt. Lett. 19, 1013 (1994).
  5. M. C. Chan and S. T. Kowel, “Imaging performance of the LC adaptive lens with conductive ladder meshing,” Appl. Opt. 36, 8958 (1997).
    [CrossRef]
  6. T. Nose and S. Sato, “A liquid-crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425 (1989).
    [CrossRef]
  7. T. Nose and S. Sato, “Optical properties of liquid-crystal microlens,” Proc. SPIE 1230, 17 (1990).
  8. G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable LC Fresnel lens,” Proc. SPIE 1168, 352 (1989).
  9. C. W. Fowler and E. S. Pateras, “LC lens review,” Opthal. Physiolog. Optics 10, 186 (1990).
  10. A. Yu. Gvozdarev, I. B. Yudin, G. E. Nevskaya, and B. I. Yudin, “Calculating the deformation of the director in an axially symmetric electric field of an LC microlens,” in Transactions of the Fourth All-Union Conference APÉP-98, 1988, vol. 6, pp. 17-22.
  11. T. Scharf, J. Fontannaz, M. Bouvier, and J. Grupp, “An adaptive microlens formed by homeotropic aligned liquid crystal with positive dielectric anisotropy,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 331, 235 (1999).
    [CrossRef]
  12. M. Ye and S. Sato, “Dynamic director's behavior in LC microlens,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 368, 113 (2000).
    [CrossRef]
  13. S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation analysis of design concept for optical properties of liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 40, 6514 (2001).
    [CrossRef]
  14. M. Honma, T. Nose, and S. Sato, “Improvement of aberration properties of liquid-crystal microlenses using the stacked electrode structure,” Jpn. J. Appl. Phys., Part 1 40, 1322 (2001).
    [CrossRef]
  15. A. F. Naumov, M. J. Loktev, I. R. Guralnik, and G. V. Vdovin, “Modal liquid crystal adaptive lenses,” Preprint No. 36, General Phys. Inst. of Russian Academy of Sciences, 1998.
  16. G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. I. Theory,” Kvantovaya Elektron. (Moscow) 26, 256 (1999) G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, [Quantum Electron. 29, 256 (1999)].
    [CrossRef]
  17. G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimization and experiments,” Kvantovaya Elektron. (Moscow) 26, 261 (1999) G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, [Quantum Electron. 29, 261 (1999)].
    [CrossRef]
  18. I. R. Gural'nik and S. A. Samargin, “Electrophysical and optical properties of spherical and cylindrical liquid-crystal optically addressed lenses,” Kvantovaya Elektron. (Moscow) 34, 673 (2004) I. R. Gural'nik and S. A. Samargin, [Quantum Electron. 34, 673 (2004)].
    [CrossRef]
  19. A. Gvozdarev and G. E. Nevskaya, “Nematic deformation in homeotropically aligned liquid-crystal microlens and its optical properties,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 4, 364 (2001).
  20. A. Yu. Gvozdarev and G. E. Nevskaya, “Optical characteristics of liquid-crystal microlenses with planar and hybrid orientation of a nematic,” Opt. Zh. 68, No. 9, 61 (2001) A. Yu. Gvozdarev and G. E. Nevskaya, [J. Opt. Technol. 68, 687 (2001)].
  21. M. Ye and S. Sato, “Transient properties of a liquid-crystal microlens,” Jpn. J. Appl. Phys., Part 1 40, 6012 (2001).
    [CrossRef]
  22. T. Nose and S. Sato, “Application of a liquid-crystal microlens to an optical-fiber switch,” in Electronics and Communication in Japan, 1992, part 2, vol. 75-C-1, No. 3, pp. 155-163.
  23. A. Gvozdarev and G. E. Nevskaya, “Optical properties of homogeneously and hybrid-aligned liquid-crystal microlenses,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 329, 81 (1999).
    [CrossRef]
  24. A. Yu. Gvozdarev, G. E. Nevskaya, and I. B. Yudin, “Adjustable liquid-crystal microlenses with homeotropic orientation,” Opt. Zh. 68, No. 9, 55 (2001) A. Yu. Gvozdarev, G. E. Nevskaya, and I. B. Yudin, [J. Opt. Technol. 68, 682 (2001)].
  25. A. V. Morozov, “Study of the electrooptic properties of multidomain LC structures obtained by using surface-active substances,” Author's abstract of candidate's dissertation, 2005.
  26. T. Scharf, P. Kipfer, M. Bouvier, and J. Grupp, “Diffraction-limited liquid-crystal microlenses with planar alignment,” Jpn. J. Appl. Phys., Part 1 39, 6629 (2000).
    [CrossRef]
  27. T. Nose, S. Masuda, and S. Sato, “Optical properties of a hybrid-aligned liquid crystals microlens,” Mol. Cryst. Liq. Cryst. 199, 27 (1991).
    [CrossRef]
  28. G. E. Nevskaya and A. Gvozdarev, “Analysis of phase retardation profiles in LC microlenses with different nematic alignment,” Proc. of the Fourth Korea-Russia International Symposium on Science and Technology, 2000, part 1, pp. 126-130.
  29. A. Gvozdarev and G. E. Nevskaya, “Comparison of electrooptical properties of asymmetrical liquid-crystal microlenses,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B: Nonlinear Opt. 4, 358 (2001).
  30. A. Gvozdarev and G. E. Nevskaya, “Optical properties of homeotropical aligned liquid-crystal microlens,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 304, 423 (1997).
    [CrossRef]
  31. T. Nose, S. Masuda, and S. Sato, “Optical properties of a hybrid-aligned liquid-crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys., Part 1 30, 2110 (1991).
    [CrossRef]
  32. S. Masuda, H. Ito, T. Nose, and S. Sato, “Optical properties of a liquid-crystal microlens with a deflection function,” in Photonics in Switching, Sendai, 1996, pp. 21-25.
  33. T. Nose, S. Masuda, and S. Sato, “A liquid-crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys., Part 1 31, 1643 (1992).
    [CrossRef]
  34. S. Masuda, S. Fulioka, M. Honma, and S. Sato, “Dependence of optical properties on device and material parameters in liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 35, 4668 (1996).
    [CrossRef]
  35. S. Masuda, M. Honma, T. Nose, and S. Sato, “Influence of elastic constants on the optical properties of liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 36, 2765 (1997).
    [CrossRef]
  36. S. Sato and T. Nose, “Improvement of optical properties and beam steering function in liquid-crystal microlens with an extra controlling electrode by a planar structure,” Jpn. J. Appl. Phys., Part 1 39, 6383 (2000).
    [CrossRef]
  37. S. Masuda, S. Takahashi, T. Nose, and S. Sato, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36, 4772 (1997).
    [CrossRef]
  38. M. Ye, M. Honma, and S. Sato, “Improvement of decay properties of a liquid-crystal microlens with a divided electrode structure,” Jpn. J. Appl. Phys., Part 1 38, 1412 (1999).
    [CrossRef]
  39. T. Nose, J. Yamada, and S. Sato, “Molecular orientation effect in LC cell using inhomogeneous electric field with extra controlling electrodes,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 368, 231 (2001).
    [CrossRef]
  40. M. Honma, T. Nose, and S. Sato, “Enhancement of numerical aperture of liquid-crystal microlenses using a stacked electrode structure,” Jpn. J. Appl. Phys., Part 1 39, 4799 (2000).
    [CrossRef]
  41. M. Ye and S. Sato, “New liquid-crystal lens,” Proc. SPIE 4926, 75 (2002).
    [CrossRef]
  42. Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical LC lenses,” Jpn. J. Appl. Phys., Part 1 44, 243 (2005).
    [CrossRef]
  43. M. Ye and S. Sato, “Liquid-crystal lens of two liquid-crystal layers,” Mol. Cryst. Liq. Cryst. 422, 197 (2004).
    [CrossRef]
  44. O. Pisnyak, S. Sato, and O. Lavrentovich, “Electrically tunable lenses based on dual-frequency NLC,” Appl. Opt. 45, 4576 (2006).
    [CrossRef]
  45. Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of switchable microlens arrays based on a liquid crystal,” in Lasers and Electro-Optics Society, 2001, LEOS 2001, The Fourteenth Annual Meeting of the IEEE, vol. 2, pp. 618-619.
  46. A. F. Naumov, G. D. Love, M. Yu. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid-crystal lenses,” Opt. Exp. 4, 344 (1999).
  47. M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave-front control systems based on modal liquid-crystal lenses,” Rev. Sci. Instrum. 71, 3290 (2000).
    [CrossRef]
  48. I. R. Guralnik and S. A. Samagin, “High-sensitivity optically addressed liquid-crystal lens,” Proc. SPIE 5137, 194 (2003).
    [CrossRef]
  49. I. R. Gural'nik and S. A. Samagin, “Optically controlled spherical liquid-crystal lens: theory and experiment,” Kvantovaya Elektron. (Moscow) 33, 430 (2003) I. R. Gural'nik and S. A. Samagin, [Quantum Electron. 33, 430 (2003)].
    [CrossRef]
  50. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992 (1998).
    [CrossRef]
  51. I. R. Guralnik and S. Samagin, “Experimental implementation of the high-sensitivity liquid-crystal lens with optically controlled focal length,” Proc. SPIE 4986, 673 (2003).
    [CrossRef]
  52. Y.-H. Fan, H. Ren, and S.-T. Wu, “Electrically controlled lens and prism using nanoscale polymer-dispersed and polymer-networked liquid crystals,” Proc. SPIE 5289, 63 (2004).
    [CrossRef]
  53. H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22 (2003).
    [CrossRef]
  54. Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “LC microlens array with switchable positive and negative focal lengths,” J. Displ. Techn. 1, 151 (2005).
  55. H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosize PDLC droplets,” Opt. Commun. 247, 101 (2005).
    [CrossRef]
  56. H. Ren, Y.-H. Lin, and S.-T. Wu, “Adaptive lenses using liquid-crystal concentration redistribution,” Appl. Phys. Lett. 88, 1911116-1-6 (2006).
  57. P. F. Brinkley and S. T. Kowel, “Liquid-crystal adaptive lens: operation and aberration,” Proc. SPIE 1773, 449 (1993).
    [CrossRef]
  58. H. R. Stapert, E. J. K. Verstegen, S. del Valle, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid crystalline lenses for aberration control and dual layer readout of optical disks,” Philips Research Information, 2002, pp. 1-10.
  59. T. Nose and S. Sato, “Application of LC microlens to an optical fiber switch,” Electronics and communications in Japan, 1992, part 2, vol. 75, No. 11, pp. 1-10.
  60. P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132 (2001).
    [CrossRef]
  61. F. J. Smith, E. M. McCabe, C. M. Taylor, D. R. Selviah, S. E. Day, and L. G. Commander, “Variable-focus microlenses as a potential technology for endoscopy,” Proc. SPIE 3919, 187 (2000).
    [CrossRef]
  62. M. V. Gryaznova, V. V. Danilov, Yu. A. Kuznetsov, V. V. Ryl'kov, P. A. Shakhverdov, and A. I. Khrebtov, “Liquid-crystalline microlenses in optical limitation systems,” Pis'ma Zh. Tekh. Fiz. 27, No. 2, 24 (2001) M. V. Gryaznova, V. V. Danilov, Yu. A. Kuznetsov, V. V. Ryl'kov, P. A. Shakhverdov, and A. I. Khrebtov, [Tech. Phys. Lett. 27, 52 (2001)].
  63. M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, “Optical limiters based on LC microlens,” Opt. Spectrosc. 92, 614 (2002).
    [CrossRef]
  64. G. Vdovin, M. Loktev, and A. Naumov, “On the possibility of intraocular adaptive optics,” Opt. Exp. 11, 810 (2003).
  65. G. Vdovin, M. Loktev, and X. Zhang, “Adaptive Optics for Industry and Medicine,” Proceedings of the Fourth International Workshop, Münster, Germany, October 2003, pp. 19-24.
  66. S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Klark, G. D. Love, A. F. Naumov, C. D. Saunter, and M. Loktev, “Modal LC front corrector,” Opt. Express 10, 1258 (2002).
  67. A. N. Simonov, G. Vdovin, and M. Loktev, “Liquid-Crystal intraocular adaptive lens with wireless control,” Opt. Express 15, 7468 (2007).
    [CrossRef]
  68. A. F. Naumov and G. D. Love, “Control optimization of spherical modal liquid-crystal lenses,” Opt. Express 4, 344 (1999).
  69. N. Peyghambarian, G. Li, D. Mathine, P. Valley, J. Schwiegerling, S. Honkanen, P. Ayras, J. N. Haddock, G. Malalahalli, and B. Kippelen, “Electro-optic adaptive lens as a new eyewear,” Mol. Cryst. Liq. Cryst. 454, 157 (2007).
  70. M. Hain, R. Glokner, S. Bhattacharya, D. Dias, S. Stankovic, and S. Tschudi, “Fast-switching LC lenses for dual-focus digital versatile disk pickup,” Opt. Commun. 188, 291 (2001).
    [CrossRef]
  71. P. J. W. Hands, S. A. Tatarkova, A. K. Kirby, and G. D. Love, “Modal LC devices in optical tweezing 3D control and oscillating potential wells,” Opt. Express 14, 4525 (2006).
    [CrossRef]

