Abstract

The creation of a high-intensity source in the 4.6–5.4-µm range is a problem that has attracted the attention of researchers for several decades. This paper describes the optimization of the process of generating the second harmonic of the radiation of a pulse-periodic TEA CO<sub>2</sub> laser by choosing a nonlinear crystal and the temporal shape of the laser-pump pulse. Energy-conversion efficiency of up to 20% has been experimentally obtained in a ZnGeP<sub>2</sub> crystal with mean power of the radiation in the λ=4.8µm region of up to 0.24 W and a pulse repetition rate of 10 Hz.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, and J. van der Laan, “Efficient second-harmonic generation of 10-µm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786 (1985).
    [CrossRef]
  2. P. D. Mason, D. J. Jackson, and E. K. Gorton, “CO2 frequency doubling in ZnGeP2,” Opt. Commun. 110, No. 8, 163 (1994).
    [CrossRef]
  3. V. A. Gorobets, V. O. Petukhov, S. Ya. Tochitski?, and V. V. Churakov, “Studies of nonlinear-optical characteristics of IR crystals for frequency conversion of TEA CO2 laser radiation,” Opt. Zh. 66, No. 1, 62 (1999). [J. Opt. Technol. 66, 53 (1999)].
  4. L. Isaenko, P. Krinitsin, V. Vedenyapin, A. Yelisseyev, A. Merkulov, J.-J. Zondy, and V. Petrov, “LiGaTe2: a new highly nonlinear chalcopyrite optical crystal for the mid-IR,” Cryst. Growth Design 5, 1325 (2005).
    [CrossRef]
  5. G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevski?, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of the radiation of a CO2 laser in GaSe,” Kvant. Elektron. (Moscow) 16, 757 (1989). [Sov. J. Quantum Electron. 19, 494 (1989)].
  6. R. C. Y. Auyeung, D. M. Zielke, and B. J. Feldman, “Multiple harmonic conversion of pulsed CO2 laser radiation in Tl3 AsSe3,” Appl. Phys. B 48, 293 (1989).
    [CrossRef]
  7. N. Menyuk, G. W. Iseler, and A. Mooradian, “High-efficiency high-average-power second-harmonic generation with CdGeAs2,” Appl. Phys. Lett. 29, 422 (1976).
    [CrossRef]
  8. D. N. Nikogosyan, A. P. Sukhorukov, and M. I. Golove?, “Saturation of second-harmonic generation of laser radiation on carbon dioxide with a transverse discharge,” Kvant. Elektron. (Moscow) 2, 609 (1975). [Sov. J. Quantum Electron. 5, 344 (1975)].
  9. J. H. Churnside, J. J. Wilson, Yu. M. Andreev, A. I. Gribenyukov, S. F. Shubin, S. I. Dolgii, and V. V. Zuev, “Frequency conversion of a CO2 laser with ZnGeP2,” in NOAA Technical Memorandum ERL WPL-224 (Boulder, Colo., Springfield, Va., USA, 1992), pp. 1–18.
  10. G. A. Verozubova and A. I. Gribenyukov, “The growth of ZnGeP2 crystals from the melt,” Kristallografiya 53, 175 (2008). [Crystallogr. Rep. 53, 158 (2008)].
  11. “Datasheet Zinc Germanium Phosphide,” www.inrad.com.
  12. A. I. Gribenyukov, “Nonlinear-optical ZnGeP2 crystals: retrospective analysis of the technological studies,” Opt. Atm. Okeana 15, 71 (2002).
  13. V. V. Apollonov, N. Akhunov, S. I. Derzhavin, I. K. Kononov, A. A. Sirotin, K. N. Firsov, and V. A. Yamshchikov, “A CO2 laser with tunable pulse width of the radiation,” Kvant. Elektron. (Moscow) 10, 1929 (1983). [Sov. J. Quantum Electron. 13, 1284 (1983)].
  14. G. A. Baranov, A. V. Astakhov, A. K. Zinchenko, A. A. Kuchinski?, Yu. I. Shevchenko, E. N. Sokolov, A. K. Kalitievski?, O. N. Godisov, S. V. Fedichev, V. Yu. Baranov, A. P. Dyad’kin, and E. A. Ryabov, “Technological complex for laser separation of the isotopes of carbon,” Ros. Khim. Zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleeva) 45, No. 5–6, 89 (2001).
  15. D. A. Goryachkin, V. M. Irtuganov, V. P. Kalinin, Yu. T. Mazurenko, and Yu. A. Rubinov, “Atmospheric and superatmospheric-pressure CO2 lasers with a self-maintained discharge,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1877 (1982).
  16. L. Gallais, J. Y. Natoli, and C. Amra, “Statistical study of single- and multiple-pulse laser-induced damage in glasses,” Opt. Express 10, 1465 (2002).
    [CrossRef] [PubMed]
  17. A. G. Kalintsev, N. A. Kalintseva, V. A. Serebryakov, and A. V. Kopyl’tsov, “Mathematical modelling of multistage parametric frequency converters,” in Abstracts of Reports of the Fourteenth International Conference on Laser Optics, St. Petersburg, 2010, WeR1 p. 45.

2008 (1)

G. A. Verozubova and A. I. Gribenyukov, “The growth of ZnGeP2 crystals from the melt,” Kristallografiya 53, 175 (2008). [Crystallogr. Rep. 53, 158 (2008)].

2005 (1)

L. Isaenko, P. Krinitsin, V. Vedenyapin, A. Yelisseyev, A. Merkulov, J.-J. Zondy, and V. Petrov, “LiGaTe2: a new highly nonlinear chalcopyrite optical crystal for the mid-IR,” Cryst. Growth Design 5, 1325 (2005).
[CrossRef]

2002 (2)

A. I. Gribenyukov, “Nonlinear-optical ZnGeP2 crystals: retrospective analysis of the technological studies,” Opt. Atm. Okeana 15, 71 (2002).

L. Gallais, J. Y. Natoli, and C. Amra, “Statistical study of single- and multiple-pulse laser-induced damage in glasses,” Opt. Express 10, 1465 (2002).
[CrossRef] [PubMed]

2001 (1)

G. A. Baranov, A. V. Astakhov, A. K. Zinchenko, A. A. Kuchinski?, Yu. I. Shevchenko, E. N. Sokolov, A. K. Kalitievski?, O. N. Godisov, S. V. Fedichev, V. Yu. Baranov, A. P. Dyad’kin, and E. A. Ryabov, “Technological complex for laser separation of the isotopes of carbon,” Ros. Khim. Zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleeva) 45, No. 5–6, 89 (2001).

1999 (1)

V. A. Gorobets, V. O. Petukhov, S. Ya. Tochitski?, and V. V. Churakov, “Studies of nonlinear-optical characteristics of IR crystals for frequency conversion of TEA CO2 laser radiation,” Opt. Zh. 66, No. 1, 62 (1999). [J. Opt. Technol. 66, 53 (1999)].

1994 (1)

P. D. Mason, D. J. Jackson, and E. K. Gorton, “CO2 frequency doubling in ZnGeP2,” Opt. Commun. 110, No. 8, 163 (1994).
[CrossRef]

1989 (2)

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevski?, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of the radiation of a CO2 laser in GaSe,” Kvant. Elektron. (Moscow) 16, 757 (1989). [Sov. J. Quantum Electron. 19, 494 (1989)].

R. C. Y. Auyeung, D. M. Zielke, and B. J. Feldman, “Multiple harmonic conversion of pulsed CO2 laser radiation in Tl3 AsSe3,” Appl. Phys. B 48, 293 (1989).
[CrossRef]

1985 (1)

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, and J. van der Laan, “Efficient second-harmonic generation of 10-µm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786 (1985).
[CrossRef]

1983 (1)

V. V. Apollonov, N. Akhunov, S. I. Derzhavin, I. K. Kononov, A. A. Sirotin, K. N. Firsov, and V. A. Yamshchikov, “A CO2 laser with tunable pulse width of the radiation,” Kvant. Elektron. (Moscow) 10, 1929 (1983). [Sov. J. Quantum Electron. 13, 1284 (1983)].

1982 (1)

D. A. Goryachkin, V. M. Irtuganov, V. P. Kalinin, Yu. T. Mazurenko, and Yu. A. Rubinov, “Atmospheric and superatmospheric-pressure CO2 lasers with a self-maintained discharge,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1877 (1982).

