Abstract

This paper discusses the transmission spectra of a nanocomposite created by a new electron–ion technology—low-temperature laser surface modification of a layer of nanoporous silicon in a medium of a strong gaseous oxidant. A selective-absorption effect has been detected in the IR range. It is shown that the transmission spectrum of laser-oxidized nanoporous silicon has the form of a complex curve with four local minima, lying in the wavenumber ranges 4000–2750  cm<sup>−1</sup>, 2400–2100  cm<sup>−1</sup>, 1900–1600  cm<sup>−1</sup>, and 1300–1000  cm<sup>−1</sup>. A comparison of the transmission spectra of thermally oxidized nanoporous silicon and laser-modified nanoporous silicon in a strong oxidant atmosphere made it possible to explain the selective absorption of optical radiation in the nanocomposite thus created.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A.  Lourenço, R. M.  Gwilliam, K. P.  Homewood, “Silicon light emitting diodes emitting over the 1.2–1.4 μm wavelength region in the extended optical communication band,” Appl. Phys. Lett. 92, 161108 (2008).
    [CrossRef]
  2. G. Z.  Mashanovich, M. M.  Milošević, M.  Nedeljkovic, N.  Owens, B.  Xiong, E. J.  Teo, Y.  Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express 19, 7112 (2011).
    [CrossRef]
  3. A. G.  Gullis, L. T.  Canham, P. D. J.  Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909 (1997).
    [CrossRef]
  4. A. V.  Mikhaĭlov, L. V.  Grigor’ev, P. P.  Konorov, “Selective absorption in thermally oxidized nanoporous silicon,” Opt. Zh. 79, No. 2, 54 (2012) [J. Opt. Technol. 79, 99 (2012)].
  5. O.  Bisi, S.  Ossieni, L.  Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1 (2000).
    [CrossRef]

2012 (1)

A. V.  Mikhaĭlov, L. V.  Grigor’ev, P. P.  Konorov, “Selective absorption in thermally oxidized nanoporous silicon,” Opt. Zh. 79, No. 2, 54 (2012) [J. Opt. Technol. 79, 99 (2012)].

2011 (1)

2008 (1)

M. A.  Lourenço, R. M.  Gwilliam, K. P.  Homewood, “Silicon light emitting diodes emitting over the 1.2–1.4 μm wavelength region in the extended optical communication band,” Appl. Phys. Lett. 92, 161108 (2008).
[CrossRef]

2000 (1)

O.  Bisi, S.  Ossieni, L.  Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1 (2000).
[CrossRef]

1997 (1)

A. G.  Gullis, L. T.  Canham, P. D. J.  Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909 (1997).
[CrossRef]

Bisi, O.

O.  Bisi, S.  Ossieni, L.  Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1 (2000).
[CrossRef]

Calcott, P. D. J.

A. G.  Gullis, L. T.  Canham, P. D. J.  Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909 (1997).
[CrossRef]

Canham, L. T.

A. G.  Gullis, L. T.  Canham, P. D. J.  Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909 (1997).
[CrossRef]

Grigor’ev, L. V.

A. V.  Mikhaĭlov, L. V.  Grigor’ev, P. P.  Konorov, “Selective absorption in thermally oxidized nanoporous silicon,” Opt. Zh. 79, No. 2, 54 (2012) [J. Opt. Technol. 79, 99 (2012)].

Gullis, A. G.

A. G.  Gullis, L. T.  Canham, P. D. J.  Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909 (1997).
[CrossRef]

Gwilliam, R. M.

M. A.  Lourenço, R. M.  Gwilliam, K. P.  Homewood, “Silicon light emitting diodes emitting over the 1.2–1.4 μm wavelength region in the extended optical communication band,” Appl. Phys. Lett. 92, 161108 (2008).
[CrossRef]

Homewood, K. P.

M. A.  Lourenço, R. M.  Gwilliam, K. P.  Homewood, “Silicon light emitting diodes emitting over the 1.2–1.4 μm wavelength region in the extended optical communication band,” Appl. Phys. Lett. 92, 161108 (2008).
[CrossRef]

Hu, Y.

Konorov, P. P.

A. V.  Mikhaĭlov, L. V.  Grigor’ev, P. P.  Konorov, “Selective absorption in thermally oxidized nanoporous silicon,” Opt. Zh. 79, No. 2, 54 (2012) [J. Opt. Technol. 79, 99 (2012)].

Lourenço, M. A.

M. A.  Lourenço, R. M.  Gwilliam, K. P.  Homewood, “Silicon light emitting diodes emitting over the 1.2–1.4 μm wavelength region in the extended optical communication band,” Appl. Phys. Lett. 92, 161108 (2008).
[CrossRef]

Mashanovich, G. Z.

Mikhailov, A. V.

A. V.  Mikhaĭlov, L. V.  Grigor’ev, P. P.  Konorov, “Selective absorption in thermally oxidized nanoporous silicon,” Opt. Zh. 79, No. 2, 54 (2012) [J. Opt. Technol. 79, 99 (2012)].

Miloševic, M. M.

Nedeljkovic, M.

Ossieni, S.

O.  Bisi, S.  Ossieni, L.  Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1 (2000).
[CrossRef]

Owens, N.

Pavesi, L.

O.  Bisi, S.  Ossieni, L.  Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1 (2000).
[CrossRef]

Teo, E. J.

Xiong, B.

Appl. Phys. Lett. (1)

M. A.  Lourenço, R. M.  Gwilliam, K. P.  Homewood, “Silicon light emitting diodes emitting over the 1.2–1.4 μm wavelength region in the extended optical communication band,” Appl. Phys. Lett. 92, 161108 (2008).
[CrossRef]

J. Appl. Phys. (1)

A. G.  Gullis, L. T.  Canham, P. D. J.  Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909 (1997).
[CrossRef]

Opt. Express (1)

Opt. Zh. (1)

A. V.  Mikhaĭlov, L. V.  Grigor’ev, P. P.  Konorov, “Selective absorption in thermally oxidized nanoporous silicon,” Opt. Zh. 79, No. 2, 54 (2012) [J. Opt. Technol. 79, 99 (2012)].

Surf. Sci. Rep. (1)

O.  Bisi, S.  Ossieni, L.  Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.