This paper presents the results of photoluminescence (PL) studies of submicron epitaxial n^+-n-i structures of GaAs. A mathematical model of the PL of submicron epitaxial III-V structures is proposed that makes it possible to determine the theoretical dependences of the PL intensity on the surface recombination rate, the mobility of the minority nonequilibrium charge carriers, the absorption and self-absorption coefficients, the magnitude and sign of the built-in electrostatic potential between the n^+ and n layers, and also the thicknesses of the epitaxial layers. It is pointed out that there is good agreement of the experimental and theoretical results. © 2005 Optical Society of America

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription