Abstract

Metamaterials have undergone intense development in the past decade. These are artificial materials consisting of structural elements whose form and relative position can be specified during fabrication. It has been shown to be possible to adjust the electric and magnetic responses of such materials to the action of electromagnetic radiation within wide limits. This has made it possible not only to create metamaterials with a negative refractive index but also to pose the question of the possibility of creating invisible objects. Intense discussion of the problem of creating invisible objects began in 2005, so that there are by now several dozen papers on this topic. This paper presents the first part of a review of the problem of creating invisible objects, concentrating on objects whose size is less than a wavelength of electromagnetic radiation.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
    [CrossRef]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, No. 5781, 1777 (2006).
    [CrossRef]
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, No. 5781, 1780 (2006).
    [CrossRef]
  4. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
    [CrossRef]
  5. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Low-frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785 (1998).
    [CrossRef]
  6. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
    [CrossRef]
  7. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
    [CrossRef]
  8. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, No. 5514, 77 (2001).
    [CrossRef]
  9. T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: going optical,” 12, 1106 (2006).
  10. A. A. Zhilin and M. P. Shepilov, “Metamaterials with negative refractive index,” Opt. Zh. 75, No. 4, 57 (2008) A. A. Zhilin and M. P. Shepilov [J. Opt. Technol. 75, 255 (2008)].
  11. R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propag. 36, 1443 (1988).
    [CrossRef]
  12. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon Press, Oxford, 1965; Nauka, Moscow, 1970).
  13. J. Ward, “Towards invisible glass,” Vacuum 22, No. 9, 369 (1972).
  14. N. S. Andreev, “Scattering of visible light by glasses undergoing phase separation and homogenization,” J. Non-Cryst. Solids 30, 99 (1978).
    [CrossRef]
  15. C. B. Walker and A. Guinier, “An x-ray investigation of age hardening in alag,” Acta Metall. 1, 568 (1953).
    [CrossRef]
  16. A. V. Shatilov, “Anomalous scattering as a case of scattering at a system of particles,” Opt. Spectrosc. 13, 728 (1962).
  17. M. Goldstein, “Theory of scattering for diffusion-controlled phase separation,” J. Appl. Phys. 34, 1928 (1963).
    [CrossRef]
  18. C. F. Bohren and D. E. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).
  19. M. Kerker, “Invisible bodies,” J. Opt. Soc. Am. 65, 376 (1975).
  20. H. Chew and M. Kerker, “Abnormally low electromagnetic scattering cross sections,” J. Opt. Soc. Am. 66, 445 (1976).
  21. M. Kerker and C. G. Blatchford, “Elastic scattering, absorption, and surface-enhanced Raman scattering by concentric spheres comprised of a metallic and a dielectric region,” Phys. Rev. B 26, 4052 (1982).
    [CrossRef]
  22. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242 (1951).
    [CrossRef]
  23. A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys. 97, 094310 (2005).
    [CrossRef]
  24. A. Alù and N. Engheta, “Erratum: 'Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers' [J. Appl. Phys. 97, 094310 (2005)],” J. Appl. Phys. 99, 069901 (2006).
    [CrossRef]
  25. V. G. Veselago, “Electrodynamics of substances with simultaneously negative ε and μ,” Usp. Fiz. Nauk 92, 517 (1967).
  26. X. Zhou and G. Hu, “Design for electromagnetic wave transparency with metamaterials,” Phys. Rev. E 74, 026607 (2006).
    [CrossRef]
  27. J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London, Ser. A 203, 385 (1904).
    [CrossRef]
  28. X. Zhou and G. Hu, “Linear and nonlinear dielectric properties of particulate composites at finite concentration,” Appl. Math. and Mech. 27, 1021 (2006).
  29. A. Alù and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15, 3318 (2007).
    [CrossRef]
  30. A. Alù and N. Engheta, “Cloaking and transparency for collection of particles with metamaterial and plasmonic covers,” Opt. Express 15, 7578 (2007).
    [CrossRef]
  31. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).
    [CrossRef]
  32. F. Caruso, M. Spasova, V. Salgueiriso-Maceira, and L. M. Liz-Marzán, “Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates,” Adv. Math. 13, 1090 (2001).
  33. CST Design Studiotrade 2006B, www.cst.com.
  34. M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E 75, 036603 (2007).
    [CrossRef]

2008 (2)

A. A. Zhilin and M. P. Shepilov, “Metamaterials with negative refractive index,” Opt. Zh. 75, No. 4, 57 (2008) A. A. Zhilin and M. P. Shepilov [J. Opt. Technol. 75, 255 (2008)].