1976 (1)

N. Menyuk, G. W. Iseler, and A. Mooradian, “High-efficiency high-average-power second-harmonic generation with CdGeAs2,” Appl. Phys. Lett. 29, 422 (1976).
[CrossRef]

1975 (1)

D. N. Nikogosyan, A. P. Sukhorukov, and M. I. Golove?, “Saturation of second-harmonic generation of laser radiation on carbon dioxide with a transverse discharge,” Kvant. Elektron. (Moscow) 2, 609 (1975). [Sov. J. Quantum Electron. 5, 344 (1975)].

Abdullaev, G. B.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevski?, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of the radiation of a CO2 laser in GaSe,” Kvant. Elektron. (Moscow) 16, 757 (1989). [Sov. J. Quantum Electron. 19, 494 (1989)].

Akhunov, N.

V. V. Apollonov, N. Akhunov, S. I. Derzhavin, I. K. Kononov, A. A. Sirotin, K. N. Firsov, and V. A. Yamshchikov, “A CO2 laser with tunable pulse width of the radiation,” Kvant. Elektron. (Moscow) 10, 1929 (1983). [Sov. J. Quantum Electron. 13, 1284 (1983)].

Allakhverdiev, K. R.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevski?, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of the radiation of a CO2 laser in GaSe,” Kvant. Elektron. (Moscow) 16, 757 (1989). [Sov. J. Quantum Electron. 19, 494 (1989)].

Amra, C.

Andreev, Yu. M.

J. H. Churnside, J. J. Wilson, Yu. M. Andreev, A. I. Gribenyukov, S. F. Shubin, S. I. Dolgii, and V. V. Zuev, “Frequency conversion of a CO2 laser with ZnGeP2,” in NOAA Technical Memorandum ERL WPL-224 (Boulder, Colo., Springfield, Va., USA, 1992), pp. 1–18.

Apollonov, V. V.

V. V. Apollonov, N. Akhunov, S. I. Derzhavin, I. K. Kononov, A. A. Sirotin, K. N. Firsov, and V. A. Yamshchikov, “A CO2 laser with tunable pulse width of the radiation,” Kvant. Elektron. (Moscow) 10, 1929 (1983). [Sov. J. Quantum Electron. 13, 1284 (1983)].

Astakhov, A. V.

G. A. Baranov, A. V. Astakhov, A. K. Zinchenko, A. A. Kuchinski?, Yu. I. Shevchenko, E. N. Sokolov, A. K. Kalitievski?, O. N. Godisov, S. V. Fedichev, V. Yu. Baranov, A. P. Dyad’kin, and E. A. Ryabov, “Technological complex for laser separation of the isotopes of carbon,” Ros. Khim. Zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleeva) 45, No. 5–6, 89 (2001).

Auyeung, R. C. Y.

R. C. Y. Auyeung, D. M. Zielke, and B. J. Feldman, “Multiple harmonic conversion of pulsed CO2 laser radiation in Tl3 AsSe3,” Appl. Phys. B 48, 293 (1989).
[CrossRef]

Baranov, G. A.

G. A. Baranov, A. V. Astakhov, A. K. Zinchenko, A. A. Kuchinski?, Yu. I. Shevchenko, E. N. Sokolov, A. K. Kalitievski?, O. N. Godisov, S. V. Fedichev, V. Yu. Baranov, A. P. Dyad’kin, and E. A. Ryabov, “Technological complex for laser separation of the isotopes of carbon,” Ros. Khim. Zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleeva) 45, No. 5–6, 89 (2001).

Baranov, V. Yu.

G. A. Baranov, A. V. Astakhov, A. K. Zinchenko, A. A. Kuchinski?, Yu. I. Shevchenko, E. N. Sokolov, A. K. Kalitievski?, O. N. Godisov, S. V. Fedichev, V. Yu. Baranov, A. P. Dyad’kin, and E. A. Ryabov, “Technological complex for laser separation of the isotopes of carbon,” Ros. Khim. Zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleeva) 45, No. 5–6, 89 (2001).

Byer, R. L.

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, and J. van der Laan, “Efficient second-harmonic generation of 10-µm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786 (1985).
[CrossRef]

Chapliev, N. I.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevski?, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of the radiation of a CO2 laser in GaSe,” Kvant. Elektron. (Moscow) 16, 757 (1989). [Sov. J. Quantum Electron. 19, 494 (1989)].

Churakov, V. V.

V. A. Gorobets, V. O. Petukhov, S. Ya. Tochitski?, and V. V. Churakov, “Studies of nonlinear-optical characteristics of IR crystals for frequency conversion of TEA CO2 laser radiation,” Opt. Zh. 66, No. 1, 62 (1999). [J. Opt. Technol. 66, 53 (1999)].

Churnside, J. H.

J. H. Churnside, J. J. Wilson, Yu. M. Andreev, A. I. Gribenyukov, S. F. Shubin, S. I. Dolgii, and V. V. Zuev, “Frequency conversion of a CO2 laser with ZnGeP2,” in NOAA Technical Memorandum ERL WPL-224 (Boulder, Colo., Springfield, Va., USA, 1992), pp. 1–18.

Derzhavin, S. I.

V. V. Apollonov, N. Akhunov, S. I. Derzhavin, I. K. Kononov, A. A. Sirotin, K. N. Firsov, and V. A. Yamshchikov, “A CO2 laser with tunable pulse width of the radiation,” Kvant. Elektron. (Moscow) 10, 1929 (1983). [Sov. J. Quantum Electron. 13, 1284 (1983)].

Dolgii, S. I.

J. H. Churnside, J. J. Wilson, Yu. M. Andreev, A. I. Gribenyukov, S. F. Shubin, S. I. Dolgii, and V. V. Zuev, “Frequency conversion of a CO2 laser with ZnGeP2,” in NOAA Technical Memorandum ERL WPL-224 (Boulder, Colo., Springfield, Va., USA, 1992), pp. 1–18.

Dyad’kin, A. P.

G. A. Baranov, A. V. Astakhov, A. K. Zinchenko, A. A. Kuchinski?, Yu. I. Shevchenko, E. N. Sokolov, A. K. Kalitievski?, O. N. Godisov, S. V. Fedichev, V. Yu. Baranov, A. P. Dyad’kin, and E. A. Ryabov, “Technological complex for laser separation of the isotopes of carbon,” Ros. Khim. Zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleeva) 45, No. 5–6, 89 (2001).

Eckardt, R. C.

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, and J. van der Laan, “Efficient second-harmonic generation of 10-µm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786 (1985).
[CrossRef]

Fan, Y. X.

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, and J. van der Laan, “Efficient second-harmonic generation of 10-µm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786 (1985).
[CrossRef]

Fedichev, S. V.

G. A. Baranov, A. V. Astakhov, A. K. Zinchenko, A. A. Kuchinski?, Yu. I. Shevchenko, E. N. Sokolov, A. K. Kalitievski?, O. N. Godisov, S. V. Fedichev, V. Yu. Baranov, A. P. Dyad’kin, and E. A. Ryabov, “Technological complex for laser separation of the isotopes of carbon,” Ros. Khim. Zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleeva) 45, No. 5–6, 89 (2001).

Feigelson, R. S.

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, and J. van der Laan, “Efficient second-harmonic generation of 10-µm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786 (1985).
[CrossRef]

Feldman, B. J.

R. C. Y. Auyeung, D. M. Zielke, and B. J. Feldman, “Multiple harmonic conversion of pulsed CO2 laser radiation in Tl3 AsSe3,” Appl. Phys. B 48, 293 (1989).
[CrossRef]

Firsov, K. N.

V. V. Apollonov, N. Akhunov, S. I. Derzhavin, I. K. Kononov, A. A. Sirotin, K. N. Firsov, and V. A. Yamshchikov, “A CO2 laser with tunable pulse width of the radiation,” Kvant. Elektron. (Moscow) 10, 1929 (1983). [Sov. J. Quantum Electron. 13, 1284 (1983)].

Gallais, L.

Godisov, O. N.

G. A. Baranov, A. V. Astakhov, A. K. Zinchenko, A. A. Kuchinski?, Yu. I. Shevchenko, E. N. Sokolov, A. K. Kalitievski?, O. N. Godisov, S. V. Fedichev, V. Yu. Baranov, A. P. Dyad’kin, and E. A. Ryabov, “Technological complex for laser separation of the isotopes of carbon,” Ros. Khim. Zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleeva) 45, No. 5–6, 89 (2001).

