The dependence of the dynamics of photophysical ablation in porous silicon (PS) on the wavelength of laser radiation has been investigated experimentally. The ablation process was studied by recording the photoluminescence (PL) of excited electron-hole pairs both in bulk PS and in the ablation cloud of nanocrystallites. The dependence of the PL time constant on the excitation wavelength is evidence that the size of the crystallites in the ablation cloud is smaller, the shorter is the wavelength of the synchronized short-wavelength radiation. The experimental results are explained on the basis of the model of photophysical ablation proposed by B. S. Luk'yanchuk and a phenomenonological model of the breakdown of nanostructures. It follows from the model that the photoexcited carriers in the quantum filaments of porous silicon break them down as a consequence of spatially limited motion in one-dimensional quantum filaments. © 2004 Optical Society of America

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription