Abstract

This paper proposes a two-step model for calculating the transmission spectra of collimated light for a sample of biological tissue. The role of fluctuations of the orientation of the structural elements of biological tissue in determining the scattering cross section is considered, and it is shown that, for some types of biological tissues, the chief role in determining the scattering cross section is played by density fluctuation and, for others, by the fluctuation of the orientation of the structural elements of the biological tissue. There is shown to be good quantitative agreement between the spectra calculated from the proposed model and the experimental spectra of optical transmission by a tissue sample.

© 2007 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |

  1. V. V. Tuchin, "Light-scattering study of tissues," Usp. Fiz. Nauk 167, 517 (1997) V. V. Tuchin,[Phys. Usp. 40, 516 (1997)].
    [CrossRef]
  2. D. A. Zimnyakov and V. V. Tuchin, "Optical tomography of tissues," Kvant. Electron. (Moscow) 32, 849 (2002) D. A. Zimnyakov and V. V. Tuchin,[Quantum Electron. 32, 849 (2002)].
  3. L. V. Wang, G. L. Cote, and S. L. Jacques, "Special section on tissue polarimetry," J. Biomed. Opt. 7, 278 (2002).
    [CrossRef]
  4. A. G. Ushenko, "Laser diagnostics of biofractals," Kvant. Elektron. (Moscow) 29, 239 (1999) A. G. Ushenko,[Quantum Electron. 29, 1078 (1999)].
  5. G. V. Simonenko, T. P. Denisova, N. A. Lakodina, V. V. Tuchin, and A. V. Papaev, "Polarization technology for tissue study," Proc. SPIE 4617, 289 (2002).
  6. A. V. Papaev, G. V. Simonenko, and V. V. Tuchin, "A simple model for calculating the transmission spectrum of polarized light for a sample of biological tissue," Opt. Zh. 71, No. 5, 3 (2004) A. V. Papaev, G. V. Simonenko, and V. V. Tuchin,[J. Opt. Technol. 71, 267 (2004)].
  7. A. V. Papaev, G. V. Simonenko, V. V. Tuchin, and T. P. Denisova, "Optical anisotropy of a biological tissue under conditions of immersion clearing and without them," Opt. Spectrosc. 101, 57 (2006) A. V. Papaev, G. V. Simonenko, V. V. Tuchin, and T. P. Denisova,[Opt. Spectrosc. 101, 46 (2006)].
  8. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993; Mir, Moscow, 1977).
  9. C. P. Poole and F. J. Owens, Introduction to Nanotechnology (Wiley, Hoboken, New Jersey, 2003; Tekhnosfera, Moscow, 2004).
  10. R. P. Hemenger, "Refractive index changes in the ocular lens result from increased light scatter," J. Biomed. Opt. 1, 268 (1996).
    [CrossRef]
  11. V. N. Tsvetkov, "Optical anisotropy of semirigid chain molecules and birefringence in a flux of their solutions," Dokl. Akad. Nauk SSSR 165, No. 2, 360 (1965).
  12. A. E. Grishchenko, Mechano-optics of Polymers (SPbGU, St. Petersburg, 1996).
  13. V. I. Kochubeĭ, Yu. G. Konyukhova, K. E. Gyunsburg, and N. P. Zvezdova, "The Influence of Heating on the Spectral Characteristics of Pure Alkali Halide NaCl Crystals," Opt. Spectrosc. 89, 583 (2000) V. I. Kochubeĭ, Yu. G. Konyukhova, K. E. Gyunsburg, and N. P. Zvezdova,[Opt. Spectrosc. 89, 531 (2000)].
  14. I. V. Almazov and L. Sutulov, Atlas of Histology and Embryology (Meditisina, Moscow, 1978).

2006

A. V. Papaev, G. V. Simonenko, V. V. Tuchin, and T. P. Denisova, "Optical anisotropy of a biological tissue under conditions of immersion clearing and without them," Opt. Spectrosc. 101, 57 (2006) A. V. Papaev, G. V. Simonenko, V. V. Tuchin, and T. P. Denisova,[Opt. Spectrosc. 101, 46 (2006)].

2004

A. V. Papaev, G. V. Simonenko, and V. V. Tuchin, "A simple model for calculating the transmission spectrum of polarized light for a sample of biological tissue," Opt. Zh. 71, No. 5, 3 (2004) A. V. Papaev, G. V. Simonenko, and V. V. Tuchin,[J. Opt. Technol. 71, 267 (2004)].

2002

D. A. Zimnyakov and V. V. Tuchin, "Optical tomography of tissues," Kvant. Electron. (Moscow) 32, 849 (2002) D. A. Zimnyakov and V. V. Tuchin,[Quantum Electron. 32, 849 (2002)].