2007

A. N. Simonov, G. Vdovin, and M. Loktev, “Liquid-Crystal intraocular adaptive lens with wireless control,” Opt. Express 15, 7468 (2007).
[CrossRef]

N. Peyghambarian, G. Li, D. Mathine, P. Valley, J. Schwiegerling, S. Honkanen, P. Ayras, J. N. Haddock, G. Malalahalli, and B. Kippelen, “Electro-optic adaptive lens as a new eyewear,” Mol. Cryst. Liq. Cryst. 454, 157 (2007).

2006

2005

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “LC microlens array with switchable positive and negative focal lengths,” J. Displ. Techn. 1, 151 (2005).

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosize PDLC droplets,” Opt. Commun. 247, 101 (2005).
[CrossRef]

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical LC lenses,” Jpn. J. Appl. Phys., Part 1 44, 243 (2005).
[CrossRef]

2004

M. Ye and S. Sato, “Liquid-crystal lens of two liquid-crystal layers,” Mol. Cryst. Liq. Cryst. 422, 197 (2004).
[CrossRef]

I. R. Gural'nik and S. A. Samargin, “Electrophysical and optical properties of spherical and cylindrical liquid-crystal optically addressed lenses,” Kvantovaya Elektron. (Moscow) 34, 673 (2004) I. R. Gural'nik and S. A. Samargin, [Quantum Electron. 34, 673 (2004)].
[CrossRef]

Y.-H. Fan, H. Ren, and S.-T. Wu, “Electrically controlled lens and prism using nanoscale polymer-dispersed and polymer-networked liquid crystals,” Proc. SPIE 5289, 63 (2004).
[CrossRef]

2003

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22 (2003).
[CrossRef]

I. R. Guralnik and S. Samagin, “Experimental implementation of the high-sensitivity liquid-crystal lens with optically controlled focal length,” Proc. SPIE 4986, 673 (2003).
[CrossRef]

I. R. Guralnik and S. A. Samagin, “High-sensitivity optically addressed liquid-crystal lens,” Proc. SPIE 5137, 194 (2003).
[CrossRef]

I. R. Gural'nik and S. A. Samagin, “Optically controlled spherical liquid-crystal lens: theory and experiment,” Kvantovaya Elektron. (Moscow) 33, 430 (2003) I. R. Gural'nik and S. A. Samagin, [Quantum Electron. 33, 430 (2003)].
[CrossRef]

G. Vdovin, M. Loktev, and A. Naumov, “On the possibility of intraocular adaptive optics,” Opt. Exp. 11, 810 (2003).

2002

S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Klark, G. D. Love, A. F. Naumov, C. D. Saunter, and M. Loktev, “Modal LC front corrector,” Opt. Express 10, 1258 (2002).

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, “Optical limiters based on LC microlens,” Opt. Spectrosc. 92, 614 (2002).
[CrossRef]

M. Ye and S. Sato, “New liquid-crystal lens,” Proc. SPIE 4926, 75 (2002).
[CrossRef]

2001

T. Nose, J. Yamada, and S. Sato, “Molecular orientation effect in LC cell using inhomogeneous electric field with extra controlling electrodes,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 368, 231 (2001).
[CrossRef]

A. Yu. Gvozdarev, G. E. Nevskaya, and I. B. Yudin, “Adjustable liquid-crystal microlenses with homeotropic orientation,” Opt. Zh. 68, No. 9, 55 (2001) A. Yu. Gvozdarev, G. E. Nevskaya, and I. B. Yudin, [J. Opt. Technol. 68, 682 (2001)].

A. Gvozdarev and G. E. Nevskaya, “Comparison of electrooptical properties of asymmetrical liquid-crystal microlenses,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B: Nonlinear Opt. 4, 358 (2001).

A. Gvozdarev and G. E. Nevskaya, “Nematic deformation in homeotropically aligned liquid-crystal microlens and its optical properties,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 4, 364 (2001).

A. Yu. Gvozdarev and G. E. Nevskaya, “Optical characteristics of liquid-crystal microlenses with planar and hybrid orientation of a nematic,” Opt. Zh. 68, No. 9, 61 (2001) A. Yu. Gvozdarev and G. E. Nevskaya, [J. Opt. Technol. 68, 687 (2001)].

M. Ye and S. Sato, “Transient properties of a liquid-crystal microlens,” Jpn. J. Appl. Phys., Part 1 40, 6012 (2001).
[CrossRef]

S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation analysis of design concept for optical properties of liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 40, 6514 (2001).
[CrossRef]

M. Honma, T. Nose, and S. Sato, “Improvement of aberration properties of liquid-crystal microlenses using the stacked electrode structure,” Jpn. J. Appl. Phys., Part 1 40, 1322 (2001).
[CrossRef]

M. V. Gryaznova, V. V. Danilov, Yu. A. Kuznetsov, V. V. Ryl'kov, P. A. Shakhverdov, and A. I. Khrebtov, “Liquid-crystalline microlenses in optical limitation systems,” Pis'ma Zh. Tekh. Fiz. 27, No. 2, 24 (2001) M. V. Gryaznova, V. V. Danilov, Yu. A. Kuznetsov, V. V. Ryl'kov, P. A. Shakhverdov, and A. I. Khrebtov, [Tech. Phys. Lett. 27, 52 (2001)].

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132 (2001).
[CrossRef]

M. Hain, R. Glokner, S. Bhattacharya, D. Dias, S. Stankovic, and S. Tschudi, “Fast-switching LC lenses for dual-focus digital versatile disk pickup,” Opt. Commun. 188, 291 (2001).
[CrossRef]

2000

F. J. Smith, E. M. McCabe, C. M. Taylor, D. R. Selviah, S. E. Day, and L. G. Commander, “Variable-focus microlenses as a potential technology for endoscopy,” Proc. SPIE 3919, 187 (2000).
[CrossRef]

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave-front control systems based on modal liquid-crystal lenses,” Rev. Sci. Instrum. 71, 3290 (2000).
[CrossRef]

T. Scharf, P. Kipfer, M. Bouvier, and J. Grupp, “Diffraction-limited liquid-crystal microlenses with planar alignment,” Jpn. J. Appl. Phys., Part 1 39, 6629 (2000).
[CrossRef]

M. Ye and S. Sato, “Dynamic director's behavior in LC microlens,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 368, 113 (2000).
[CrossRef]

M. Honma, T. Nose, and S. Sato, “Enhancement of numerical aperture of liquid-crystal microlenses using a stacked electrode structure,” Jpn. J. Appl. Phys., Part 1 39, 4799 (2000).
[CrossRef]

S. Sato and T. Nose, “Improvement of optical properties and beam steering function in liquid-crystal microlens with an extra controlling electrode by a planar structure,” Jpn. J. Appl. Phys., Part 1 39, 6383 (2000).
[CrossRef]

1999

M. Ye, M. Honma, and S. Sato, “Improvement of decay properties of a liquid-crystal microlens with a divided electrode structure,” Jpn. J. Appl. Phys., Part 1 38, 1412 (1999).
[CrossRef]

G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. I. Theory,” Kvantovaya Elektron. (Moscow) 26, 256 (1999) G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, [Quantum Electron. 29, 256 (1999)].
[CrossRef]

G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimization and experiments,” Kvantovaya Elektron. (Moscow) 26, 261 (1999) G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, [Quantum Electron. 29, 261 (1999)].
[CrossRef]

A. Gvozdarev and G. E. Nevskaya, “Optical properties of homogeneously and hybrid-aligned liquid-crystal microlenses,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 329, 81 (1999).
[CrossRef]

T. Scharf, J. Fontannaz, M. Bouvier, and J. Grupp, “An adaptive microlens formed by homeotropic aligned liquid crystal with positive dielectric anisotropy,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 331, 235 (1999).
[CrossRef]

A. F. Naumov, G. D. Love, M. Yu. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid-crystal lenses,” Opt. Exp. 4, 344 (1999).