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).
[CrossRef]

2007 (3)

2006 (6)

A. Alù and N. Engheta, “Erratum: 'Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers' [J. Appl. Phys. 97, 094310 (2005)],” J. Appl. Phys. 99, 069901 (2006).
[CrossRef]

X. Zhou and G. Hu, “Design for electromagnetic wave transparency with metamaterials,” Phys. Rev. E 74, 026607 (2006).
[CrossRef]

X. Zhou and G. Hu, “Linear and nonlinear dielectric properties of particulate composites at finite concentration,” Appl. Math. and Mech. 27, 1021 (2006).

U. Leonhardt, “Optical conformal mapping,” Science 312, No. 5781, 1777 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, No. 5781, 1780 (2006).
[CrossRef]

T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: going optical,” 12, 1106 (2006).

2005 (2)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[CrossRef]

A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys. 97, 094310 (2005).
[CrossRef]

2001 (2)

F. Caruso, M. Spasova, V. Salgueiriso-Maceira, and L. M. Liz-Marzán, “Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates,” Adv. Math. 13, 1090 (2001).

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, No. 5514, 77 (2001).
[CrossRef]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

1998 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Low-frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785 (1998).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef]

1988 (1)

R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propag. 36, 1443 (1988).
[CrossRef]

1982 (1)

M. Kerker and C. G. Blatchford, “Elastic scattering, absorption, and surface-enhanced Raman scattering by concentric spheres comprised of a metallic and a dielectric region,” Phys. Rev. B 26, 4052 (1982).
[CrossRef]

1978 (1)

N. S. Andreev, “Scattering of visible light by glasses undergoing phase separation and homogenization,” J. Non-Cryst. Solids 30, 99 (1978).
[CrossRef]

1976 (1)

1975 (1)

1972 (1)

J. Ward, “Towards invisible glass,” Vacuum 22, No. 9, 369 (1972).

1967 (1)

V. G. Veselago, “Electrodynamics of substances with simultaneously negative ε and μ,” Usp. Fiz. Nauk 92, 517 (1967).

1963 (1)

M. Goldstein, “Theory of scattering for diffusion-controlled phase separation,” J. Appl. Phys. 34, 1928 (1963).
[CrossRef]

1962 (1)

A. V. Shatilov, “Anomalous scattering as a case of scattering at a system of particles,” Opt. Spectrosc. 13, 728 (1962).

1953 (1)

C. B. Walker and A. Guinier, “An x-ray investigation of age hardening in alag,” Acta Metall. 1, 568 (1953).
[CrossRef]

1951 (1)

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242 (1951).
[CrossRef]

1904 (1)

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London, Ser. A 203, 385 (1904).
[CrossRef]

Aden, A. L.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242 (1951).
[CrossRef]

Alù, A.

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).
[CrossRef]

A. Alù and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15, 3318 (2007).
[CrossRef]

A. Alù and N. Engheta, “Cloaking and transparency for collection of particles with metamaterial and plasmonic covers,” Opt. Express 15, 7578 (2007).
[CrossRef]

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E 75, 036603 (2007).
[CrossRef]

A. Alù and N. Engheta, “Erratum: 'Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers' [J. Appl. Phys. 97, 094310 (2005)],” J. Appl. Phys. 99, 069901 (2006).
[CrossRef]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[CrossRef]

A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys. 97, 094310 (2005).
[CrossRef]

Andreev, N. S.

N. S. Andreev, “Scattering of visible light by glasses undergoing phase separation and homogenization,” J. Non-Cryst. Solids 30, 99 (1978).
[CrossRef]

Blatchford, C. G.

M. Kerker and C. G. Blatchford, “Elastic scattering, absorption, and surface-enhanced Raman scattering by concentric spheres comprised of a metallic and a dielectric region,” Phys. Rev. B 26, 4052 (1982).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. E. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon Press, Oxford, 1965; Nauka, Moscow, 1970).

Caruso, F.

F. Caruso, M. Spasova, V. Salgueiriso-Maceira, and L. M. Liz-Marzán, “Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates,” Adv. Math. 13, 1090 (2001).

