Abstract

This paper discusses stochastic models of inhomogeneous media and a method of nonlinear Kalman filtering that provides increased resolving power when processing actual low-coherence interference signals obtained in systems of optical coherent tomography. A method is proposed for the dynamic estimation of the positions of the local maxima of the signal envelope while scanning over the depth of the sample, making it possible to increase the resolution of the maxima of partially overlapping peaks by comparison with the classical criteria. The model results are presented along with experimental results obtained when studying a test sample of biological tissue.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
    [CrossRef]
  2. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D: Appl. Phys. 38, 2519 (2005).
    [CrossRef]
  3. I. P. Gurov, “Optical coherent tomography: Principles, problems, and prospects,” in Problems of Coherent and Nonlinear Optics, ed. I.P.Gurov and S.A.Kozlov (SPbGU ITMO, St. Petersburg, 2004), pp. 6-30.
  4. T. Dresel, G. Hausler, and H. Ventzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919 (1992).
  5. R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASME 82, 35 (1960).
  6. I. Gurov, E. Ermolaeva, and A. Zakharov, “Analysis of low-coherence interference fringes by the Kalman filtering method,” J. Opt. Soc. Am. A 21, 242 (2004).
    [CrossRef]
  7. I. Gurov, M. Volynsky, and A. Zakharov, “Evaluation of multilayer tissue in optical coherence tomography by the extended Kalman filtering method,” Proc. SPIE 6734, 67341 (2007).
  8. E. Alarousu, I. Gurov, J. Hast, R. Myllyla, and A. Zakharov, “Optical coherence tomography of multilayer tissue based on the dynamical stochastic fringe processing,” Proc. SPIE 5149, 13 (2003).
    [CrossRef]
  9. I. Gurov, A. Karpets, N. Margariants, and E. Vorobeva, “Full-field high-speed optical coherence tomography system for evaluating multilayer and random tissues,” Proc. SPIE 6618, 661807 (2007).

2007 (2)

I. Gurov, M. Volynsky, and A. Zakharov, “Evaluation of multilayer tissue in optical coherence tomography by the extended Kalman filtering method,” Proc. SPIE 6734, 67341 (2007).

I. Gurov, A. Karpets, N. Margariants, and E. Vorobeva, “Full-field high-speed optical coherence tomography system for evaluating multilayer and random tissues,” Proc. SPIE 6618, 661807 (2007).

2005 (1)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D: Appl. Phys. 38, 2519 (2005).
[CrossRef]

2004 (1)

2003 (2)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

E. Alarousu, I. Gurov, J. Hast, R. Myllyla, and A. Zakharov, “Optical coherence tomography of multilayer tissue based on the dynamical stochastic fringe processing,” Proc. SPIE 5149, 13 (2003).
[CrossRef]

1992 (1)

1960 (1)

R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASME 82, 35 (1960).

Alarousu, E.

E. Alarousu, I. Gurov, J. Hast, R. Myllyla, and A. Zakharov, “Optical coherence tomography of multilayer tissue based on the dynamical stochastic fringe processing,” Proc. SPIE 5149, 13 (2003).
[CrossRef]

Dresel, T.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

Ermolaeva, E.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

Gurov, I.

I. Gurov, M. Volynsky, and A. Zakharov, “Evaluation of multilayer tissue in optical coherence tomography by the extended Kalman filtering method,” Proc. SPIE 6734, 67341 (2007).

I. Gurov, A. Karpets, N. Margariants, and E. Vorobeva, “Full-field high-speed optical coherence tomography system for evaluating multilayer and random tissues,” Proc. SPIE 6618, 661807 (2007).

I. Gurov, E. Ermolaeva, and A. Zakharov, “Analysis of low-coherence interference fringes by the Kalman filtering method,” J. Opt. Soc. Am. A 21, 242 (2004).
[CrossRef]

E. Alarousu, I. Gurov, J. Hast, R. Myllyla, and A. Zakharov, “Optical coherence tomography of multilayer tissue based on the dynamical stochastic fringe processing,” Proc. SPIE 5149, 13 (2003).
[CrossRef]

Gurov, I. P.

I. P. Gurov, “Optical coherent tomography: Principles, problems, and prospects,” in Problems of Coherent and Nonlinear Optics, ed. I.P.Gurov and S.A.Kozlov (SPbGU ITMO, St. Petersburg, 2004), pp. 6-30.

Hast, J.

E. Alarousu, I. Gurov, J. Hast, R. Myllyla, and A. Zakharov, “Optical coherence tomography of multilayer tissue based on the dynamical stochastic fringe processing,” Proc. SPIE 5149, 13 (2003).
[CrossRef]

Hausler, G.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

Kalman, R. E.

R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASME 82, 35 (1960).

Karpets, A.

I. Gurov, A. Karpets, N. Margariants, and E. Vorobeva, “Full-field high-speed optical coherence tomography system for evaluating multilayer and random tissues,” Proc. SPIE 6618, 661807 (2007).

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

Margariants, N.

I. Gurov, A. Karpets, N. Margariants, and E. Vorobeva, “Full-field high-speed optical coherence tomography system for evaluating multilayer and random tissues,” Proc. SPIE 6618, 661807 (2007).

Myllyla, R.

E. Alarousu, I. Gurov, J. Hast, R. Myllyla, and A. Zakharov, “Optical coherence tomography of multilayer tissue based on the dynamical stochastic fringe processing,” Proc. SPIE 5149, 13 (2003).
[CrossRef]

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D: Appl. Phys. 38, 2519 (2005).
[CrossRef]

Ventzke, H.

Volynsky, M.

I. Gurov, M. Volynsky, and A. Zakharov, “Evaluation of multilayer tissue in optical coherence tomography by the extended Kalman filtering method,” Proc. SPIE 6734, 67341 (2007).

Vorobeva, E.

I. Gurov, A. Karpets, N. Margariants, and E. Vorobeva, “Full-field high-speed optical coherence tomography system for evaluating multilayer and random tissues,” Proc. SPIE 6618, 661807 (2007).

Wang, R. K.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D: Appl. Phys. 38, 2519 (2005).
[CrossRef]

Zakharov, A.

I. Gurov, M. Volynsky, and A. Zakharov, “Evaluation of multilayer tissue in optical coherence tomography by the extended Kalman filtering method,” Proc. SPIE 6734, 67341 (2007).

I. Gurov, E. Ermolaeva, and A. Zakharov, “Analysis of low-coherence interference fringes by the Kalman filtering method,” J. Opt. Soc. Am. A 21, 242 (2004).
[CrossRef]

E. Alarousu, I. Gurov, J. Hast, R. Myllyla, and A. Zakharov, “Optical coherence tomography of multilayer tissue based on the dynamical stochastic fringe processing,” Proc. SPIE 5149, 13 (2003).
[CrossRef]

Appl. Opt. (1)

J. Opt. Soc. Am. A (1)

J. Phys. D: Appl. Phys. (1)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D: Appl. Phys. 38, 2519 (2005).
[CrossRef]

Proc. SPIE (3)

I. Gurov, M. Volynsky, and A. Zakharov, “Evaluation of multilayer tissue in optical coherence tomography by the extended Kalman filtering method,” Proc. SPIE 6734, 67341 (2007).

E. Alarousu, I. Gurov, J. Hast, R. Myllyla, and A. Zakharov, “Optical coherence tomography of multilayer tissue based on the dynamical stochastic fringe processing,” Proc. SPIE 5149, 13 (2003).
[CrossRef]

I. Gurov, A. Karpets, N. Margariants, and E. Vorobeva, “Full-field high-speed optical coherence tomography system for evaluating multilayer and random tissues,” Proc. SPIE 6618, 661807 (2007).

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[CrossRef]

Trans. ASME (1)

R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASME 82, 35 (1960).

Other (1)

I. P. Gurov, “Optical coherent tomography: Principles, problems, and prospects,” in Problems of Coherent and Nonlinear Optics, ed. I.P.Gurov and S.A.Kozlov (SPbGU ITMO, St. Petersburg, 2004), pp. 6-30.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.