L. V. Wang, G. L. Cote, and S. L. Jacques, "Special section on tissue polarimetry," J. Biomed. Opt. 7, 278 (2002).
[CrossRef]

G. V. Simonenko, T. P. Denisova, N. A. Lakodina, V. V. Tuchin, and A. V. Papaev, "Polarization technology for tissue study," Proc. SPIE 4617, 289 (2002).

2000

V. I. Kochubeĭ, Yu. G. Konyukhova, K. E. Gyunsburg, and N. P. Zvezdova, "The Influence of Heating on the Spectral Characteristics of Pure Alkali Halide NaCl Crystals," Opt. Spectrosc. 89, 583 (2000) V. I. Kochubeĭ, Yu. G. Konyukhova, K. E. Gyunsburg, and N. P. Zvezdova,[Opt. Spectrosc. 89, 531 (2000)].

1999

A. G. Ushenko, "Laser diagnostics of biofractals," Kvant. Elektron. (Moscow) 29, 239 (1999) A. G. Ushenko,[Quantum Electron. 29, 1078 (1999)].

1997

V. V. Tuchin, "Light-scattering study of tissues," Usp. Fiz. Nauk 167, 517 (1997) V. V. Tuchin,[Phys. Usp. 40, 516 (1997)].
[CrossRef]

1996

R. P. Hemenger, "Refractive index changes in the ocular lens result from increased light scatter," J. Biomed. Opt. 1, 268 (1996).
[CrossRef]

1965

V. N. Tsvetkov, "Optical anisotropy of semirigid chain molecules and birefringence in a flux of their solutions," Dokl. Akad. Nauk SSSR 165, No. 2, 360 (1965).

Dokl. Akad. Nauk SSSR

V. N. Tsvetkov, "Optical anisotropy of semirigid chain molecules and birefringence in a flux of their solutions," Dokl. Akad. Nauk SSSR 165, No. 2, 360 (1965).

J. Biomed. Opt.

L. V. Wang, G. L. Cote, and S. L. Jacques, "Special section on tissue polarimetry," J. Biomed. Opt. 7, 278 (2002).
[CrossRef]

R. P. Hemenger, "Refractive index changes in the ocular lens result from increased light scatter," J. Biomed. Opt. 1, 268 (1996).
[CrossRef]

Kvant. Electron. (Moscow)

D. A. Zimnyakov and V. V. Tuchin, "Optical tomography of tissues," Kvant. Electron. (Moscow) 32, 849 (2002) D. A. Zimnyakov and V. V. Tuchin,[Quantum Electron. 32, 849 (2002)].

Kvant. Elektron. (Moscow)

A. G. Ushenko, "Laser diagnostics of biofractals," Kvant. Elektron. (Moscow) 29, 239 (1999) A. G. Ushenko,[Quantum Electron. 29, 1078 (1999)].

Opt. Spectrosc.

A. V. Papaev, G. V. Simonenko, V. V. Tuchin, and T. P. Denisova, "Optical anisotropy of a biological tissue under conditions of immersion clearing and without them," Opt. Spectrosc. 101, 57 (2006) A. V. Papaev, G. V. Simonenko, V. V. Tuchin, and T. P. Denisova,[Opt. Spectrosc. 101, 46 (2006)].

V. I. Kochubeĭ, Yu. G. Konyukhova, K. E. Gyunsburg, and N. P. Zvezdova, "The Influence of Heating on the Spectral Characteristics of Pure Alkali Halide NaCl Crystals," Opt. Spectrosc. 89, 583 (2000) V. I. Kochubeĭ, Yu. G. Konyukhova, K. E. Gyunsburg, and N. P. Zvezdova,[Opt. Spectrosc. 89, 531 (2000)].

Opt. Zh.

A. V. Papaev, G. V. Simonenko, and V. V. Tuchin, "A simple model for calculating the transmission spectrum of polarized light for a sample of biological tissue," Opt. Zh. 71, No. 5, 3 (2004) A. V. Papaev, G. V. Simonenko, and V. V. Tuchin,[J. Opt. Technol. 71, 267 (2004)].

Proc. SPIE

G. V. Simonenko, T. P. Denisova, N. A. Lakodina, V. V. Tuchin, and A. V. Papaev, "Polarization technology for tissue study," Proc. SPIE 4617, 289 (2002).

Usp. Fiz. Nauk

V. V. Tuchin, "Light-scattering study of tissues," Usp. Fiz. Nauk 167, 517 (1997) V. V. Tuchin,[Phys. Usp. 40, 516 (1997)].
[CrossRef]

Other

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993; Mir, Moscow, 1977).

C. P. Poole and F. J. Owens, Introduction to Nanotechnology (Wiley, Hoboken, New Jersey, 2003; Tekhnosfera, Moscow, 2004).

I. V. Almazov and L. Sutulov, Atlas of Histology and Embryology (Meditisina, Moscow, 1978).

A. E. Grishchenko, Mechano-optics of Polymers (SPbGU, St. Petersburg, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.