Chew, H.

Drachev, V. P.

T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: going optical,” 12, 1106 (2006).

Engheta, N.

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).
[CrossRef]

A. Alù and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15, 3318 (2007).
[CrossRef]

A. Alù and N. Engheta, “Cloaking and transparency for collection of particles with metamaterial and plasmonic covers,” Opt. Express 15, 7578 (2007).
[CrossRef]

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E 75, 036603 (2007).
[CrossRef]

A. Alù and N. Engheta, “Erratum: 'Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers' [J. Appl. Phys. 97, 094310 (2005)],” J. Appl. Phys. 99, 069901 (2006).
[CrossRef]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[CrossRef]

A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys. 97, 094310 (2005).
[CrossRef]

Fante, R. L.

R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propag. 36, 1443 (1988).
[CrossRef]

Goldstein, M.

M. Goldstein, “Theory of scattering for diffusion-controlled phase separation,” J. Appl. Phys. 34, 1928 (1963).
[CrossRef]

Guinier, A.

C. B. Walker and A. Guinier, “An x-ray investigation of age hardening in alag,” Acta Metall. 1, 568 (1953).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Low-frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785 (1998).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef]

Hu, G.

X. Zhou and G. Hu, “Linear and nonlinear dielectric properties of particulate composites at finite concentration,” Appl. Math. and Mech. 27, 1021 (2006).

X. Zhou and G. Hu, “Design for electromagnetic wave transparency with metamaterials,” Phys. Rev. E 74, 026607 (2006).
[CrossRef]

Huffman, D. E.

C. F. Bohren and D. E. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

Kerker, M.

M. Kerker and C. G. Blatchford, “Elastic scattering, absorption, and surface-enhanced Raman scattering by concentric spheres comprised of a metallic and a dielectric region,” Phys. Rev. B 26, 4052 (1982).
[CrossRef]

H. Chew and M. Kerker, “Abnormally low electromagnetic scattering cross sections,” J. Opt. Soc. Am. 66, 445 (1976).

M. Kerker, “Invisible bodies,” J. Opt. Soc. Am. 65, 376 (1975).

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242 (1951).
[CrossRef]

Kildishev, A. V.

T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: going optical,” 12, 1106 (2006).

Klar, T. A.

T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: going optical,” 12, 1106 (2006).

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312, No. 5781, 1777 (2006).
[CrossRef]

Liz-Marzán, L. M.

F. Caruso, M. Spasova, V. Salgueiriso-Maceira, and L. M. Liz-Marzán, “Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates,” Adv. Math. 13, 1090 (2001).

Maxwell Garnett, J. C.

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London, Ser. A 203, 385 (1904).
[CrossRef]

McCormack, M. T.

R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propag. 36, 1443 (1988).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, No. 5781, 1780 (2006).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Low-frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785 (1998).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Low-frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785 (1998).
[CrossRef]

Salgueiriso-Maceira, V.

F. Caruso, M. Spasova, V. Salgueiriso-Maceira, and L. M. Liz-Marzán, “Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates,” Adv. Math. 13, 1090 (2001).

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, No. 5514, 77 (2001).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, No. 5781, 1780 (2006).
[CrossRef]

Shalaev, V. M.

T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: going optical,” 12, 1106 (2006).

Shatilov, A. V.

A. V. Shatilov, “Anomalous scattering as a case of scattering at a system of particles,” Opt. Spectrosc. 13, 728 (1962).

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, No. 5514, 77 (2001).
[CrossRef]

Shepilov, M. P.

A. A. Zhilin and M. P. Shepilov, “Metamaterials with negative refractive index,” Opt. Zh. 75, No. 4, 57 (2008) A. A. Zhilin and M. P. Shepilov [J. Opt. Technol. 75, 255 (2008)].

Silveirinha, M. G.

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E 75, 036603 (2007).
[CrossRef]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, No. 5781, 1780 (2006).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, No. 5514, 77 (2001).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef]

Spasova, M.

F. Caruso, M. Spasova, V. Salgueiriso-Maceira, and L. M. Liz-Marzán, “Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates,” Adv. Math. 13, 1090 (2001).

Steward, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Low-frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785 (1998).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “Electrodynamics of substances with simultaneously negative ε and μ,” Usp. Fiz. Nauk 92, 517 (1967).

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef]

Walker, C. B.

C. B. Walker and A. Guinier, “An x-ray investigation of age hardening in alag,” Acta Metall. 1, 568 (1953).
[CrossRef]

Ward, J.

J. Ward, “Towards invisible glass,” Vacuum 22, No. 9, 369 (1972).

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon Press, Oxford, 1965; Nauka, Moscow, 1970).

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef]

Zhilin, A. A.

A. A. Zhilin and M. P. Shepilov, “Metamaterials with negative refractive index,” Opt. Zh. 75, No. 4, 57 (2008) A. A. Zhilin and M. P. Shepilov [J. Opt. Technol. 75, 255 (2008)].

Zhou, X.

X. Zhou and G. Hu, “Linear and nonlinear dielectric properties of particulate composites at finite concentration,” Appl. Math. and Mech. 27, 1021 (2006).

X. Zhou and G. Hu, “Design for electromagnetic wave transparency with metamaterials,” Phys. Rev. E 74, 026607 (2006).
[CrossRef]

Acta Metall. (1)

C. B. Walker and A. Guinier, “An x-ray investigation of age hardening in alag,” Acta Metall. 1, 568 (1953).
[CrossRef]

Adv. Math. (1)

F. Caruso, M. Spasova, V. Salgueiriso-Maceira, and L. M. Liz-Marzán, “Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates,” Adv. Math. 13, 1090 (2001).

Appl. Math. and Mech. (1)

X. Zhou and G. Hu, “Linear and nonlinear dielectric properties of particulate composites at finite concentration,” Appl. Math. and Mech. 27, 1021 (2006).

IEEE Trans. Antennas Propag. (1)

R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propag. 36, 1443 (1988).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

J. Appl. Phys. (4)

M. Goldstein, “Theory of scattering for diffusion-controlled phase separation,” J. Appl. Phys. 34, 1928 (1963).
[CrossRef]

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242 (1951).
[CrossRef]

A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys. 97, 094310 (2005).
[CrossRef]

A. Alù and N. Engheta, “Erratum: 'Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers' [J. Appl. Phys. 97, 094310 (2005)],” J. Appl. Phys. 99, 069901 (2006).
[CrossRef]

J. Non-Cryst. Solids (1)

N. S. Andreev, “Scattering of visible light by glasses undergoing phase separation and homogenization,” J. Non-Cryst. Solids 30, 99 (1978).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Phys.: Condens. Matter (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, “Low-frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter 10, 4785 (1998).
[CrossRef]

Opt. Express (2)

Opt. Spectrosc. (1)

A. V. Shatilov, “Anomalous scattering as a case of scattering at a system of particles,” Opt. Spectrosc. 13, 728 (1962).

Opt. Zh. (1)

A. A. Zhilin and M. P. Shepilov, “Metamaterials with negative refractive index,” Opt. Zh. 75, No. 4, 57 (2008) A. A. Zhilin and M. P. Shepilov [J. Opt. Technol. 75, 255 (2008)].

Philos. Trans. R. Soc. London, Ser. A (1)

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London, Ser. A 203, 385 (1904).
[CrossRef]

Phys. Rev. B (1)

M. Kerker and C. G. Blatchford, “Elastic scattering, absorption, and surface-enhanced Raman scattering by concentric spheres comprised of a metallic and a dielectric region,” Phys. Rev. B 26, 4052 (1982).
[CrossRef]

Phys. Rev. E (3)

X. Zhou and G. Hu, “Design for electromagnetic wave transparency with metamaterials,” Phys. Rev. E 74, 026607 (2006).
[CrossRef]

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E 75, 036603 (2007).
[CrossRef]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low-frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100, 113901 (2008).
[CrossRef]

Science (3)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, No. 5514, 77 (2001).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312, No. 5781, 1777 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, No. 5781, 1780 (2006).
[CrossRef]

Usp. Fiz. Nauk (1)

V. G. Veselago, “Electrodynamics of substances with simultaneously negative ε and μ,” Usp. Fiz. Nauk 92, 517 (1967).

Vacuum (1)

J. Ward, “Towards invisible glass,” Vacuum 22, No. 9, 369 (1972).

Other (4)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon Press, Oxford, 1965; Nauka, Moscow, 1970).

C. F. Bohren and D. E. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: going optical,” 12, 1106 (2006).

CST Design Studiotrade 2006B, www.cst.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.