A. F. Naumov and G. D. Love, “Control optimization of spherical modal liquid-crystal lenses,” Opt. Express 4, 344 (1999).

1998

1997

M. C. Chan and S. T. Kowel, “Imaging performance of the LC adaptive lens with conductive ladder meshing,” Appl. Opt. 36, 8958 (1997).
[CrossRef]

S. Masuda, S. Takahashi, T. Nose, and S. Sato, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36, 4772 (1997).
[CrossRef]

S. Masuda, M. Honma, T. Nose, and S. Sato, “Influence of elastic constants on the optical properties of liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 36, 2765 (1997).
[CrossRef]

A. Gvozdarev and G. E. Nevskaya, “Optical properties of homeotropical aligned liquid-crystal microlens,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 304, 423 (1997).
[CrossRef]

1996

S. Masuda, S. Fulioka, M. Honma, and S. Sato, “Dependence of optical properties on device and material parameters in liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 35, 4668 (1996).
[CrossRef]

1994

1993

P. F. Brinkley and S. T. Kowel, “Liquid-crystal adaptive lens: operation and aberration,” Proc. SPIE 1773, 449 (1993).
[CrossRef]

1992

T. Nose, S. Masuda, and S. Sato, “A liquid-crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys., Part 1 31, 1643 (1992).
[CrossRef]

1991

T. Nose, S. Masuda, and S. Sato, “Optical properties of a hybrid-aligned liquid-crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys., Part 1 30, 2110 (1991).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “Optical properties of a hybrid-aligned liquid crystals microlens,” Mol. Cryst. Liq. Cryst. 199, 27 (1991).
[CrossRef]

1990

C. W. Fowler and E. S. Pateras, “LC lens review,” Opthal. Physiolog. Optics 10, 186 (1990).

T. Nose and S. Sato, “Optical properties of liquid-crystal microlens,” Proc. SPIE 1230, 17 (1990).

1989

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable LC Fresnel lens,” Proc. SPIE 1168, 352 (1989).

T. Nose and S. Sato, “A liquid-crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425 (1989).
[CrossRef]

1979

S. Sato, “LC lens-cell with variable focal length,” Jpn. J. Appl. Phys. 18, 1679 (1979).
[CrossRef]

Ayras, P.

N. Peyghambarian, G. Li, D. Mathine, P. Valley, J. Schwiegerling, S. Honkanen, P. Ayras, J. N. Haddock, G. Malalahalli, and B. Kippelen, “Electro-optic adaptive lens as a new eyewear,” Mol. Cryst. Liq. Cryst. 454, 157 (2007).

Belopukhov, V. N.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave-front control systems based on modal liquid-crystal lenses,” Rev. Sci. Instrum. 71, 3290 (2000).
[CrossRef]

Belyaeva, M. A.

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, “Optical limiters based on LC microlens,” Opt. Spectrosc. 92, 614 (2002).
[CrossRef]

Berreman, D. W.

D. W. Berreman, “Variable-focus LC-lens system,” US Patent 4 190 330 (1980).

Bhattacharya, S.

M. Hain, R. Glokner, S. Bhattacharya, D. Dias, S. Stankovic, and S. Tschudi, “Fast-switching LC lenses for dual-focus digital versatile disk pickup,” Opt. Commun. 188, 291 (2001).
[CrossRef]

Bouvier, M.

T. Scharf, P. Kipfer, M. Bouvier, and J. Grupp, “Diffraction-limited liquid-crystal microlenses with planar alignment,” Jpn. J. Appl. Phys., Part 1 39, 6629 (2000).
[CrossRef]

T. Scharf, J. Fontannaz, M. Bouvier, and J. Grupp, “An adaptive microlens formed by homeotropic aligned liquid crystal with positive dielectric anisotropy,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 331, 235 (1999).
[CrossRef]

Brinkley, P. F.

P. F. Brinkley and S. T. Kowel, “Liquid-crystal adaptive lens: operation and aberration,” Proc. SPIE 1773, 449 (1993).
[CrossRef]

Chan, M. C.

Chistyakova, O. V.

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, “Optical limiters based on LC microlens,” Opt. Spectrosc. 92, 614 (2002).
[CrossRef]

Choi, W.-K.

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical LC lenses,” Jpn. J. Appl. Phys., Part 1 44, 243 (2005).
[CrossRef]

Choi, Y.

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of switchable microlens arrays based on a liquid crystal,” in Lasers and Electro-Optics Society, 2001, LEOS 2001, The Fourteenth Annual Meeting of the IEEE, vol. 2, pp. 618-619.

Clark, M. G.

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable LC Fresnel lens,” Proc. SPIE 1168, 352 (1989).

Cleverly, D. S.

S. T. Kowel and D. S. Cleverly, “Focusing by electrical modulation of refraction in a LC cell,” Proceedings of NASA Conference on Optical Information Processing for Aerospace Applications, Virginia, USA, 1981, pp. 329-340.

Commander, L. G.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132 (2001).
[CrossRef]

F. J. Smith, E. M. McCabe, C. M. Taylor, D. R. Selviah, S. E. Day, and L. G. Commander, “Variable-focus microlenses as a potential technology for endoscopy,” Proc. SPIE 3919, 187 (2000).
[CrossRef]

Danilov, V. V.

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, “Optical limiters based on LC microlens,” Opt. Spectrosc. 92, 614 (2002).
[CrossRef]

M. V. Gryaznova, V. V. Danilov, Yu. A. Kuznetsov, V. V. Ryl'kov, P. A. Shakhverdov, and A. I. Khrebtov, “Liquid-crystalline microlenses in optical limitation systems,” Pis'ma Zh. Tekh. Fiz. 27, No. 2, 24 (2001) M. V. Gryaznova, V. V. Danilov, Yu. A. Kuznetsov, V. V. Ryl'kov, P. A. Shakhverdov, and A. I. Khrebtov, [Tech. Phys. Lett. 27, 52 (2001)].

Day, S. E.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132 (2001).
[CrossRef]

F. J. Smith, E. M. McCabe, C. M. Taylor, D. R. Selviah, S. E. Day, and L. G. Commander, “Variable-focus microlenses as a potential technology for endoscopy,” Proc. SPIE 3919, 187 (2000).
[CrossRef]

DeJule, M. C.

del Valle, S.

H. R. Stapert, E. J. K. Verstegen, S. del Valle, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid crystalline lenses for aberration control and dual layer readout of optical disks,” Philips Research Information, 2002, pp. 1-10.

Dias, D.

M. Hain, R. Glokner, S. Bhattacharya, D. Dias, S. Stankovic, and S. Tschudi, “Fast-switching LC lenses for dual-focus digital versatile disk pickup,” Opt. Commun. 188, 291 (2001).
[CrossRef]

Fan, Y.-H.

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “LC microlens array with switchable positive and negative focal lengths,” J. Displ. Techn. 1, 151 (2005).

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosize PDLC droplets,” Opt. Commun. 247, 101 (2005).
[CrossRef]

Y.-H. Fan, H. Ren, and S.-T. Wu, “Electrically controlled lens and prism using nanoscale polymer-dispersed and polymer-networked liquid crystals,” Proc. SPIE 5289, 63 (2004).
[CrossRef]

Fan-Chiang, K.-H.

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical LC lenses,” Jpn. J. Appl. Phys., Part 1 44, 243 (2005).
[CrossRef]

Fontannaz, J.

T. Scharf, J. Fontannaz, M. Bouvier, and J. Grupp, “An adaptive microlens formed by homeotropic aligned liquid crystal with positive dielectric anisotropy,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 331, 235 (1999).
[CrossRef]

Fowler, C. W.

C. W. Fowler and E. S. Pateras, “LC lens review,” Opthal. Physiolog. Optics 10, 186 (1990).

Fulioka, S.

S. Masuda, S. Fulioka, M. Honma, and S. Sato, “Dependence of optical properties on device and material parameters in liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 35, 4668 (1996).
[CrossRef]

Gauza, S.

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical LC lenses,” Jpn. J. Appl. Phys., Part 1 44, 243 (2005).
[CrossRef]

Glokner, R.

M. Hain, R. Glokner, S. Bhattacharya, D. Dias, S. Stankovic, and S. Tschudi, “Fast-switching LC lenses for dual-focus digital versatile disk pickup,” Opt. Commun. 188, 291 (2001).
[CrossRef]

Grupp, J.

T. Scharf, P. Kipfer, M. Bouvier, and J. Grupp, “Diffraction-limited liquid-crystal microlenses with planar alignment,” Jpn. J. Appl. Phys., Part 1 39, 6629 (2000).
[CrossRef]

T. Scharf, J. Fontannaz, M. Bouvier, and J. Grupp, “An adaptive microlens formed by homeotropic aligned liquid crystal with positive dielectric anisotropy,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 331, 235 (1999).
[CrossRef]

Gryaznova, M. V.

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, “Optical limiters based on LC microlens,” Opt. Spectrosc. 92, 614 (2002).
[CrossRef]

M. V. Gryaznova, V. V. Danilov, Yu. A. Kuznetsov, V. V. Ryl'kov, P. A. Shakhverdov, and A. I. Khrebtov, “Liquid-crystalline microlenses in optical limitation systems,” Pis'ma Zh. Tekh. Fiz. 27, No. 2, 24 (2001) M. V. Gryaznova, V. V. Danilov, Yu. A. Kuznetsov, V. V. Ryl'kov, P. A. Shakhverdov, and A. I. Khrebtov, [Tech. Phys. Lett. 27, 52 (2001)].

Guralnik, I. R.

I. R. Guralnik and S. Samagin, “Experimental implementation of the high-sensitivity liquid-crystal lens with optically controlled focal length,” Proc. SPIE 4986, 673 (2003).
[CrossRef]

I. R. Guralnik and S. A. Samagin, “High-sensitivity optically addressed liquid-crystal lens,” Proc. SPIE 5137, 194 (2003).
[CrossRef]

S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Klark, G. D. Love, A. F. Naumov, C. D. Saunter, and M. Loktev, “Modal LC front corrector,” Opt. Express 10, 1258 (2002).

A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992 (1998).
[CrossRef]

A. F. Naumov, M. J. Loktev, I. R. Guralnik, and G. V. Vdovin, “Modal liquid crystal adaptive lenses,” Preprint No. 36, General Phys. Inst. of Russian Academy of Sciences, 1998.

Gural'nik, I. R.

I. R. Gural'nik and S. A. Samargin, “Electrophysical and optical properties of spherical and cylindrical liquid-crystal optically addressed lenses,” Kvantovaya Elektron. (Moscow) 34, 673 (2004) I. R. Gural'nik and S. A. Samargin, [Quantum Electron. 34, 673 (2004)].
[CrossRef]

I. R. Gural'nik and S. A. Samagin, “Optically controlled spherical liquid-crystal lens: theory and experiment,” Kvantovaya Elektron. (Moscow) 33, 430 (2003) I. R. Gural'nik and S. A. Samagin, [Quantum Electron. 33, 430 (2003)].
[CrossRef]

G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. I. Theory,” Kvantovaya Elektron. (Moscow) 26, 256 (1999) G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, [Quantum Electron. 29, 256 (1999)].
[CrossRef]

G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimization and experiments,” Kvantovaya Elektron. (Moscow) 26, 261 (1999) G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, [Quantum Electron. 29, 261 (1999)].
[CrossRef]

Gvozdarev, A.

A. Gvozdarev and G. E. Nevskaya, “Nematic deformation in homeotropically aligned liquid-crystal microlens and its optical properties,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 4, 364 (2001).

A. Gvozdarev and G. E. Nevskaya, “Comparison of electrooptical properties of asymmetrical liquid-crystal microlenses,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B: Nonlinear Opt. 4, 358 (2001).

A. Gvozdarev and G. E. Nevskaya, “Optical properties of homogeneously and hybrid-aligned liquid-crystal microlenses,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 329, 81 (1999).
[CrossRef]

A. Gvozdarev and G. E. Nevskaya, “Optical properties of homeotropical aligned liquid-crystal microlens,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 304, 423 (1997).
[CrossRef]

G. E. Nevskaya and A. Gvozdarev, “Analysis of phase retardation profiles in LC microlenses with different nematic alignment,” Proc. of the Fourth Korea-Russia International Symposium on Science and Technology, 2000, part 1, pp. 126-130.

Gvozdarev, A. Yu.

A. Yu. Gvozdarev, G. E. Nevskaya, and I. B. Yudin, “Adjustable liquid-crystal microlenses with homeotropic orientation,” Opt. Zh. 68, No. 9, 55 (2001) A. Yu. Gvozdarev, G. E. Nevskaya, and I. B. Yudin, [J. Opt. Technol. 68, 682 (2001)].

A. Yu. Gvozdarev and G. E. Nevskaya, “Optical characteristics of liquid-crystal microlenses with planar and hybrid orientation of a nematic,” Opt. Zh. 68, No. 9, 61 (2001) A. Yu. Gvozdarev and G. E. Nevskaya, [J. Opt. Technol. 68, 687 (2001)].

A. Yu. Gvozdarev, I. B. Yudin, G. E. Nevskaya, and B. I. Yudin, “Calculating the deformation of the director in an axially symmetric electric field of an LC microlens,” in Transactions of the Fourth All-Union Conference APÉP-98, 1988, vol. 6, pp. 17-22.

Haddock, J. N.

N. Peyghambarian, G. Li, D. Mathine, P. Valley, J. Schwiegerling, S. Honkanen, P. Ayras, J. N. Haddock, G. Malalahalli, and B. Kippelen, “Electro-optic adaptive lens as a new eyewear,” Mol. Cryst. Liq. Cryst. 454, 157 (2007).

Hain, M.

M. Hain, R. Glokner, S. Bhattacharya, D. Dias, S. Stankovic, and S. Tschudi, “Fast-switching LC lenses for dual-focus digital versatile disk pickup,” Opt. Commun. 188, 291 (2001).
[CrossRef]

Hands, P. J. W.

Honkanen, S.

N. Peyghambarian, G. Li, D. Mathine, P. Valley, J. Schwiegerling, S. Honkanen, P. Ayras, J. N. Haddock, G. Malalahalli, and B. Kippelen, “Electro-optic adaptive lens as a new eyewear,” Mol. Cryst. Liq. Cryst. 454, 157 (2007).

Honma, M.

M. Honma, T. Nose, and S. Sato, “Improvement of aberration properties of liquid-crystal microlenses using the stacked electrode structure,” Jpn. J. Appl. Phys., Part 1 40, 1322 (2001).
[CrossRef]

M. Honma, T. Nose, and S. Sato, “Enhancement of numerical aperture of liquid-crystal microlenses using a stacked electrode structure,” Jpn. J. Appl. Phys., Part 1 39, 4799 (2000).
[CrossRef]

M. Ye, M. Honma, and S. Sato, “Improvement of decay properties of a liquid-crystal microlens with a divided electrode structure,” Jpn. J. Appl. Phys., Part 1 38, 1412 (1999).
[CrossRef]

S. Masuda, M. Honma, T. Nose, and S. Sato, “Influence of elastic constants on the optical properties of liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 36, 2765 (1997).
[CrossRef]

S. Masuda, S. Fulioka, M. Honma, and S. Sato, “Dependence of optical properties on device and material parameters in liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 35, 4668 (1996).
[CrossRef]

Ito, H.

S. Masuda, H. Ito, T. Nose, and S. Sato, “Optical properties of a liquid-crystal microlens with a deflection function,” in Photonics in Switching, Sendai, 1996, pp. 21-25.

Khrebtov, A. I.

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, “Optical limiters based on LC microlens,” Opt. Spectrosc. 92, 614 (2002).
[CrossRef]

M. V. Gryaznova, V. V. Danilov, Yu. A. Kuznetsov, V. V. Ryl'kov, P. A. Shakhverdov, and A. I. Khrebtov, “Liquid-crystalline microlenses in optical limitation systems,” Pis'ma Zh. Tekh. Fiz. 27, No. 2, 24 (2001) M. V. Gryaznova, V. V. Danilov, Yu. A. Kuznetsov, V. V. Ryl'kov, P. A. Shakhverdov, and A. I. Khrebtov, [Tech. Phys. Lett. 27, 52 (2001)].

Kim, J.-H.

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of switchable microlens arrays based on a liquid crystal,” in Lasers and Electro-Optics Society, 2001, LEOS 2001, The Fourteenth Annual Meeting of the IEEE, vol. 2, pp. 618-619.

Kipfer, P.

T. Scharf, P. Kipfer, M. Bouvier, and J. Grupp, “Diffraction-limited liquid-crystal microlenses with planar alignment,” Jpn. J. Appl. Phys., Part 1 39, 6629 (2000).
[CrossRef]

Kippelen, B.

N. Peyghambarian, G. Li, D. Mathine, P. Valley, J. Schwiegerling, S. Honkanen, P. Ayras, J. N. Haddock, G. Malalahalli, and B. Kippelen, “Electro-optic adaptive lens as a new eyewear,” Mol. Cryst. Liq. Cryst. 454, 157 (2007).

Kirby, A. K.

Klark, P.

Klimov, N. A.

Kotova, S. P.

S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Klark, G. D. Love, A. F. Naumov, C. D. Saunter, and M. Loktev, “Modal LC front corrector,” Opt. Express 10, 1258 (2002).

G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimization and experiments,” Kvantovaya Elektron. (Moscow) 26, 261 (1999) G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, [Quantum Electron. 29, 261 (1999)].
[CrossRef]

G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. I. Theory,” Kvantovaya Elektron. (Moscow) 26, 256 (1999) G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, [Quantum Electron. 29, 256 (1999)].
[CrossRef]

Kowel, S. T.

M. C. Chan and S. T. Kowel, “Imaging performance of the LC adaptive lens with conductive ladder meshing,” Appl. Opt. 36, 8958 (1997).
[CrossRef]

P. F. Brinkley and S. T. Kowel, “Liquid-crystal adaptive lens: operation and aberration,” Proc. SPIE 1773, 449 (1993).
[CrossRef]

S. T. Kowel and D. S. Cleverly, “Focusing by electrical modulation of refraction in a LC cell,” Proceedings of NASA Conference on Optical Information Processing for Aerospace Applications, Virginia, USA, 1981, pp. 329-340.

Kuznetsov, Yu. A.

M. V. Gryaznova, V. V. Danilov, Yu. A. Kuznetsov, V. V. Ryl'kov, P. A. Shakhverdov, and A. I. Khrebtov, “Liquid-crystalline microlenses in optical limitation systems,” Pis'ma Zh. Tekh. Fiz. 27, No. 2, 24 (2001) M. V. Gryaznova, V. V. Danilov, Yu. A. Kuznetsov, V. V. Ryl'kov, P. A. Shakhverdov, and A. I. Khrebtov, [Tech. Phys. Lett. 27, 52 (2001)].

Kvashnin, M. Yu.

Lavrentovich, O.

Lee, S.-D.

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of switchable microlens arrays based on a liquid crystal,” in Lasers and Electro-Optics Society, 2001, LEOS 2001, The Fourteenth Annual Meeting of the IEEE, vol. 2, pp. 618-619.

Li, G.

N. Peyghambarian, G. Li, D. Mathine, P. Valley, J. Schwiegerling, S. Honkanen, P. Ayras, J. N. Haddock, G. Malalahalli, and B. Kippelen, “Electro-optic adaptive lens as a new eyewear,” Mol. Cryst. Liq. Cryst. 454, 157 (2007).

Liang, X.

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “LC microlens array with switchable positive and negative focal lengths,” J. Displ. Techn. 1, 151 (2005).

Lin, Y.-H.

H. Ren, Y.-H. Lin, and S.-T. Wu, “Adaptive lenses using liquid-crystal concentration redistribution,” Appl. Phys. Lett. 88, 1911116-1-6 (2006).

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosize PDLC droplets,” Opt. Commun. 247, 101 (2005).
[CrossRef]

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical LC lenses,” Jpn. J. Appl. Phys., Part 1 44, 243 (2005).
[CrossRef]

Loktev, M.

A. N. Simonov, G. Vdovin, and M. Loktev, “Liquid-Crystal intraocular adaptive lens with wireless control,” Opt. Express 15, 7468 (2007).
[CrossRef]

G. Vdovin, M. Loktev, and A. Naumov, “On the possibility of intraocular adaptive optics,” Opt. Exp. 11, 810 (2003).

S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Klark, G. D. Love, A. F. Naumov, C. D. Saunter, and M. Loktev, “Modal LC front corrector,” Opt. Express 10, 1258 (2002).

G. Vdovin, M. Loktev, and X. Zhang, “Adaptive Optics for Industry and Medicine,” Proceedings of the Fourth International Workshop, Münster, Germany, October 2003, pp. 19-24.

Loktev, M. J.

A. F. Naumov, M. J. Loktev, I. R. Guralnik, and G. V. Vdovin, “Modal liquid crystal adaptive lenses,” Preprint No. 36, General Phys. Inst. of Russian Academy of Sciences, 1998.

Loktev, M. Yu.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave-front control systems based on modal liquid-crystal lenses,” Rev. Sci. Instrum. 71, 3290 (2000).
[CrossRef]

A. F. Naumov, G. D. Love, M. Yu. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid-crystal lenses,” Opt. Exp. 4, 344 (1999).

G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. I. Theory,” Kvantovaya Elektron. (Moscow) 26, 256 (1999) G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, [Quantum Electron. 29, 256 (1999)].
[CrossRef]

G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimization and experiments,” Kvantovaya Elektron. (Moscow) 26, 261 (1999) G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, [Quantum Electron. 29, 261 (1999)].
[CrossRef]

A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992 (1998).
[CrossRef]

Love, G. D.

Lub, J.

H. R. Stapert, E. J. K. Verstegen, S. del Valle, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid crystalline lenses for aberration control and dual layer readout of optical disks,” Philips Research Information, 2002, pp. 1-10.

Malalahalli, G.

N. Peyghambarian, G. Li, D. Mathine, P. Valley, J. Schwiegerling, S. Honkanen, P. Ayras, J. N. Haddock, G. Malalahalli, and B. Kippelen, “Electro-optic adaptive lens as a new eyewear,” Mol. Cryst. Liq. Cryst. 454, 157 (2007).

Masuda, S.

S. Masuda, M. Honma, T. Nose, and S. Sato, “Influence of elastic constants on the optical properties of liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 36, 2765 (1997).
[CrossRef]

S. Masuda, S. Takahashi, T. Nose, and S. Sato, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36, 4772 (1997).
[CrossRef]

S. Masuda, S. Fulioka, M. Honma, and S. Sato, “Dependence of optical properties on device and material parameters in liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 35, 4668 (1996).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “A liquid-crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys., Part 1 31, 1643 (1992).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “Optical properties of a hybrid-aligned liquid-crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys., Part 1 30, 2110 (1991).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “Optical properties of a hybrid-aligned liquid crystals microlens,” Mol. Cryst. Liq. Cryst. 199, 27 (1991).
[CrossRef]

S. Masuda, H. Ito, T. Nose, and S. Sato, “Optical properties of a liquid-crystal microlens with a deflection function,” in Photonics in Switching, Sendai, 1996, pp. 21-25.

Mathine, D.

N. Peyghambarian, G. Li, D. Mathine, P. Valley, J. Schwiegerling, S. Honkanen, P. Ayras, J. N. Haddock, G. Malalahalli, and B. Kippelen, “Electro-optic adaptive lens as a new eyewear,” Mol. Cryst. Liq. Cryst. 454, 157 (2007).

McCabe, E. M.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132 (2001).
[CrossRef]

F. J. Smith, E. M. McCabe, C. M. Taylor, D. R. Selviah, S. E. Day, and L. G. Commander, “Variable-focus microlenses as a potential technology for endoscopy,” Proc. SPIE 3919, 187 (2000).
[CrossRef]

Morozov, A. V.

A. V. Morozov, “Study of the electrooptic properties of multidomain LC structures obtained by using surface-active substances,” Author's abstract of candidate's dissertation, 2005.

Naumov, A.

G. Vdovin, M. Loktev, and A. Naumov, “On the possibility of intraocular adaptive optics,” Opt. Exp. 11, 810 (2003).

Naumov, A. F.

S. P. Kotova, M. Yu. Kvashnin, M. A. Rakhmatulin, O. A. Zayakin, I. R. Guralnik, N. A. Klimov, P. Klark, G. D. Love, A. F. Naumov, C. D. Saunter, and M. Loktev, “Modal LC front corrector,” Opt. Express 10, 1258 (2002).

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave-front control systems based on modal liquid-crystal lenses,” Rev. Sci. Instrum. 71, 3290 (2000).
[CrossRef]

A. F. Naumov, G. D. Love, M. Yu. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid-crystal lenses,” Opt. Exp. 4, 344 (1999).

G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimization and experiments,” Kvantovaya Elektron. (Moscow) 26, 261 (1999) G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, [Quantum Electron. 29, 261 (1999)].
[CrossRef]

G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. I. Theory,” Kvantovaya Elektron. (Moscow) 26, 256 (1999) G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, [Quantum Electron. 29, 256 (1999)].
[CrossRef]

A. F. Naumov and G. D. Love, “Control optimization of spherical modal liquid-crystal lenses,” Opt. Express 4, 344 (1999).

A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992 (1998).
[CrossRef]

A. F. Naumov, M. J. Loktev, I. R. Guralnik, and G. V. Vdovin, “Modal liquid crystal adaptive lenses,” Preprint No. 36, General Phys. Inst. of Russian Academy of Sciences, 1998.

Nevskaya, G. E.

A. Yu. Gvozdarev and G. E. Nevskaya, “Optical characteristics of liquid-crystal microlenses with planar and hybrid orientation of a nematic,” Opt. Zh. 68, No. 9, 61 (2001) A. Yu. Gvozdarev and G. E. Nevskaya, [J. Opt. Technol. 68, 687 (2001)].

A. Gvozdarev and G. E. Nevskaya, “Nematic deformation in homeotropically aligned liquid-crystal microlens and its optical properties,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 4, 364 (2001).

A. Yu. Gvozdarev, G. E. Nevskaya, and I. B. Yudin, “Adjustable liquid-crystal microlenses with homeotropic orientation,” Opt. Zh. 68, No. 9, 55 (2001) A. Yu. Gvozdarev, G. E. Nevskaya, and I. B. Yudin, [J. Opt. Technol. 68, 682 (2001)].

A. Gvozdarev and G. E. Nevskaya, “Comparison of electrooptical properties of asymmetrical liquid-crystal microlenses,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B: Nonlinear Opt. 4, 358 (2001).

A. Gvozdarev and G. E. Nevskaya, “Optical properties of homogeneously and hybrid-aligned liquid-crystal microlenses,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 329, 81 (1999).
[CrossRef]

A. Gvozdarev and G. E. Nevskaya, “Optical properties of homeotropical aligned liquid-crystal microlens,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 304, 423 (1997).
[CrossRef]

G. E. Nevskaya and A. Gvozdarev, “Analysis of phase retardation profiles in LC microlenses with different nematic alignment,” Proc. of the Fourth Korea-Russia International Symposium on Science and Technology, 2000, part 1, pp. 126-130.

A. Yu. Gvozdarev, I. B. Yudin, G. E. Nevskaya, and B. I. Yudin, “Calculating the deformation of the director in an axially symmetric electric field of an LC microlens,” in Transactions of the Fourth All-Union Conference APÉP-98, 1988, vol. 6, pp. 17-22.

Nose, T.

M. Honma, T. Nose, and S. Sato, “Improvement of aberration properties of liquid-crystal microlenses using the stacked electrode structure,” Jpn. J. Appl. Phys., Part 1 40, 1322 (2001).
[CrossRef]

T. Nose, J. Yamada, and S. Sato, “Molecular orientation effect in LC cell using inhomogeneous electric field with extra controlling electrodes,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 368, 231 (2001).
[CrossRef]

M. Honma, T. Nose, and S. Sato, “Enhancement of numerical aperture of liquid-crystal microlenses using a stacked electrode structure,” Jpn. J. Appl. Phys., Part 1 39, 4799 (2000).
[CrossRef]

S. Sato and T. Nose, “Improvement of optical properties and beam steering function in liquid-crystal microlens with an extra controlling electrode by a planar structure,” Jpn. J. Appl. Phys., Part 1 39, 6383 (2000).
[CrossRef]

S. Masuda, S. Takahashi, T. Nose, and S. Sato, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36, 4772 (1997).
[CrossRef]

S. Masuda, M. Honma, T. Nose, and S. Sato, “Influence of elastic constants on the optical properties of liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 36, 2765 (1997).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “A liquid-crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys., Part 1 31, 1643 (1992).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “Optical properties of a hybrid-aligned liquid-crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys., Part 1 30, 2110 (1991).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “Optical properties of a hybrid-aligned liquid crystals microlens,” Mol. Cryst. Liq. Cryst. 199, 27 (1991).
[CrossRef]

T. Nose and S. Sato, “Optical properties of liquid-crystal microlens,” Proc. SPIE 1230, 17 (1990).

T. Nose and S. Sato, “A liquid-crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425 (1989).
[CrossRef]

T. Nose and S. Sato, “Application of a liquid-crystal microlens to an optical-fiber switch,” in Electronics and Communication in Japan, 1992, part 2, vol. 75-C-1, No. 3, pp. 155-163.

S. Masuda, H. Ito, T. Nose, and S. Sato, “Optical properties of a liquid-crystal microlens with a deflection function,” in Photonics in Switching, Sendai, 1996, pp. 21-25.

T. Nose and S. Sato, “Application of LC microlens to an optical fiber switch,” Electronics and communications in Japan, 1992, part 2, vol. 75, No. 11, pp. 1-10.

Ouchi, K.

S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation analysis of design concept for optical properties of liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 40, 6514 (2001).
[CrossRef]

Park, J.-H.

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of switchable microlens arrays based on a liquid crystal,” in Lasers and Electro-Optics Society, 2001, LEOS 2001, The Fourteenth Annual Meeting of the IEEE, vol. 2, pp. 618-619.

Pateras, E. S.

C. W. Fowler and E. S. Pateras, “LC lens review,” Opthal. Physiolog. Optics 10, 186 (1990).

Peyghambarian, N.

N. Peyghambarian, G. Li, D. Mathine, P. Valley, J. Schwiegerling, S. Honkanen, P. Ayras, J. N. Haddock, G. Malalahalli, and B. Kippelen, “Electro-optic adaptive lens as a new eyewear,” Mol. Cryst. Liq. Cryst. 454, 157 (2007).

Pisnyak, O.

Powell, N. J.

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable LC Fresnel lens,” Proc. SPIE 1168, 352 (1989).

Purvis, A.

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable LC Fresnel lens,” Proc. SPIE 1168, 352 (1989).

Rakhmatulin, M. A.

Ren, H.

H. Ren, Y.-H. Lin, and S.-T. Wu, “Adaptive lenses using liquid-crystal concentration redistribution,” Appl. Phys. Lett. 88, 1911116-1-6 (2006).

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosize PDLC droplets,” Opt. Commun. 247, 101 (2005).
[CrossRef]

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “LC microlens array with switchable positive and negative focal lengths,” J. Displ. Techn. 1, 151 (2005).

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical LC lenses,” Jpn. J. Appl. Phys., Part 1 44, 243 (2005).
[CrossRef]

Y.-H. Fan, H. Ren, and S.-T. Wu, “Electrically controlled lens and prism using nanoscale polymer-dispersed and polymer-networked liquid crystals,” Proc. SPIE 5289, 63 (2004).
[CrossRef]

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22 (2003).
[CrossRef]

Riza, N. A.

Ryl'kov, V. V.

M. V. Gryaznova, V. V. Danilov, Yu. A. Kuznetsov, V. V. Ryl'kov, P. A. Shakhverdov, and A. I. Khrebtov, “Liquid-crystalline microlenses in optical limitation systems,” Pis'ma Zh. Tekh. Fiz. 27, No. 2, 24 (2001) M. V. Gryaznova, V. V. Danilov, Yu. A. Kuznetsov, V. V. Ryl'kov, P. A. Shakhverdov, and A. I. Khrebtov, [Tech. Phys. Lett. 27, 52 (2001)].

Samagin, S.

I. R. Guralnik and S. Samagin, “Experimental implementation of the high-sensitivity liquid-crystal lens with optically controlled focal length,” Proc. SPIE 4986, 673 (2003).
[CrossRef]

Samagin, S. A.

I. R. Gural'nik and S. A. Samagin, “Optically controlled spherical liquid-crystal lens: theory and experiment,” Kvantovaya Elektron. (Moscow) 33, 430 (2003) I. R. Gural'nik and S. A. Samagin, [Quantum Electron. 33, 430 (2003)].
[CrossRef]

I. R. Guralnik and S. A. Samagin, “High-sensitivity optically addressed liquid-crystal lens,” Proc. SPIE 5137, 194 (2003).
[CrossRef]

Samargin, S. A.

I. R. Gural'nik and S. A. Samargin, “Electrophysical and optical properties of spherical and cylindrical liquid-crystal optically addressed lenses,” Kvantovaya Elektron. (Moscow) 34, 673 (2004) I. R. Gural'nik and S. A. Samargin, [Quantum Electron. 34, 673 (2004)].
[CrossRef]

Sato, S.

O. Pisnyak, S. Sato, and O. Lavrentovich, “Electrically tunable lenses based on dual-frequency NLC,” Appl. Opt. 45, 4576 (2006).
[CrossRef]

M. Ye and S. Sato, “Liquid-crystal lens of two liquid-crystal layers,” Mol. Cryst. Liq. Cryst. 422, 197 (2004).
[CrossRef]

M. Ye and S. Sato, “New liquid-crystal lens,” Proc. SPIE 4926, 75 (2002).
[CrossRef]

T. Nose, J. Yamada, and S. Sato, “Molecular orientation effect in LC cell using inhomogeneous electric field with extra controlling electrodes,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 368, 231 (2001).
[CrossRef]

M. Ye and S. Sato, “Transient properties of a liquid-crystal microlens,” Jpn. J. Appl. Phys., Part 1 40, 6012 (2001).
[CrossRef]

S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation analysis of design concept for optical properties of liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 40, 6514 (2001).
[CrossRef]

M. Honma, T. Nose, and S. Sato, “Improvement of aberration properties of liquid-crystal microlenses using the stacked electrode structure,” Jpn. J. Appl. Phys., Part 1 40, 1322 (2001).
[CrossRef]

M. Ye and S. Sato, “Dynamic director's behavior in LC microlens,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 368, 113 (2000).
[CrossRef]

S. Sato and T. Nose, “Improvement of optical properties and beam steering function in liquid-crystal microlens with an extra controlling electrode by a planar structure,” Jpn. J. Appl. Phys., Part 1 39, 6383 (2000).
[CrossRef]

M. Honma, T. Nose, and S. Sato, “Enhancement of numerical aperture of liquid-crystal microlenses using a stacked electrode structure,” Jpn. J. Appl. Phys., Part 1 39, 4799 (2000).
[CrossRef]

M. Ye, M. Honma, and S. Sato, “Improvement of decay properties of a liquid-crystal microlens with a divided electrode structure,” Jpn. J. Appl. Phys., Part 1 38, 1412 (1999).
[CrossRef]

S. Masuda, M. Honma, T. Nose, and S. Sato, “Influence of elastic constants on the optical properties of liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 36, 2765 (1997).
[CrossRef]

S. Masuda, S. Takahashi, T. Nose, and S. Sato, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36, 4772 (1997).
[CrossRef]

S. Masuda, S. Fulioka, M. Honma, and S. Sato, “Dependence of optical properties on device and material parameters in liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 35, 4668 (1996).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “A liquid-crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys., Part 1 31, 1643 (1992).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “Optical properties of a hybrid-aligned liquid-crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys., Part 1 30, 2110 (1991).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “Optical properties of a hybrid-aligned liquid crystals microlens,” Mol. Cryst. Liq. Cryst. 199, 27 (1991).
[CrossRef]

T. Nose and S. Sato, “Optical properties of liquid-crystal microlens,” Proc. SPIE 1230, 17 (1990).

T. Nose and S. Sato, “A liquid-crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425 (1989).
[CrossRef]

S. Sato, “LC lens-cell with variable focal length,” Jpn. J. Appl. Phys. 18, 1679 (1979).
[CrossRef]

T. Nose and S. Sato, “Application of a liquid-crystal microlens to an optical-fiber switch,” in Electronics and Communication in Japan, 1992, part 2, vol. 75-C-1, No. 3, pp. 155-163.

S. Masuda, H. Ito, T. Nose, and S. Sato, “Optical properties of a liquid-crystal microlens with a deflection function,” in Photonics in Switching, Sendai, 1996, pp. 21-25.

T. Nose and S. Sato, “Application of LC microlens to an optical fiber switch,” Electronics and communications in Japan, 1992, part 2, vol. 75, No. 11, pp. 1-10.

Saunter, C. D.

Scharf, T.

T. Scharf, P. Kipfer, M. Bouvier, and J. Grupp, “Diffraction-limited liquid-crystal microlenses with planar alignment,” Jpn. J. Appl. Phys., Part 1 39, 6629 (2000).
[CrossRef]

T. Scharf, J. Fontannaz, M. Bouvier, and J. Grupp, “An adaptive microlens formed by homeotropic aligned liquid crystal with positive dielectric anisotropy,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 331, 235 (1999).
[CrossRef]

Schwiegerling, J.

N. Peyghambarian, G. Li, D. Mathine, P. Valley, J. Schwiegerling, S. Honkanen, P. Ayras, J. N. Haddock, G. Malalahalli, and B. Kippelen, “Electro-optic adaptive lens as a new eyewear,” Mol. Cryst. Liq. Cryst. 454, 157 (2007).

Selviah, D. R.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132 (2001).
[CrossRef]

F. J. Smith, E. M. McCabe, C. M. Taylor, D. R. Selviah, S. E. Day, and L. G. Commander, “Variable-focus microlenses as a potential technology for endoscopy,” Proc. SPIE 3919, 187 (2000).
[CrossRef]

Shakhverdov, P. A.

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, “Optical limiters based on LC microlens,” Opt. Spectrosc. 92, 614 (2002).
[CrossRef]

M. V. Gryaznova, V. V. Danilov, Yu. A. Kuznetsov, V. V. Ryl'kov, P. A. Shakhverdov, and A. I. Khrebtov, “Liquid-crystalline microlenses in optical limitation systems,” Pis'ma Zh. Tekh. Fiz. 27, No. 2, 24 (2001) M. V. Gryaznova, V. V. Danilov, Yu. A. Kuznetsov, V. V. Ryl'kov, P. A. Shakhverdov, and A. I. Khrebtov, [Tech. Phys. Lett. 27, 52 (2001)].

Simonov, A. N.

Smith, F. J.

F. J. Smith, E. M. McCabe, C. M. Taylor, D. R. Selviah, S. E. Day, and L. G. Commander, “Variable-focus microlenses as a potential technology for endoscopy,” Proc. SPIE 3919, 187 (2000).
[CrossRef]

Smith, P. J.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132 (2001).
[CrossRef]

Stallinga, S.

H. R. Stapert, E. J. K. Verstegen, S. del Valle, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid crystalline lenses for aberration control and dual layer readout of optical disks,” Philips Research Information, 2002, pp. 1-10.

Stankovic, S.