Golovei, M. I.

D. N. Nikogosyan, A. P. Sukhorukov, and M. I. Golove?, “Saturation of second-harmonic generation of laser radiation on carbon dioxide with a transverse discharge,” Kvant. Elektron. (Moscow) 2, 609 (1975). [Sov. J. Quantum Electron. 5, 344 (1975)].

Gorobets, V. A.

V. A. Gorobets, V. O. Petukhov, S. Ya. Tochitski?, and V. V. Churakov, “Studies of nonlinear-optical characteristics of IR crystals for frequency conversion of TEA CO2 laser radiation,” Opt. Zh. 66, No. 1, 62 (1999). [J. Opt. Technol. 66, 53 (1999)].

Gorton, E. K.

P. D. Mason, D. J. Jackson, and E. K. Gorton, “CO2 frequency doubling in ZnGeP2,” Opt. Commun. 110, No. 8, 163 (1994).
[CrossRef]

Goryachkin, D. A.

D. A. Goryachkin, V. M. Irtuganov, V. P. Kalinin, Yu. T. Mazurenko, and Yu. A. Rubinov, “Atmospheric and superatmospheric-pressure CO2 lasers with a self-maintained discharge,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1877 (1982).

Gribenyukov, A. I.

G. A. Verozubova and A. I. Gribenyukov, “The growth of ZnGeP2 crystals from the melt,” Kristallografiya 53, 175 (2008). [Crystallogr. Rep. 53, 158 (2008)].

A. I. Gribenyukov, “Nonlinear-optical ZnGeP2 crystals: retrospective analysis of the technological studies,” Opt. Atm. Okeana 15, 71 (2002).

J. H. Churnside, J. J. Wilson, Yu. M. Andreev, A. I. Gribenyukov, S. F. Shubin, S. I. Dolgii, and V. V. Zuev, “Frequency conversion of a CO2 laser with ZnGeP2,” in NOAA Technical Memorandum ERL WPL-224 (Boulder, Colo., Springfield, Va., USA, 1992), pp. 1–18.

Irtuganov, V. M.

D. A. Goryachkin, V. M. Irtuganov, V. P. Kalinin, Yu. T. Mazurenko, and Yu. A. Rubinov, “Atmospheric and superatmospheric-pressure CO2 lasers with a self-maintained discharge,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1877 (1982).

Isaenko, L.

L. Isaenko, P. Krinitsin, V. Vedenyapin, A. Yelisseyev, A. Merkulov, J.-J. Zondy, and V. Petrov, “LiGaTe2: a new highly nonlinear chalcopyrite optical crystal for the mid-IR,” Cryst. Growth Design 5, 1325 (2005).
[CrossRef]

Iseler, G. W.

N. Menyuk, G. W. Iseler, and A. Mooradian, “High-efficiency high-average-power second-harmonic generation with CdGeAs2,” Appl. Phys. Lett. 29, 422 (1976).
[CrossRef]

Jackson, D. J.

P. D. Mason, D. J. Jackson, and E. K. Gorton, “CO2 frequency doubling in ZnGeP2,” Opt. Commun. 110, No. 8, 163 (1994).
[CrossRef]

Kalinin, V. P.

D. A. Goryachkin, V. M. Irtuganov, V. P. Kalinin, Yu. T. Mazurenko, and Yu. A. Rubinov, “Atmospheric and superatmospheric-pressure CO2 lasers with a self-maintained discharge,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1877 (1982).

Kalintsev, A. G.

A. G. Kalintsev, N. A. Kalintseva, V. A. Serebryakov, and A. V. Kopyl’tsov, “Mathematical modelling of multistage parametric frequency converters,” in Abstracts of Reports of the Fourteenth International Conference on Laser Optics, St. Petersburg, 2010, WeR1 p. 45.

Kalintseva, N. A.

A. G. Kalintsev, N. A. Kalintseva, V. A. Serebryakov, and A. V. Kopyl’tsov, “Mathematical modelling of multistage parametric frequency converters,” in Abstracts of Reports of the Fourteenth International Conference on Laser Optics, St. Petersburg, 2010, WeR1 p. 45.

Kalitievskii, A. K.

