Abstract

This paper presents a review of the literature data on the development and investigation of metamaterials with negative refractive index--artificial materials consisting of structural elements whose form and relative arrangement can be specified during fabrication. Intensive studies are described that were carried out in recent decades and that led to the creation in 2003 of metamaterials that demonstrate negative refractive index in the gigahertz frequency range. New trends are pointed out that have made it possible to obtain metamaterials with negative refractive index in the near-IR region.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon Press, Oxford, 1965; Nauka, Moscow, 1973).
  2. L. I. Mandel'shtam, “Lectures on some problems of the theory of vibrations” (1944) (see Complete Collected Works (Akad.Nauk SSSR, Moscow, 1950), vol. 5, pp. 428-467.
  3. V. G. Veselago, “Electrodynamics of substances with simultaneously negative values of epsi and μ,” Usp. Fiz. Nauk 92, 517 (1967).
  4. H. Lamb, “On group-velocity,” Proc. London Math. Soc. 1, 473 (1904).
    [CrossRef]
  5. A. Schuster, An Introduction to the Theory of Optics (Edward Arnold, London, 1904).
  6. L. I. Mandel'shtam, “Group velocity in a crystal lattice,” Zh. Eksp. Teor. Fiz. 15, 475 (1945).
  7. V. Veselago, L. Braginsky, V. Shklover, and C. Hafner, “Negative refraction index materials,” J. Comp. Theor. Nanoscience 3No. 2, 1 (2006).
  8. S. A. Tretyakov, “Research on negative refraction and backward-wave media: A historical perspective,” in Collection of Papers of EPFL Latsis Symposium 2005, Negative refraction: revisiting electromagnetics from microwaves to optics, Lausanne, 28.2-2.03.2005, pp. 30-35.
  9. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449 (2005).
    [CrossRef]
  10. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
    [CrossRef]
  11. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” Intensive Care Med. 47, 2075 (1999).
  12. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
    [CrossRef]
  13. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, No. 5541, 77 (2001).
    [CrossRef]
  14. J. P. Kotthaus and V. Jaccarino, “Antiferromagnetic-resonance line widths in MnF2,” Phys. Rev. Lett. 28, 1649 (1972).
    [CrossRef]
  15. P. Grunberg and F. Metawe, “Light scattering from bulk and surfaces pin waves in EuO,” Phys. Rev. Lett. 39, 1561 (1977).
    [CrossRef]
  16. R. E. Camley and D. L. Mills, “Surface polaritons on uniaxial antiferromagnets,” Phys. Rev. B 26, 1280 (1982).
    [CrossRef]
  17. L. Remer, B. Luthi, H. Sauer, R. Geick, and R. E. Camley, “Nonreciprocal optical reflection of the uniaxial antiferromagnet MnF2,” Phys. Rev. Lett. 56, 2752 (1986).
    [CrossRef]
  18. T. Dumelow, R. E. Camley, K. Abraha, and D. R. Tilley, “Nonreciprocal phase behavior in reflection of electromagnetic waves from magnetic materials,” Phys. Rev. B 58, 897 (1998).
    [CrossRef]
  19. J. B. Pendry and S. O'Brien, “Very-low-frequency plasma,” J. Phys.: Condens. Matter 14, 7409 (2002).
  20. S. O'Brien, D. MacPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69, 241101 (2004).
    [CrossRef]
  21. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785 (1998).
    [CrossRef]
  22. H. Raether, Excitation of Plasmons and Interband Transitions by Electrons (Springer, Berlin, 1980).
  23. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  24. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Kontenbah, and M. H. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell's law,” Phys. Rev. Lett. 90, 107401 (2003).
    [CrossRef]
  25. K. Li, S. J. McLean, R. B. Greegor, C. G. Parazzoli, and M. H. Tanielian, “Free-space focused-beam characterization of left-handed materials,” Appl. Phys. Lett. 82, 2535 (2003).
    [CrossRef]
  26. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).
    [CrossRef]
  27. P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys. 92, 2929 (2002).
    [CrossRef]
  28. A.-C. Hsu, Y. K. Cheng, K. H. Chen, J. L. Chern, S. C. Wu, C. F. Chen, H. Chang, Y. H. Lien, and J. T. Shy, “Far-infrared resonance in split-ring resonators,” J. Phys. Soc. Jpn. 43, L176 (2004).
  29. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef]
  30. K. Yu. Bliokh and R. K. Bliokh, “What are the left-handed media and what is interesting about them?,” Phys. Usp. 174, 439 (2004) K. Yu. Bliokh and R. K. Bliokh, “What are the left-handed media and what is interesting about them?,”[Phys. Usp. 47, 393 (2004).]
  31. P. M. Valanju, R. M. Walser, and A. P. Valanju, “Wave refraction in negative-index media: Always positive and very inhomogeneous,” Phys. Rev. Lett. 88, 187401 (2002).
    [CrossRef]
  32. N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403 (2002).
    [CrossRef]
  33. G. W. Hooft, “Comment on 'Negative Refraction Makes a Perfect Lens',” Phys. Rev. Lett. 87, 249701 (2001).
    [CrossRef]
  34. J. B. Pendry and D. R. Smith, “Comment on 'Wave refraction innegative-index media: Always positive and very inhomogeneous',” Phys. Rev. Lett. 90, 029703 (2003).
    [CrossRef]
  35. J. Pacheco, T. M. Grzegorczyk Jr., B.-I. Wu, Y. Zhang, and J. A. Kong, “Power propagation in homogeneous isotropic frequency-dispersive left-handed media,” Phys. Rev. Lett. 89, 257401 (2002).
    [CrossRef]
  36. S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, “Refraction in media with a negative refraction index,” Phys. Rev. Lett. 90, 107402 (2003).
    [CrossRef]
  37. P. F. Loschiapo, D. L. Smith, D. W. Forester, F. J. Rachford, and J. Schelleng, “Electromagnetic waves focused by a negative-index planar lens,” Phys. Rev. E 67, 025602 (2003).
    [CrossRef]
  38. J. T. Shen and P. M. Platzman, “Near-field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80, 3286 (2002).
    [CrossRef]
  39. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506 (2003).
    [CrossRef]
  40. P. Kolinko and D. Smith, “Numerical study of electromagnetic waves interacting with negative index materials,” Opt. Express 11, 640 (2003).
  41. S. A. Cummer, “Simulated causal subwavelength focusing by a negative refractive index slab,” Appl. Phys. Lett. 82, 1503 (2003).
    [CrossRef]
  42. X. S. Rao and C. K. Ong, “Subwavelength imaging by a left-handed material superlens,” Phys. Rev. E 68, 067601 (2003).
    [CrossRef]
  43. X. Huang and L. Zhou, “Modulating image oscillations in focusing by a metamaterial lens: Time-dependent Green's function approach,” Phys. Rev. B 74, 045123 (2006).
    [CrossRef]
  44. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401 (2003).
    [CrossRef]
  45. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit witha planar left-handed transmission-line lens,” Phys. Rev. Lett. 92, 117403 (2004).
    [CrossRef]
  46. A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterials coatings,” Phys. Rev. E 72, 016623 (2005).
    [CrossRef]
  47. X. Zhou and G. Hu, “Design for electromagnetic wave transparency with metamaterials,” Phys. Rev. E 74, 026607 (2006).
    [CrossRef]
  48. F. J. Garcia de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95, 067403 (2005).
    [CrossRef]
  49. G. V. Milton and N.-A. P. Nicoroviki, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. London, Ser. A 462, 3027 (2006).
    [CrossRef]
  50. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
    [CrossRef]
  51. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777 (2006).
    [CrossRef]
  52. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulation of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
    [CrossRef]
  53. U. Leonhardt, “Notes on conformal invisibility devices,” New J. Phys. 8, 118 (2006).
    [CrossRef]
  54. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nature Photonics 1, 224 (2007).
  55. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696 (2000).
    [CrossRef]
  56. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788 (2004).
    [CrossRef]
  57. C. M. Soukoulis, “Bending back light: The science of negative index materials,” Opt. Photonics News 17(6), 18 (2006).
  58. X. Wang, Z. Ren, and K. Kempa, “Unrestricted superlensing in a triangular two-dimensional photonic crystal,” Optics Express 12, 2919 (2004).
  59. Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flatlens using negative refraction at microwave frequencies,” Phys. Rev. Lett. 95, 153901 (2005).
    [CrossRef]
  60. T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: Going optical,” IEEE J. Sel. Top. Quantum Electron. 12, 1106 (2006).
    [CrossRef]
  61. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).
    [CrossRef]
  62. H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94, 063901 (2005).
    [CrossRef]
  63. S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Mid-infrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94, 037402 (2005).
    [CrossRef]
  64. L. V. Panina, A. N. Grigorenko, and D. P. Makhnovskiy, “Optomagnetic composite medium with conducting nanoelements,” Phys. Rev. B 66, 155411 (2002).
    [CrossRef]
  65. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351 (2004).
    [CrossRef]
  66. C. Enkrich, M. Wegener, F. Perez-Williard, S. Linden, J. Zhou, T. Koschny, and C. M. Soukoulis, “Optimizing the design parameters for split-ring resonators at telecommunication wavelength,” in Proceedings of the International Conference on Quantum Electronics and Laser Science, Baltimore, May 2005, pp. 1535-1536.
  67. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
    [CrossRef]
  68. A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318 (1996).
    [CrossRef]
  69. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Anal. Chem. USSR 11, 65 (2002).
  70. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” Opt. Express 11, 735 (2003).
  71. V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A: Pure and Appl. Opt. 7, S32 (2005).
  72. N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: Nanoinductors, nonocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
    [CrossRef]
  73. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356 (2005).
    [CrossRef]
  74. V. P. Drachev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimec, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 1, 49 (2006).
    [CrossRef]
  75. A. V. Kildishev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev, “Negative refraction index in optics of metal-dielectric composites,” J. Opt. Soc. Am. B 23, 423 (2006).
    [CrossRef]
  76. F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93, 197401 (2004).
    [CrossRef]
  77. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index materials,” Phys. Rev. Lett. 95, 137404 (2005).
    [CrossRef]

2007 (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nature Photonics 1, 224 (2007).

2006 (12)

X. Zhou and G. Hu, “Design for electromagnetic wave transparency with metamaterials,” Phys. Rev. E 74, 026607 (2006).
[CrossRef]

C. M. Soukoulis, “Bending back light: The science of negative index materials,” Opt. Photonics News 17(6), 18 (2006).

X. Huang and L. Zhou, “Modulating image oscillations in focusing by a metamaterial lens: Time-dependent Green's function approach,” Phys. Rev. B 74, 045123 (2006).
[CrossRef]

G. V. Milton and N.-A. P. Nicoroviki, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. London, Ser. A 462, 3027 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777 (2006).
[CrossRef]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulation of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

U. Leonhardt, “Notes on conformal invisibility devices,” New J. Phys. 8, 118 (2006).
[CrossRef]

T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: Going optical,” IEEE J. Sel. Top. Quantum Electron. 12, 1106 (2006).
[CrossRef]

V. P. Drachev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimec, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 1, 49 (2006).
[CrossRef]

A. V. Kildishev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev, “Negative refraction index in optics of metal-dielectric composites,” J. Opt. Soc. Am. B 23, 423 (2006).
[CrossRef]

V. Veselago, L. Braginsky, V. Shklover, and C. Hafner, “Negative refraction index materials,” J. Comp. Theor. Nanoscience 3No. 2, 1 (2006).

2005 (11)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449 (2005).
[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356 (2005).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index materials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A: Pure and Appl. Opt. 7, S32 (2005).

N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: Nanoinductors, nonocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef]

H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94, 063901 (2005).
[CrossRef]

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Mid-infrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterials coatings,” Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flatlens using negative refraction at microwave frequencies,” Phys. Rev. Lett. 95, 153901 (2005).
[CrossRef]

F. J. Garcia de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95, 067403 (2005).
[CrossRef]

2004 (10)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788 (2004).
[CrossRef]

X. Wang, Z. Ren, and K. Kempa, “Unrestricted superlensing in a triangular two-dimensional photonic crystal,” Optics Express 12, 2919 (2004).

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit witha planar left-handed transmission-line lens,” Phys. Rev. Lett. 92, 117403 (2004).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351 (2004).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).
[CrossRef]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93, 197401 (2004).
[CrossRef]

S. O'Brien, D. MacPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69, 241101 (2004).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).
[CrossRef]

K. Yu. Bliokh and R. K. Bliokh, “What are the left-handed media and what is interesting about them?,” Phys. Usp. 174, 439 (2004) K. Yu. Bliokh and R. K. Bliokh, “What are the left-handed media and what is interesting about them?,”[Phys. Usp. 47, 393 (2004).]

A.-C. Hsu, Y. K. Cheng, K. H. Chen, J. L. Chern, S. C. Wu, C. F. Chen, H. Chang, Y. H. Lien, and J. T. Shy, “Far-infrared resonance in split-ring resonators,” J. Phys. Soc. Jpn. 43, L176 (2004).

2003 (11)

J. B. Pendry and D. R. Smith, “Comment on 'Wave refraction innegative-index media: Always positive and very inhomogeneous',” Phys. Rev. Lett. 90, 029703 (2003).
[CrossRef]

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, “Refraction in media with a negative refraction index,” Phys. Rev. Lett. 90, 107402 (2003).
[CrossRef]

P. F. Loschiapo, D. L. Smith, D. W. Forester, F. J. Rachford, and J. Schelleng, “Electromagnetic waves focused by a negative-index planar lens,” Phys. Rev. E 67, 025602 (2003).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506 (2003).
[CrossRef]

S. A. Cummer, “Simulated causal subwavelength focusing by a negative refractive index slab,” Appl. Phys. Lett. 82, 1503 (2003).
[CrossRef]

X. S. Rao and C. K. Ong, “Subwavelength imaging by a left-handed material superlens,” Phys. Rev. E 68, 067601 (2003).
[CrossRef]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Kontenbah, and M. H. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell's law,” Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef]

K. Li, S. J. McLean, R. B. Greegor, C. G. Parazzoli, and M. H. Tanielian, “Free-space focused-beam characterization of left-handed materials,” Appl. Phys. Lett. 82, 2535 (2003).
[CrossRef]

P. Kolinko and D. Smith, “Numerical study of electromagnetic waves interacting with negative index materials,” Opt. Express 11, 640 (2003).

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” Opt. Express 11, 735 (2003).

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef]

2002 (8)

L. V. Panina, A. N. Grigorenko, and D. P. Makhnovskiy, “Optomagnetic composite medium with conducting nanoelements,” Phys. Rev. B 66, 155411 (2002).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Anal. Chem. USSR 11, 65 (2002).

P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys. 92, 2929 (2002).
[CrossRef]

P. M. Valanju, R. M. Walser, and A. P. Valanju, “Wave refraction in negative-index media: Always positive and very inhomogeneous,” Phys. Rev. Lett. 88, 187401 (2002).
[CrossRef]

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403 (2002).
[CrossRef]

J. T. Shen and P. M. Platzman, “Near-field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80, 3286 (2002).
[CrossRef]

J. Pacheco, T. M. Grzegorczyk Jr., B.-I. Wu, Y. Zhang, and J. A. Kong, “Power propagation in homogeneous isotropic frequency-dispersive left-handed media,” Phys. Rev. Lett. 89, 257401 (2002).
[CrossRef]

J. B. Pendry and S. O'Brien, “Very-low-frequency plasma,” J. Phys.: Condens. Matter 14, 7409 (2002).

2001 (2)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, No. 5541, 77 (2001).
[CrossRef]

G. W. Hooft, “Comment on 'Negative Refraction Makes a Perfect Lens',” Phys. Rev. Lett. 87, 249701 (2001).
[CrossRef]

2000 (3)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef]

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696 (2000).
[CrossRef]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” Intensive Care Med. 47, 2075 (1999).