M. Hain, R. Glokner, S. Bhattacharya, D. Dias, S. Stankovic, and S. Tschudi, “Fast-switching LC lenses for dual-focus digital versatile disk pickup,” Opt. Commun. 188, 291 (2001).
[CrossRef]

Stapert, H. R.

H. R. Stapert, E. J. K. Verstegen, S. del Valle, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid crystalline lenses for aberration control and dual layer readout of optical disks,” Philips Research Information, 2002, pp. 1-10.

Takahashi, S.

Tatarkova, S. A.

Taylor, C. M.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132 (2001).
[CrossRef]

F. J. Smith, E. M. McCabe, C. M. Taylor, D. R. Selviah, S. E. Day, and L. G. Commander, “Variable-focus microlenses as a potential technology for endoscopy,” Proc. SPIE 3919, 187 (2000).
[CrossRef]

Tschudi, S.

M. Hain, R. Glokner, S. Bhattacharya, D. Dias, S. Stankovic, and S. Tschudi, “Fast-switching LC lenses for dual-focus digital versatile disk pickup,” Opt. Commun. 188, 291 (2001).
[CrossRef]

Valley, P.

N. Peyghambarian, G. Li, D. Mathine, P. Valley, J. Schwiegerling, S. Honkanen, P. Ayras, J. N. Haddock, G. Malalahalli, and B. Kippelen, “Electro-optic adaptive lens as a new eyewear,” Mol. Cryst. Liq. Cryst. 454, 157 (2007).

van der Zande, B. M. I.

H. R. Stapert, E. J. K. Verstegen, S. del Valle, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid crystalline lenses for aberration control and dual layer readout of optical disks,” Philips Research Information, 2002, pp. 1-10.

Vdovin, G.

A. N. Simonov, G. Vdovin, and M. Loktev, “Liquid-Crystal intraocular adaptive lens with wireless control,” Opt. Express 15, 7468 (2007).
[CrossRef]

G. Vdovin, M. Loktev, and A. Naumov, “On the possibility of intraocular adaptive optics,” Opt. Exp. 11, 810 (2003).

A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992 (1998).
[CrossRef]

G. Vdovin, M. Loktev, and X. Zhang, “Adaptive Optics for Industry and Medicine,” Proceedings of the Fourth International Workshop, Münster, Germany, October 2003, pp. 19-24.

Vdovin, G. V.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave-front control systems based on modal liquid-crystal lenses,” Rev. Sci. Instrum. 71, 3290 (2000).
[CrossRef]

G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. I. Theory,” Kvantovaya Elektron. (Moscow) 26, 256 (1999) G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, [Quantum Electron. 29, 256 (1999)].
[CrossRef]

G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimization and experiments,” Kvantovaya Elektron. (Moscow) 26, 261 (1999) G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, [Quantum Electron. 29, 261 (1999)].
[CrossRef]

A. F. Naumov, M. J. Loktev, I. R. Guralnik, and G. V. Vdovin, “Modal liquid crystal adaptive lenses,” Preprint No. 36, General Phys. Inst. of Russian Academy of Sciences, 1998.

Verstegen, E. J. K.

H. R. Stapert, E. J. K. Verstegen, S. del Valle, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid crystalline lenses for aberration control and dual layer readout of optical disks,” Philips Research Information, 2002, pp. 1-10.

Vladimirov, F. L.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave-front control systems based on modal liquid-crystal lenses,” Rev. Sci. Instrum. 71, 3290 (2000).
[CrossRef]

A. F. Naumov, G. D. Love, M. Yu. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid-crystal lenses,” Opt. Exp. 4, 344 (1999).

Wang, H.

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “LC microlens array with switchable positive and negative focal lengths,” J. Displ. Techn. 1, 151 (2005).

Williams, G.

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable LC Fresnel lens,” Proc. SPIE 1168, 352 (1989).

Wu, S.-T.

H. Ren, Y.-H. Lin, and S.-T. Wu, “Adaptive lenses using liquid-crystal concentration redistribution,” Appl. Phys. Lett. 88, 1911116-1-6 (2006).

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “LC microlens array with switchable positive and negative focal lengths,” J. Displ. Techn. 1, 151 (2005).

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosize PDLC droplets,” Opt. Commun. 247, 101 (2005).
[CrossRef]

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical LC lenses,” Jpn. J. Appl. Phys., Part 1 44, 243 (2005).
[CrossRef]

Y.-H. Fan, H. Ren, and S.-T. Wu, “Electrically controlled lens and prism using nanoscale polymer-dispersed and polymer-networked liquid crystals,” Proc. SPIE 5289, 63 (2004).
[CrossRef]

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22 (2003).
[CrossRef]

Yamada, J.

T. Nose, J. Yamada, and S. Sato, “Molecular orientation effect in LC cell using inhomogeneous electric field with extra controlling electrodes,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 368, 231 (2001).
[CrossRef]

Yanase, S.

S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation analysis of design concept for optical properties of liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 40, 6514 (2001).
[CrossRef]

Ye, M.

M. Ye and S. Sato, “Liquid-crystal lens of two liquid-crystal layers,” Mol. Cryst. Liq. Cryst. 422, 197 (2004).
[CrossRef]

M. Ye and S. Sato, “New liquid-crystal lens,” Proc. SPIE 4926, 75 (2002).
[CrossRef]

M. Ye and S. Sato, “Transient properties of a liquid-crystal microlens,” Jpn. J. Appl. Phys., Part 1 40, 6012 (2001).
[CrossRef]

M. Ye and S. Sato, “Dynamic director's behavior in LC microlens,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 368, 113 (2000).
[CrossRef]

M. Ye, M. Honma, and S. Sato, “Improvement of decay properties of a liquid-crystal microlens with a divided electrode structure,” Jpn. J. Appl. Phys., Part 1 38, 1412 (1999).
[CrossRef]

Yudin, B. I.

A. Yu. Gvozdarev, I. B. Yudin, G. E. Nevskaya, and B. I. Yudin, “Calculating the deformation of the director in an axially symmetric electric field of an LC microlens,” in Transactions of the Fourth All-Union Conference APÉP-98, 1988, vol. 6, pp. 17-22.

Yudin, I. B.

A. Yu. Gvozdarev, G. E. Nevskaya, and I. B. Yudin, “Adjustable liquid-crystal microlenses with homeotropic orientation,” Opt. Zh. 68, No. 9, 55 (2001) A. Yu. Gvozdarev, G. E. Nevskaya, and I. B. Yudin, [J. Opt. Technol. 68, 682 (2001)].

A. Yu. Gvozdarev, I. B. Yudin, G. E. Nevskaya, and B. I. Yudin, “Calculating the deformation of the director in an axially symmetric electric field of an LC microlens,” in Transactions of the Fourth All-Union Conference APÉP-98, 1988, vol. 6, pp. 17-22.

Zayakin, O. A.

Zhang, X.

G. Vdovin, M. Loktev, and X. Zhang, “Adaptive Optics for Industry and Medicine,” Proceedings of the Fourth International Workshop, Münster, Germany, October 2003, pp. 19-24.

Zhu, X.

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical LC lenses,” Jpn. J. Appl. Phys., Part 1 44, 243 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. Ren and S.-T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22 (2003).
[CrossRef]

H. Ren, Y.-H. Lin, and S.-T. Wu, “Adaptive lenses using liquid-crystal concentration redistribution,” Appl. Phys. Lett. 88, 1911116-1-6 (2006).

J. Displ. Techn.

Y.-H. Fan, H. Ren, X. Liang, H. Wang, and S.-T. Wu, “LC microlens array with switchable positive and negative focal lengths,” J. Displ. Techn. 1, 151 (2005).

Jpn. J. Appl. Phys.

S. Sato, “LC lens-cell with variable focal length,” Jpn. J. Appl. Phys. 18, 1679 (1979).
[CrossRef]

Jpn. J. Appl. Phys., Part 1

S. Yanase, K. Ouchi, and S. Sato, “Molecular orientation analysis of design concept for optical properties of liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 40, 6514 (2001).
[CrossRef]

M. Honma, T. Nose, and S. Sato, “Improvement of aberration properties of liquid-crystal microlenses using the stacked electrode structure,” Jpn. J. Appl. Phys., Part 1 40, 1322 (2001).
[CrossRef]

M. Ye and S. Sato, “Transient properties of a liquid-crystal microlens,” Jpn. J. Appl. Phys., Part 1 40, 6012 (2001).
[CrossRef]

T. Scharf, P. Kipfer, M. Bouvier, and J. Grupp, “Diffraction-limited liquid-crystal microlenses with planar alignment,” Jpn. J. Appl. Phys., Part 1 39, 6629 (2000).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “Optical properties of a hybrid-aligned liquid-crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys., Part 1 30, 2110 (1991).
[CrossRef]

T. Nose, S. Masuda, and S. Sato, “A liquid-crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys., Part 1 31, 1643 (1992).
[CrossRef]

S. Masuda, S. Fulioka, M. Honma, and S. Sato, “Dependence of optical properties on device and material parameters in liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 35, 4668 (1996).
[CrossRef]

S. Masuda, M. Honma, T. Nose, and S. Sato, “Influence of elastic constants on the optical properties of liquid-crystal microlenses,” Jpn. J. Appl. Phys., Part 1 36, 2765 (1997).
[CrossRef]

S. Sato and T. Nose, “Improvement of optical properties and beam steering function in liquid-crystal microlens with an extra controlling electrode by a planar structure,” Jpn. J. Appl. Phys., Part 1 39, 6383 (2000).
[CrossRef]

Y.-H. Lin, H. Ren, K.-H. Fan-Chiang, W.-K. Choi, S. Gauza, X. Zhu, and S.-T. Wu, “Tunable-focus cylindrical LC lenses,” Jpn. J. Appl. Phys., Part 1 44, 243 (2005).
[CrossRef]

M. Ye, M. Honma, and S. Sato, “Improvement of decay properties of a liquid-crystal microlens with a divided electrode structure,” Jpn. J. Appl. Phys., Part 1 38, 1412 (1999).
[CrossRef]

M. Honma, T. Nose, and S. Sato, “Enhancement of numerical aperture of liquid-crystal microlenses using a stacked electrode structure,” Jpn. J. Appl. Phys., Part 1 39, 4799 (2000).
[CrossRef]

Kvantovaya Elektron. (Moscow)

I. R. Gural'nik and S. A. Samagin, “Optically controlled spherical liquid-crystal lens: theory and experiment,” Kvantovaya Elektron. (Moscow) 33, 430 (2003) I. R. Gural'nik and S. A. Samagin, [Quantum Electron. 33, 430 (2003)].
[CrossRef]

G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. I. Theory,” Kvantovaya Elektron. (Moscow) 26, 256 (1999) G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, [Quantum Electron. 29, 256 (1999)].
[CrossRef]

G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimization and experiments,” Kvantovaya Elektron. (Moscow) 26, 261 (1999) G. V. Vdovin, I. R. Gural'nik, S. P. Kotova, M. Yu. Loktev, and A. F. Naumov, [Quantum Electron. 29, 261 (1999)].
[CrossRef]

I. R. Gural'nik and S. A. Samargin, “Electrophysical and optical properties of spherical and cylindrical liquid-crystal optically addressed lenses,” Kvantovaya Elektron. (Moscow) 34, 673 (2004) I. R. Gural'nik and S. A. Samargin, [Quantum Electron. 34, 673 (2004)].
[CrossRef]

Liq. Cryst.