G. A. Baranov, A. V. Astakhov, A. K. Zinchenko, A. A. Kuchinski?, Yu. I. Shevchenko, E. N. Sokolov, A. K. Kalitievski?, O. N. Godisov, S. V. Fedichev, V. Yu. Baranov, A. P. Dyad’kin, and E. A. Ryabov, “Technological complex for laser separation of the isotopes of carbon,” Ros. Khim. Zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleeva) 45, No. 5–6, 89 (2001).

Karasev, M. E.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevski?, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of the radiation of a CO2 laser in GaSe,” Kvant. Elektron. (Moscow) 16, 757 (1989). [Sov. J. Quantum Electron. 19, 494 (1989)].

Kononov, I. K.

V. V. Apollonov, N. Akhunov, S. I. Derzhavin, I. K. Kononov, A. A. Sirotin, K. N. Firsov, and V. A. Yamshchikov, “A CO2 laser with tunable pulse width of the radiation,” Kvant. Elektron. (Moscow) 10, 1929 (1983). [Sov. J. Quantum Electron. 13, 1284 (1983)].

Konov, V. I.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevski?, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of the radiation of a CO2 laser in GaSe,” Kvant. Elektron. (Moscow) 16, 757 (1989). [Sov. J. Quantum Electron. 19, 494 (1989)].

Kopyl’tsov, A. V.

A. G. Kalintsev, N. A. Kalintseva, V. A. Serebryakov, and A. V. Kopyl’tsov, “Mathematical modelling of multistage parametric frequency converters,” in Abstracts of Reports of the Fourteenth International Conference on Laser Optics, St. Petersburg, 2010, WeR1 p. 45.

Krinitsin, P.

L. Isaenko, P. Krinitsin, V. Vedenyapin, A. Yelisseyev, A. Merkulov, J.-J. Zondy, and V. Petrov, “LiGaTe2: a new highly nonlinear chalcopyrite optical crystal for the mid-IR,” Cryst. Growth Design 5, 1325 (2005).
[CrossRef]

Kuchinskii, A. A.

G. A. Baranov, A. V. Astakhov, A. K. Zinchenko, A. A. Kuchinski?, Yu. I. Shevchenko, E. N. Sokolov, A. K. Kalitievski?, O. N. Godisov, S. V. Fedichev, V. Yu. Baranov, A. P. Dyad’kin, and E. A. Ryabov, “Technological complex for laser separation of the isotopes of carbon,” Ros. Khim. Zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleeva) 45, No. 5–6, 89 (2001).

Kulevskii, L. A.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevski?, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of the radiation of a CO2 laser in GaSe,” Kvant. Elektron. (Moscow) 16, 757 (1989). [Sov. J. Quantum Electron. 19, 494 (1989)].

Mason, P. D.

P. D. Mason, D. J. Jackson, and E. K. Gorton, “CO2 frequency doubling in ZnGeP2,” Opt. Commun. 110, No. 8, 163 (1994).
[CrossRef]

Mazurenko, Yu. T.

D. A. Goryachkin, V. M. Irtuganov, V. P. Kalinin, Yu. T. Mazurenko, and Yu. A. Rubinov, “Atmospheric and superatmospheric-pressure CO2 lasers with a self-maintained discharge,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1877 (1982).

Menyuk, N.

N. Menyuk, G. W. Iseler, and A. Mooradian, “High-efficiency high-average-power second-harmonic generation with CdGeAs2,” Appl. Phys. Lett. 29, 422 (1976).
[CrossRef]

Merkulov, A.

L. Isaenko, P. Krinitsin, V. Vedenyapin, A. Yelisseyev, A. Merkulov, J.-J. Zondy, and V. Petrov, “LiGaTe2: a new highly nonlinear chalcopyrite optical crystal for the mid-IR,” Cryst. Growth Design 5, 1325 (2005).
[CrossRef]

Mooradian, A.

N. Menyuk, G. W. Iseler, and A. Mooradian, “High-efficiency high-average-power second-harmonic generation with CdGeAs2,” Appl. Phys. Lett. 29, 422 (1976).
[CrossRef]

Mustafaev, N. B.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevski?, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of the radiation of a CO2 laser in GaSe,” Kvant. Elektron. (Moscow) 16, 757 (1989). [Sov. J. Quantum Electron. 19, 494 (1989)].