1998 (2)

T. Dumelow, R. E. Camley, K. Abraha, and D. R. Tilley, “Nonreciprocal phase behavior in reflection of electromagnetic waves from magnetic materials,” Phys. Rev. B 58, 897 (1998).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785 (1998).
[CrossRef]

1996 (2)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef]

A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318 (1996).
[CrossRef]

1986 (1)

L. Remer, B. Luthi, H. Sauer, R. Geick, and R. E. Camley, “Nonreciprocal optical reflection of the uniaxial antiferromagnet MnF2,” Phys. Rev. Lett. 56, 2752 (1986).
[CrossRef]

1982 (1)

R. E. Camley and D. L. Mills, “Surface polaritons on uniaxial antiferromagnets,” Phys. Rev. B 26, 1280 (1982).
[CrossRef]

1977 (1)

P. Grunberg and F. Metawe, “Light scattering from bulk and surfaces pin waves in EuO,” Phys. Rev. Lett. 39, 1561 (1977).
[CrossRef]

1972 (1)

J. P. Kotthaus and V. Jaccarino, “Antiferromagnetic-resonance line widths in MnF2,” Phys. Rev. Lett. 28, 1649 (1972).
[CrossRef]

1967 (1)

V. G. Veselago, “Electrodynamics of substances with simultaneously negative values of epsi and μ,” Usp. Fiz. Nauk 92, 517 (1967).

1945 (1)

L. I. Mandel'shtam, “Group velocity in a crystal lattice,” Zh. Eksp. Teor. Fiz. 15, 475 (1945).

1904 (1)

H. Lamb, “On group-velocity,” Proc. London Math. Soc. 1, 473 (1904).
[CrossRef]

Appl. Phys. Lett. (4)

K. Li, S. J. McLean, R. B. Greegor, C. G. Parazzoli, and M. H. Tanielian, “Free-space focused-beam characterization of left-handed materials,” Appl. Phys. Lett. 82, 2535 (2003).
[CrossRef]

J. T. Shen and P. M. Platzman, “Near-field imaging with negative dielectric constant lenses,” Appl. Phys. Lett. 80, 3286 (2002).
[CrossRef]

D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82, 1506 (2003).
[CrossRef]

S. A. Cummer, “Simulated causal subwavelength focusing by a negative refractive index slab,” Appl. Phys. Lett. 82, 1503 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: Going optical,” IEEE J. Sel. Top. Quantum Electron. 12, 1106 (2006).
[CrossRef]

Intensive Care Med. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” Intensive Care Med. 47, 2075 (1999).

J. Anal. Chem. USSR (1)

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Anal. Chem. USSR 11, 65 (2002).

J. Appl. Phys. (1)

P. Gay-Balmaz and O. J. F. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys. 92, 2929 (2002).
[CrossRef]

J. Comp. Theor. Nanoscience (1)

V. Veselago, L. Braginsky, V. Shklover, and C. Hafner, “Negative refraction index materials,” J. Comp. Theor. Nanoscience 3No. 2, 1 (2006).

J. Opt. A: Pure and Appl. Opt. (1)

V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” J. Opt. A: Pure and Appl. Opt. 7, S32 (2005).

J. Opt. Soc. Am. B (1)

J. Phys. Soc. Jpn. (1)

A.-C. Hsu, Y. K. Cheng, K. H. Chen, J. L. Chern, S. C. Wu, C. F. Chen, H. Chang, Y. H. Lien, and J. T. Shy, “Far-infrared resonance in split-ring resonators,” J. Phys. Soc. Jpn. 43, L176 (2004).

J. Phys.: Condens. Matter (2)

J. B. Pendry and S. O'Brien, “Very-low-frequency plasma,” J. Phys.: Condens. Matter 14, 7409 (2002).

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785 (1998).
[CrossRef]

Laser Phys. Lett. (1)

V. P. Drachev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimec, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3, 1, 49 (2006).
[CrossRef]

Nature Photonics (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nature Photonics 1, 224 (2007).

New J. Phys. (1)

U. Leonhardt, “Notes on conformal invisibility devices,” New J. Phys. 8, 118 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Photonics News (1)

C. M. Soukoulis, “Bending back light: The science of negative index materials,” Opt. Photonics News 17(6), 18 (2006).

Optics Express (1)

X. Wang, Z. Ren, and K. Kempa, “Unrestricted superlensing in a triangular two-dimensional photonic crystal,” Optics Express 12, 2919 (2004).

Phys. Rev. B (7)

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696 (2000).
[CrossRef]

X. Huang and L. Zhou, “Modulating image oscillations in focusing by a metamaterial lens: Time-dependent Green's function approach,” Phys. Rev. B 74, 045123 (2006).
[CrossRef]

A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions,” Phys. Rev. B 53, 6318 (1996).
[CrossRef]

L. V. Panina, A. N. Grigorenko, and D. P. Makhnovskiy, “Optomagnetic composite medium with conducting nanoelements,” Phys. Rev. B 66, 155411 (2002).
[CrossRef]

S. O'Brien, D. MacPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69, 241101 (2004).
[CrossRef]

T. Dumelow, R. E. Camley, K. Abraha, and D. R. Tilley, “Nonreciprocal phase behavior in reflection of electromagnetic waves from magnetic materials,” Phys. Rev. B 58, 897 (1998).
[CrossRef]

R. E. Camley and D. L. Mills, “Surface polaritons on uniaxial antiferromagnets,” Phys. Rev. B 26, 1280 (1982).
[CrossRef]

Phys. Rev. E (5)

P. F. Loschiapo, D. L. Smith, D. W. Forester, F. J. Rachford, and J. Schelleng, “Electromagnetic waves focused by a negative-index planar lens,” Phys. Rev. E 67, 025602 (2003).
[CrossRef]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulation of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

X. S. Rao and C. K. Ong, “Subwavelength imaging by a left-handed material superlens,” Phys. Rev. E 68, 067601 (2003).
[CrossRef]

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterials coatings,” Phys. Rev. E 72, 016623 (2005).
[CrossRef]

X. Zhou and G. Hu, “Design for electromagnetic wave transparency with metamaterials,” Phys. Rev. E 74, 026607 (2006).
[CrossRef]

Phys. Rev. Lett. (23)

F. J. Garcia de Abajo, G. Gómez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95, 067403 (2005).
[CrossRef]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef]

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit witha planar left-handed transmission-line lens,” Phys. Rev. Lett. 92, 117403 (2004).
[CrossRef]

Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, “Three-dimensional subwavelength imaging by a photonic-crystal flatlens using negative refraction at microwave frequencies,” Phys. Rev. Lett. 95, 153901 (2005).
[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef]

H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94, 063901 (2005).
[CrossRef]

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Mid-infrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94, 037402 (2005).
[CrossRef]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93, 197401 (2004).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index materials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef]

N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: Nanoinductors, nonocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005).
[CrossRef]

L. Remer, B. Luthi, H. Sauer, R. Geick, and R. E. Camley, “Nonreciprocal optical reflection of the uniaxial antiferromagnet MnF2,” Phys. Rev. Lett. 56, 2752 (1986).
[CrossRef]

J. P. Kotthaus and V. Jaccarino, “Antiferromagnetic-resonance line widths in MnF2,” Phys. Rev. Lett. 28, 1649 (1972).
[CrossRef]

P. Grunberg and F. Metawe, “Light scattering from bulk and surfaces pin waves in EuO,” Phys. Rev. Lett. 39, 1561 (1977).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Kontenbah, and M. H. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell's law,” Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef]

P. M. Valanju, R. M. Walser, and A. P. Valanju, “Wave refraction in negative-index media: Always positive and very inhomogeneous,” Phys. Rev. Lett. 88, 187401 (2002).
[CrossRef]

N. Garcia and M. Nieto-Vesperinas, “Left-handed materials do not make a perfect lens,” Phys. Rev. Lett. 88, 207403 (2002).
[CrossRef]

G. W. Hooft, “Comment on 'Negative Refraction Makes a Perfect Lens',” Phys. Rev. Lett. 87, 249701 (2001).
[CrossRef]

J. B. Pendry and D. R. Smith, “Comment on 'Wave refraction innegative-index media: Always positive and very inhomogeneous',” Phys. Rev. Lett. 90, 029703 (2003).
[CrossRef]

J. Pacheco, T. M. Grzegorczyk Jr., B.-I. Wu, Y. Zhang, and J. A. Kong, “Power propagation in homogeneous isotropic frequency-dispersive left-handed media,” Phys. Rev. Lett. 89, 257401 (2002).
[CrossRef]

S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, “Refraction in media with a negative refraction index,” Phys. Rev. Lett. 90, 107402 (2003).
[CrossRef]

Phys. Usp. (1)

K. Yu. Bliokh and R. K. Bliokh, “What are the left-handed media and what is interesting about them?,” Phys. Usp. 174, 439 (2004) K. Yu. Bliokh and R. K. Bliokh, “What are the left-handed media and what is interesting about them?,”[Phys. Usp. 47, 393 (2004).]

Proc. London Math. Soc. (1)

H. Lamb, “On group-velocity,” Proc. London Math. Soc. 1, 473 (1904).
[CrossRef]

Proc. R. Soc. London, Ser. A (1)

G. V. Milton and N.-A. P. Nicoroviki, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. London, Ser. A 462, 3027 (2006).
[CrossRef]

Rep. Prog. Phys. (1)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449 (2005).
[CrossRef]

Science (7)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, No. 5541, 77 (2001).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777 (2006).
[CrossRef]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788 (2004).
[CrossRef]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351 (2004).
[CrossRef]

Usp. Fiz. Nauk (1)

V. G. Veselago, “Electrodynamics of substances with simultaneously negative values of epsi and μ,” Usp. Fiz. Nauk 92, 517 (1967).

Zh. Eksp. Teor. Fiz. (1)

L. I. Mandel'shtam, “Group velocity in a crystal lattice,” Zh. Eksp. Teor. Fiz. 15, 475 (1945).

Other (7)

S. A. Tretyakov, “Research on negative refraction and backward-wave media: A historical perspective,” in Collection of Papers of EPFL Latsis Symposium 2005, Negative refraction: revisiting electromagnetics from microwaves to optics, Lausanne, 28.2-2.03.2005, pp. 30-35.

A. Schuster, An Introduction to the Theory of Optics (Edward Arnold, London, 1904).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon Press, Oxford, 1965; Nauka, Moscow, 1973).

L. I. Mandel'shtam, “Lectures on some problems of the theory of vibrations” (1944) (see Complete Collected Works (Akad.Nauk SSSR, Moscow, 1950), vol. 5, pp. 428-467.

H. Raether, Excitation of Plasmons and Interband Transitions by Electrons (Springer, Berlin, 1980).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).

C. Enkrich, M. Wegener, F. Perez-Williard, S. Linden, J. Zhou, T. Koschny, and C. M. Soukoulis, “Optimizing the design parameters for split-ring resonators at telecommunication wavelength,” in Proceedings of the International Conference on Quantum Electronics and Laser Science, Baltimore, May 2005, pp. 1535-1536.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.