Abstract

Laser microstructuring of a silicon surface usually results from the development of instabilities and the effects of self-organization. This paper shows that this is a multistage process, consisting of successive rapid transitions of the system from some quasi-stationary states into others. The following classification of the observed changes is proposed: "Spontaneous" transitions are abrupt transitions randomly distributed in space and having the character of spatial-frequency noise, while "stimulated" transitions are associated with the action of definite forces and with definite spatially discriminated directions. The latter are either incorporated in the structure of the system itself and manifest themselves in a strongly nonequilibrium state or are caused by the electromagnetic field distribution, by the structure of the plasma cloud, etc. Our analysis showed that it is stimulated transformations that are responsible for forming surface structures with the smallest period. The proposed classification made it possible to explain from a single viewpoint the scatter of the experimental data in the millisecond range of stimulation, to distinguish the main stages accompanying irradiation with nanosecond pulses, and to propose a hypothesis for a femtosecond mechanism of surface microstructuring. © 2004 Optical Society of America

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription