Abstract

This paper reports a study of the speckle images of a scattered laser beam in the focal plane of a receiver objective, experimentally recorded by a photodetector array, as a function of the laser-pulse energy, the illumination angle of the objective, and the spectral composition of the radiation. Regularities are revealed that connect the statistical parameters of the images under various irradiation conditions. It is shown that the speckles obey Gaussian statistics only at small angles of illumination of the receiver objective.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Pets and V. I. Fedoseev, “Methods of approximately estimating the immunity of the celestial orientation and navigation devices of spacecraft against out-of-field sources of light noise,” Opt. Zh. 65, No. 8, 9 (1998). [J. Opt. Technol. 65, 610 (1998)].
  2. The International Satellite Laser Ranging in the website http//islr.gsfc.nasa.gov.
  3. E. N. Goncharenko, L. P. Osipova, A. A. Golubeva, and O. N. Gubanova, “Design and calculation of light-proof hoods,” Opt. Mekh. Prom. No. 3, 13 (1987). [Sov. J. Opt. Technol. 54, 143 (1987)].
  4. V. I. Salin, “Technique for estimating the degree of shielding of optoelectronic devices from radiation sources outside the field,” Opt. Zh. 70, No. 4, 33 (2003). [J. Opt. Technol. 70, 248 (2003)].
  5. G. I. Kozin and A. P. Kuznetsov, “Spatial coherence and intensity of reflected laser radiation,” Kvant. Elektron. (Moscow) 25, 1079 (1998). [Quantum Electron. 25, 1050 (1998)].
  6. A. A. Age?chik, V. N. Alekseev, V. I. Venglyuk, V. M. Gromovenko, M. S. Egorov, V. I. Korolev, A. N. Malinin, S. V. Ostapenko, Yu. A. Rezunkov, A. L. Safronov, G. A. Sokolova, and V. V. Stepanov, “A picosecond IR laser system with tunable wavelength, based on a hybrid CO2 laser,” Opt. Zh. 76, No. 9, 5 (2009). [J. Opt. Technol. 76, 529 (2009)].
  7. I. D. Burlakov, A. V. Golubkov, A. I. Dirochka, I. L. Kasatkin, and A. A. Lopukhin, “Indium antimonide photodetector arrays for hybrid photodetector-array devices,” Prikl. Fiz. No. 2, 16 (2005).
  8. D. Goodman, Statistical Optics (Wiley, New York, 1985; Mir, Moscow, 1988).
  9. J. C. Dainty, “The statistics of speckle patterns,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1976), Vol. 14, pp. 1–46.
  10. M. Françon, Laser Speckle and Its Application in Optics (Academic Press, New York, 1979; Mir, Moscow, 1980).
  11. J. W. Goodman, “Statistical properties of laser speckles patterns,” in Laser Speckle and Related Phenomena. Topics in Applied Physics, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), Vol. 9, p. 1.
  12. Yu. N. Kul’chin, O. B. Vitrik, A. A. Kamshilin, and R. V. Romashko, Adaptive Methods of Processing Speckle-Modulated Optical Fields (FIZMATLIT, Moscow, 2009).
  13. N. Yaitskova, “Statistics of undeveloped speckles in partially polarized light,” in First OA4ELT conference, 09006, 2010, pub. EDP Sciences at http://ao4elt. edpsciences.org.
  14. K. A. O’Donnell, “Speckle statistics of doubly scattered light,” J. Opt. Soc. Am 72, 1459 (1982).
    [CrossRef]

2009 (1)

A. A. Age?chik, V. N. Alekseev, V. I. Venglyuk, V. M. Gromovenko, M. S. Egorov, V. I. Korolev, A. N. Malinin, S. V. Ostapenko, Yu. A. Rezunkov, A. L. Safronov, G. A. Sokolova, and V. V. Stepanov, “A picosecond IR laser system with tunable wavelength, based on a hybrid CO2 laser,” Opt. Zh. 76, No. 9, 5 (2009). [J. Opt. Technol. 76, 529 (2009)].

2005 (1)

I. D. Burlakov, A. V. Golubkov, A. I. Dirochka, I. L. Kasatkin, and A. A. Lopukhin, “Indium antimonide photodetector arrays for hybrid photodetector-array devices,” Prikl. Fiz. No. 2, 16 (2005).

2003 (1)

V. I. Salin, “Technique for estimating the degree of shielding of optoelectronic devices from radiation sources outside the field,” Opt. Zh. 70, No. 4, 33 (2003). [J. Opt. Technol. 70, 248 (2003)].

1998 (2)

G. I. Kozin and A. P. Kuznetsov, “Spatial coherence and intensity of reflected laser radiation,” Kvant. Elektron. (Moscow) 25, 1079 (1998). [Quantum Electron. 25, 1050 (1998)].

L. A. Pets and V. I. Fedoseev, “Methods of approximately estimating the immunity of the celestial orientation and navigation devices of spacecraft against out-of-field sources of light noise,” Opt. Zh. 65, No. 8, 9 (1998). [J. Opt. Technol. 65, 610 (1998)].

1987 (1)

E. N. Goncharenko, L. P. Osipova, A. A. Golubeva, and O. N. Gubanova, “Design and calculation of light-proof hoods,” Opt. Mekh. Prom. No. 3, 13 (1987). [Sov. J. Opt. Technol. 54, 143 (1987)].

1982 (1)

K. A. O’Donnell, “Speckle statistics of doubly scattered light,” J. Opt. Soc. Am 72, 1459 (1982).
[CrossRef]

Ageichik, A. A.

A. A. Age?chik, V. N. Alekseev, V. I. Venglyuk, V. M. Gromovenko, M. S. Egorov, V. I. Korolev, A. N. Malinin, S. V. Ostapenko, Yu. A. Rezunkov, A. L. Safronov, G. A. Sokolova, and V. V. Stepanov, “A picosecond IR laser system with tunable wavelength, based on a hybrid CO2 laser,” Opt. Zh. 76, No. 9, 5 (2009). [J. Opt. Technol. 76, 529 (2009)].

Alekseev, V. N.

A. A. Age?chik, V. N. Alekseev, V. I. Venglyuk, V. M. Gromovenko, M. S. Egorov, V. I. Korolev, A. N. Malinin, S. V. Ostapenko, Yu. A. Rezunkov, A. L. Safronov, G. A. Sokolova, and V. V. Stepanov, “A picosecond IR laser system with tunable wavelength, based on a hybrid CO2 laser,” Opt. Zh. 76, No. 9, 5 (2009). [J. Opt. Technol. 76, 529 (2009)].

Burlakov, I. D.

I. D. Burlakov, A. V. Golubkov, A. I. Dirochka, I. L. Kasatkin, and A. A. Lopukhin, “Indium antimonide photodetector arrays for hybrid photodetector-array devices,” Prikl. Fiz. No. 2, 16 (2005).

Dainty, J. C.

J. C. Dainty, “The statistics of speckle patterns,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1976), Vol. 14, pp. 1–46.

Dirochka, A. I.

I. D. Burlakov, A. V. Golubkov, A. I. Dirochka, I. L. Kasatkin, and A. A. Lopukhin, “Indium antimonide photodetector arrays for hybrid photodetector-array devices,” Prikl. Fiz. No. 2, 16 (2005).

Egorov, M. S.

A. A. Age?chik, V. N. Alekseev, V. I. Venglyuk, V. M. Gromovenko, M. S. Egorov, V. I. Korolev, A. N. Malinin, S. V. Ostapenko, Yu. A. Rezunkov, A. L. Safronov, G. A. Sokolova, and V. V. Stepanov, “A picosecond IR laser system with tunable wavelength, based on a hybrid CO2 laser,” Opt. Zh. 76, No. 9, 5 (2009). [J. Opt. Technol. 76, 529 (2009)].

Fedoseev, V. I.

L. A. Pets and V. I. Fedoseev, “Methods of approximately estimating the immunity of the celestial orientation and navigation devices of spacecraft against out-of-field sources of light noise,” Opt. Zh. 65, No. 8, 9 (1998). [J. Opt. Technol. 65, 610 (1998)].

Françon, M.

M. Françon, Laser Speckle and Its Application in Optics (Academic Press, New York, 1979; Mir, Moscow, 1980).

Golubeva, A. A.

E. N. Goncharenko, L. P. Osipova, A. A. Golubeva, and O. N. Gubanova, “Design and calculation of light-proof hoods,” Opt. Mekh. Prom. No. 3, 13 (1987). [Sov. J. Opt. Technol. 54, 143 (1987)].

Golubkov, A. V.

I. D. Burlakov, A. V. Golubkov, A. I. Dirochka, I. L. Kasatkin, and A. A. Lopukhin, “Indium antimonide photodetector arrays for hybrid photodetector-array devices,” Prikl. Fiz. No. 2, 16 (2005).

Goncharenko, E. N.

E. N. Goncharenko, L. P. Osipova, A. A. Golubeva, and O. N. Gubanova, “Design and calculation of light-proof hoods,” Opt. Mekh. Prom. No. 3, 13 (1987). [Sov. J. Opt. Technol. 54, 143 (1987)].

Goodman, D.

D. Goodman, Statistical Optics (Wiley, New York, 1985; Mir, Moscow, 1988).

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckles patterns,” in Laser Speckle and Related Phenomena. Topics in Applied Physics, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), Vol. 9, p. 1.

Gromovenko, V. M.

A. A. Age?chik, V. N. Alekseev, V. I. Venglyuk, V. M. Gromovenko, M. S. Egorov, V. I. Korolev, A. N. Malinin, S. V. Ostapenko, Yu. A. Rezunkov, A. L. Safronov, G. A. Sokolova, and V. V. Stepanov, “A picosecond IR laser system with tunable wavelength, based on a hybrid CO2 laser,” Opt. Zh. 76, No. 9, 5 (2009). [J. Opt. Technol. 76, 529 (2009)].

Gubanova, O. N.

E. N. Goncharenko, L. P. Osipova, A. A. Golubeva, and O. N. Gubanova, “Design and calculation of light-proof hoods,” Opt. Mekh. Prom. No. 3, 13 (1987). [Sov. J. Opt. Technol. 54, 143 (1987)].

Kamshilin, A. A.

Yu. N. Kul’chin, O. B. Vitrik, A. A. Kamshilin, and R. V. Romashko, Adaptive Methods of Processing Speckle-Modulated Optical Fields (FIZMATLIT, Moscow, 2009).

Kasatkin, I. L.

I. D. Burlakov, A. V. Golubkov, A. I. Dirochka, I. L. Kasatkin, and A. A. Lopukhin, “Indium antimonide photodetector arrays for hybrid photodetector-array devices,” Prikl. Fiz. No. 2, 16 (2005).

Korolev, V. I.

A. A. Age?chik, V. N. Alekseev, V. I. Venglyuk, V. M. Gromovenko, M. S. Egorov, V. I. Korolev, A. N. Malinin, S. V. Ostapenko, Yu. A. Rezunkov, A. L. Safronov, G. A. Sokolova, and V. V. Stepanov, “A picosecond IR laser system with tunable wavelength, based on a hybrid CO2 laser,” Opt. Zh. 76, No. 9, 5 (2009). [J. Opt. Technol. 76, 529 (2009)].

Kozin, G. I.

G. I. Kozin and A. P. Kuznetsov, “Spatial coherence and intensity of reflected laser radiation,” Kvant. Elektron. (Moscow) 25, 1079 (1998). [Quantum Electron. 25, 1050 (1998)].

Kul’chin, Yu. N.

Yu. N. Kul’chin, O. B. Vitrik, A. A. Kamshilin, and R. V. Romashko, Adaptive Methods of Processing Speckle-Modulated Optical Fields (FIZMATLIT, Moscow, 2009).

Kuznetsov, A. P.

G. I. Kozin and A. P. Kuznetsov, “Spatial coherence and intensity of reflected laser radiation,” Kvant. Elektron. (Moscow) 25, 1079 (1998). [Quantum Electron. 25, 1050 (1998)].

Lopukhin, A. A.

I. D. Burlakov, A. V. Golubkov, A. I. Dirochka, I. L. Kasatkin, and A. A. Lopukhin, “Indium antimonide photodetector arrays for hybrid photodetector-array devices,” Prikl. Fiz. No. 2, 16 (2005).

Malinin, A. N.

A. A. Age?chik, V. N. Alekseev, V. I. Venglyuk, V. M. Gromovenko, M. S. Egorov, V. I. Korolev, A. N. Malinin, S. V. Ostapenko, Yu. A. Rezunkov, A. L. Safronov, G. A. Sokolova, and V. V. Stepanov, “A picosecond IR laser system with tunable wavelength, based on a hybrid CO2 laser,” Opt. Zh. 76, No. 9, 5 (2009). [J. Opt. Technol. 76, 529 (2009)].

O’Donnell, K. A.

K. A. O’Donnell, “Speckle statistics of doubly scattered light,” J. Opt. Soc. Am 72, 1459 (1982).
[CrossRef]

Osipova, L. P.

E. N. Goncharenko, L. P. Osipova, A. A. Golubeva, and O. N. Gubanova, “Design and calculation of light-proof hoods,” Opt. Mekh. Prom. No. 3, 13 (1987). [Sov. J. Opt. Technol. 54, 143 (1987)].

Ostapenko, S. V.

A. A. Age?chik, V. N. Alekseev, V. I. Venglyuk, V. M. Gromovenko, M. S. Egorov, V. I. Korolev, A. N. Malinin, S. V. Ostapenko, Yu. A. Rezunkov, A. L. Safronov, G. A. Sokolova, and V. V. Stepanov, “A picosecond IR laser system with tunable wavelength, based on a hybrid CO2 laser,” Opt. Zh. 76, No. 9, 5 (2009). [J. Opt. Technol. 76, 529 (2009)].

Pets, L. A.

L. A. Pets and V. I. Fedoseev, “Methods of approximately estimating the immunity of the celestial orientation and navigation devices of spacecraft against out-of-field sources of light noise,” Opt. Zh. 65, No. 8, 9 (1998). [J. Opt. Technol. 65, 610 (1998)].

Rezunkov, Yu. A.

A. A. Age?chik, V. N. Alekseev, V. I. Venglyuk, V. M. Gromovenko, M. S. Egorov, V. I. Korolev, A. N. Malinin, S. V. Ostapenko, Yu. A. Rezunkov, A. L. Safronov, G. A. Sokolova, and V. V. Stepanov, “A picosecond IR laser system with tunable wavelength, based on a hybrid CO2 laser,” Opt. Zh. 76, No. 9, 5 (2009). [J. Opt. Technol. 76, 529 (2009)].

Romashko, R. V.

Yu. N. Kul’chin, O. B. Vitrik, A. A. Kamshilin, and R. V. Romashko, Adaptive Methods of Processing Speckle-Modulated Optical Fields (FIZMATLIT, Moscow, 2009).

Safronov, A. L.

A. A. Age?chik, V. N. Alekseev, V. I. Venglyuk, V. M. Gromovenko, M. S. Egorov, V. I. Korolev, A. N. Malinin, S. V. Ostapenko, Yu. A. Rezunkov, A. L. Safronov, G. A. Sokolova, and V. V. Stepanov, “A picosecond IR laser system with tunable wavelength, based on a hybrid CO2 laser,” Opt. Zh. 76, No. 9, 5 (2009). [J. Opt. Technol. 76, 529 (2009)].

Salin, V. I.

V. I. Salin, “Technique for estimating the degree of shielding of optoelectronic devices from radiation sources outside the field,” Opt. Zh. 70, No. 4, 33 (2003). [J. Opt. Technol. 70, 248 (2003)].

Sokolova, G. A.

A. A. Age?chik, V. N. Alekseev, V. I. Venglyuk, V. M. Gromovenko, M. S. Egorov, V. I. Korolev, A. N. Malinin, S. V. Ostapenko, Yu. A. Rezunkov, A. L. Safronov, G. A. Sokolova, and V. V. Stepanov, “A picosecond IR laser system with tunable wavelength, based on a hybrid CO2 laser,” Opt. Zh. 76, No. 9, 5 (2009). [J. Opt. Technol. 76, 529 (2009)].

Stepanov, V. V.

A. A. Age?chik, V. N. Alekseev, V. I. Venglyuk, V. M. Gromovenko, M. S. Egorov, V. I. Korolev, A. N. Malinin, S. V. Ostapenko, Yu. A. Rezunkov, A. L. Safronov, G. A. Sokolova, and V. V. Stepanov, “A picosecond IR laser system with tunable wavelength, based on a hybrid CO2 laser,” Opt. Zh. 76, No. 9, 5 (2009). [J. Opt. Technol. 76, 529 (2009)].

Venglyuk, V. I.

A. A. Age?chik, V. N. Alekseev, V. I. Venglyuk, V. M. Gromovenko, M. S. Egorov, V. I. Korolev, A. N. Malinin, S. V. Ostapenko, Yu. A. Rezunkov, A. L. Safronov, G. A. Sokolova, and V. V. Stepanov, “A picosecond IR laser system with tunable wavelength, based on a hybrid CO2 laser,” Opt. Zh. 76, No. 9, 5 (2009). [J. Opt. Technol. 76, 529 (2009)].

Vitrik, O. B.

Yu. N. Kul’chin, O. B. Vitrik, A. A. Kamshilin, and R. V. Romashko, Adaptive Methods of Processing Speckle-Modulated Optical Fields (FIZMATLIT, Moscow, 2009).

Yaitskova, N.

N. Yaitskova, “Statistics of undeveloped speckles in partially polarized light,” in First OA4ELT conference, 09006, 2010, pub. EDP Sciences at http://ao4elt. edpsciences.org.

J. Opt. Soc. Am (1)

K. A. O’Donnell, “Speckle statistics of doubly scattered light,” J. Opt. Soc. Am 72, 1459 (1982).
[CrossRef]

Kvant. Elektron. (Moscow) (1)

G. I. Kozin and A. P. Kuznetsov, “Spatial coherence and intensity of reflected laser radiation,” Kvant. Elektron. (Moscow) 25, 1079 (1998). [Quantum Electron. 25, 1050 (1998)].

Opt. Mekh. Prom. (1)

E. N. Goncharenko, L. P. Osipova, A. A. Golubeva, and O. N. Gubanova, “Design and calculation of light-proof hoods,” Opt. Mekh. Prom. No. 3, 13 (1987). [Sov. J. Opt. Technol. 54, 143 (1987)].

Opt. Zh. (3)

V. I. Salin, “Technique for estimating the degree of shielding of optoelectronic devices from radiation sources outside the field,” Opt. Zh. 70, No. 4, 33 (2003). [J. Opt. Technol. 70, 248 (2003)].

L. A. Pets and V. I. Fedoseev, “Methods of approximately estimating the immunity of the celestial orientation and navigation devices of spacecraft against out-of-field sources of light noise,” Opt. Zh. 65, No. 8, 9 (1998). [J. Opt. Technol. 65, 610 (1998)].

A. A. Age?chik, V. N. Alekseev, V. I. Venglyuk, V. M. Gromovenko, M. S. Egorov, V. I. Korolev, A. N. Malinin, S. V. Ostapenko, Yu. A. Rezunkov, A. L. Safronov, G. A. Sokolova, and V. V. Stepanov, “A picosecond IR laser system with tunable wavelength, based on a hybrid CO2 laser,” Opt. Zh. 76, No. 9, 5 (2009). [J. Opt. Technol. 76, 529 (2009)].

Prikl. Fiz. (1)

I. D. Burlakov, A. V. Golubkov, A. I. Dirochka, I. L. Kasatkin, and A. A. Lopukhin, “Indium antimonide photodetector arrays for hybrid photodetector-array devices,” Prikl. Fiz. No. 2, 16 (2005).

Other (7)

D. Goodman, Statistical Optics (Wiley, New York, 1985; Mir, Moscow, 1988).

J. C. Dainty, “The statistics of speckle patterns,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1976), Vol. 14, pp. 1–46.

M. Françon, Laser Speckle and Its Application in Optics (Academic Press, New York, 1979; Mir, Moscow, 1980).

J. W. Goodman, “Statistical properties of laser speckles patterns,” in Laser Speckle and Related Phenomena. Topics in Applied Physics, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), Vol. 9, p. 1.

Yu. N. Kul’chin, O. B. Vitrik, A. A. Kamshilin, and R. V. Romashko, Adaptive Methods of Processing Speckle-Modulated Optical Fields (FIZMATLIT, Moscow, 2009).

N. Yaitskova, “Statistics of undeveloped speckles in partially polarized light,” in First OA4ELT conference, 09006, 2010, pub. EDP Sciences at http://ao4elt. edpsciences.org.

The International Satellite Laser Ranging in the website http//islr.gsfc.nasa.gov.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.