T. Nose and S. Sato, “A liquid-crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425 (1989).
[CrossRef]

Mol. Cryst. Liq. Cryst.

T. Nose, S. Masuda, and S. Sato, “Optical properties of a hybrid-aligned liquid crystals microlens,” Mol. Cryst. Liq. Cryst. 199, 27 (1991).
[CrossRef]

M. Ye and S. Sato, “Liquid-crystal lens of two liquid-crystal layers,” Mol. Cryst. Liq. Cryst. 422, 197 (2004).
[CrossRef]

N. Peyghambarian, G. Li, D. Mathine, P. Valley, J. Schwiegerling, S. Honkanen, P. Ayras, J. N. Haddock, G. Malalahalli, and B. Kippelen, “Electro-optic adaptive lens as a new eyewear,” Mol. Cryst. Liq. Cryst. 454, 157 (2007).

Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A

T. Nose, J. Yamada, and S. Sato, “Molecular orientation effect in LC cell using inhomogeneous electric field with extra controlling electrodes,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 368, 231 (2001).
[CrossRef]

A. Gvozdarev and G. E. Nevskaya, “Optical properties of homogeneously and hybrid-aligned liquid-crystal microlenses,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 329, 81 (1999).
[CrossRef]

A. Gvozdarev and G. E. Nevskaya, “Optical properties of homeotropical aligned liquid-crystal microlens,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 304, 423 (1997).
[CrossRef]

A. Gvozdarev and G. E. Nevskaya, “Nematic deformation in homeotropically aligned liquid-crystal microlens and its optical properties,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 4, 364 (2001).

T. Scharf, J. Fontannaz, M. Bouvier, and J. Grupp, “An adaptive microlens formed by homeotropic aligned liquid crystal with positive dielectric anisotropy,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 331, 235 (1999).
[CrossRef]

M. Ye and S. Sato, “Dynamic director's behavior in LC microlens,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 368, 113 (2000).
[CrossRef]

Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B: Nonlinear Opt.

A. Gvozdarev and G. E. Nevskaya, “Comparison of electrooptical properties of asymmetrical liquid-crystal microlenses,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B: Nonlinear Opt. 4, 358 (2001).

Opt. Commun.

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosize PDLC droplets,” Opt. Commun. 247, 101 (2005).
[CrossRef]

M. Hain, R. Glokner, S. Bhattacharya, D. Dias, S. Stankovic, and S. Tschudi, “Fast-switching LC lenses for dual-focus digital versatile disk pickup,” Opt. Commun. 188, 291 (2001).
[CrossRef]

Opt. Exp.

G. Vdovin, M. Loktev, and A. Naumov, “On the possibility of intraocular adaptive optics,” Opt. Exp. 11, 810 (2003).

A. F. Naumov, G. D. Love, M. Yu. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid-crystal lenses,” Opt. Exp. 4, 344 (1999).

Opt. Express

Opt. Lett.

Opt. Spectrosc.

M. V. Gryaznova, V. V. Danilov, M. A. Belyaeva, P. A. Shakhverdov, O. V. Chistyakova, and A. I. Khrebtov, “Optical limiters based on LC microlens,” Opt. Spectrosc. 92, 614 (2002).
[CrossRef]

Opt. Zh.

A. Yu. Gvozdarev and G. E. Nevskaya, “Optical characteristics of liquid-crystal microlenses with planar and hybrid orientation of a nematic,” Opt. Zh. 68, No. 9, 61 (2001) A. Yu. Gvozdarev and G. E. Nevskaya, [J. Opt. Technol. 68, 687 (2001)].

A. Yu. Gvozdarev, G. E. Nevskaya, and I. B. Yudin, “Adjustable liquid-crystal microlenses with homeotropic orientation,” Opt. Zh. 68, No. 9, 55 (2001) A. Yu. Gvozdarev, G. E. Nevskaya, and I. B. Yudin, [J. Opt. Technol. 68, 682 (2001)].

Opthal. Physiolog. Optics

C. W. Fowler and E. S. Pateras, “LC lens review,” Opthal. Physiolog. Optics 10, 186 (1990).

Pis'ma Zh. Tekh. Fiz.

M. V. Gryaznova, V. V. Danilov, Yu. A. Kuznetsov, V. V. Ryl'kov, P. A. Shakhverdov, and A. I. Khrebtov, “Liquid-crystalline microlenses in optical limitation systems,” Pis'ma Zh. Tekh. Fiz. 27, No. 2, 24 (2001) M. V. Gryaznova, V. V. Danilov, Yu. A. Kuznetsov, V. V. Ryl'kov, P. A. Shakhverdov, and A. I. Khrebtov, [Tech. Phys. Lett. 27, 52 (2001)].

Proc. SPIE

F. J. Smith, E. M. McCabe, C. M. Taylor, D. R. Selviah, S. E. Day, and L. G. Commander, “Variable-focus microlenses as a potential technology for endoscopy,” Proc. SPIE 3919, 187 (2000).
[CrossRef]

I. R. Guralnik and S. A. Samagin, “High-sensitivity optically addressed liquid-crystal lens,” Proc. SPIE 5137, 194 (2003).
[CrossRef]

P. F. Brinkley and S. T. Kowel, “Liquid-crystal adaptive lens: operation and aberration,” Proc. SPIE 1773, 449 (1993).
[CrossRef]

I. R. Guralnik and S. Samagin, “Experimental implementation of the high-sensitivity liquid-crystal lens with optically controlled focal length,” Proc. SPIE 4986, 673 (2003).
[CrossRef]

Y.-H. Fan, H. Ren, and S.-T. Wu, “Electrically controlled lens and prism using nanoscale polymer-dispersed and polymer-networked liquid crystals,” Proc. SPIE 5289, 63 (2004).
[CrossRef]

M. Ye and S. Sato, “New liquid-crystal lens,” Proc. SPIE 4926, 75 (2002).
[CrossRef]

T. Nose and S. Sato, “Optical properties of liquid-crystal microlens,” Proc. SPIE 1230, 17 (1990).

G. Williams, N. J. Powell, A. Purvis, and M. G. Clark, “Electrically controllable LC Fresnel lens,” Proc. SPIE 1168, 352 (1989).

Rev. Sci. Instrum.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave-front control systems based on modal liquid-crystal lenses,” Rev. Sci. Instrum. 71, 3290 (2000).
[CrossRef]

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, “Switchable fiber coupling using variable-focal-length microlenses,” Rev. Sci. Instrum. 72, 3132 (2001).
[CrossRef]

Other

H. R. Stapert, E. J. K. Verstegen, S. del Valle, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid crystalline lenses for aberration control and dual layer readout of optical disks,” Philips Research Information, 2002, pp. 1-10.

T. Nose and S. Sato, “Application of LC microlens to an optical fiber switch,” Electronics and communications in Japan, 1992, part 2, vol. 75, No. 11, pp. 1-10.

G. Vdovin, M. Loktev, and X. Zhang, “Adaptive Optics for Industry and Medicine,” Proceedings of the Fourth International Workshop, Münster, Germany, October 2003, pp. 19-24.

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of switchable microlens arrays based on a liquid crystal,” in Lasers and Electro-Optics Society, 2001, LEOS 2001, The Fourteenth Annual Meeting of the IEEE, vol. 2, pp. 618-619.

D. W. Berreman, “Variable-focus LC-lens system,” US Patent 4 190 330 (1980).

S. T. Kowel and D. S. Cleverly, “Focusing by electrical modulation of refraction in a LC cell,” Proceedings of NASA Conference on Optical Information Processing for Aerospace Applications, Virginia, USA, 1981, pp. 329-340.

A. Yu. Gvozdarev, I. B. Yudin, G. E. Nevskaya, and B. I. Yudin, “Calculating the deformation of the director in an axially symmetric electric field of an LC microlens,” in Transactions of the Fourth All-Union Conference APÉP-98, 1988, vol. 6, pp. 17-22.

A. V. Morozov, “Study of the electrooptic properties of multidomain LC structures obtained by using surface-active substances,” Author's abstract of candidate's dissertation, 2005.

G. E. Nevskaya and A. Gvozdarev, “Analysis of phase retardation profiles in LC microlenses with different nematic alignment,” Proc. of the Fourth Korea-Russia International Symposium on Science and Technology, 2000, part 1, pp. 126-130.

T. Nose and S. Sato, “Application of a liquid-crystal microlens to an optical-fiber switch,” in Electronics and Communication in Japan, 1992, part 2, vol. 75-C-1, No. 3, pp. 155-163.

A. F. Naumov, M. J. Loktev, I. R. Guralnik, and G. V. Vdovin, “Modal liquid crystal adaptive lenses,” Preprint No. 36, General Phys. Inst. of Russian Academy of Sciences, 1998.

S. Masuda, H. Ito, T. Nose, and S. Sato, “Optical properties of a liquid-crystal microlens with a deflection function,” in Photonics in Switching, Sendai, 1996, pp. 21-25.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.