Natoli, J. Y.

Nikogosyan, D. N.

D. N. Nikogosyan, A. P. Sukhorukov, and M. I. Golove?, “Saturation of second-harmonic generation of laser radiation on carbon dioxide with a transverse discharge,” Kvant. Elektron. (Moscow) 2, 609 (1975). [Sov. J. Quantum Electron. 5, 344 (1975)].

Pashinin, P. P.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevski?, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of the radiation of a CO2 laser in GaSe,” Kvant. Elektron. (Moscow) 16, 757 (1989). [Sov. J. Quantum Electron. 19, 494 (1989)].

Petrov, V.

L. Isaenko, P. Krinitsin, V. Vedenyapin, A. Yelisseyev, A. Merkulov, J.-J. Zondy, and V. Petrov, “LiGaTe2: a new highly nonlinear chalcopyrite optical crystal for the mid-IR,” Cryst. Growth Design 5, 1325 (2005).
[CrossRef]

Petukhov, V. O.

V. A. Gorobets, V. O. Petukhov, S. Ya. Tochitski?, and V. V. Churakov, “Studies of nonlinear-optical characteristics of IR crystals for frequency conversion of TEA CO2 laser radiation,” Opt. Zh. 66, No. 1, 62 (1999). [J. Opt. Technol. 66, 53 (1999)].

Prokhorov, A. M.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevski?, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of the radiation of a CO2 laser in GaSe,” Kvant. Elektron. (Moscow) 16, 757 (1989). [Sov. J. Quantum Electron. 19, 494 (1989)].

Route, R. K.

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, and J. van der Laan, “Efficient second-harmonic generation of 10-µm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786 (1985).
[CrossRef]

Rubinov, Yu. A.

D. A. Goryachkin, V. M. Irtuganov, V. P. Kalinin, Yu. T. Mazurenko, and Yu. A. Rubinov, “Atmospheric and superatmospheric-pressure CO2 lasers with a self-maintained discharge,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1877 (1982).

Ryabov, E. A.

G. A. Baranov, A. V. Astakhov, A. K. Zinchenko, A. A. Kuchinski?, Yu. I. Shevchenko, E. N. Sokolov, A. K. Kalitievski?, O. N. Godisov, S. V. Fedichev, V. Yu. Baranov, A. P. Dyad’kin, and E. A. Ryabov, “Technological complex for laser separation of the isotopes of carbon,” Ros. Khim. Zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleeva) 45, No. 5–6, 89 (2001).

Serebryakov, V. A.

A. G. Kalintsev, N. A. Kalintseva, V. A. Serebryakov, and A. V. Kopyl’tsov, “Mathematical modelling of multistage parametric frequency converters,” in Abstracts of Reports of the Fourteenth International Conference on Laser Optics, St. Petersburg, 2010, WeR1 p. 45.

Shevchenko, Yu. I.

G. A. Baranov, A. V. Astakhov, A. K. Zinchenko, A. A. Kuchinski?, Yu. I. Shevchenko, E. N. Sokolov, A. K. Kalitievski?, O. N. Godisov, S. V. Fedichev, V. Yu. Baranov, A. P. Dyad’kin, and E. A. Ryabov, “Technological complex for laser separation of the isotopes of carbon,” Ros. Khim. Zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleeva) 45, No. 5–6, 89 (2001).

Shubin, S. F.

J. H. Churnside, J. J. Wilson, Yu. M. Andreev, A. I. Gribenyukov, S. F. Shubin, S. I. Dolgii, and V. V. Zuev, “Frequency conversion of a CO2 laser with ZnGeP2,” in NOAA Technical Memorandum ERL WPL-224 (Boulder, Colo., Springfield, Va., USA, 1992), pp. 1–18.

Sirotin, A. A.

V. V. Apollonov, N. Akhunov, S. I. Derzhavin, I. K. Kononov, A. A. Sirotin, K. N. Firsov, and V. A. Yamshchikov, “A CO2 laser with tunable pulse width of the radiation,” Kvant. Elektron. (Moscow) 10, 1929 (1983). [Sov. J. Quantum Electron. 13, 1284 (1983)].

Sokolov, E. N.

G. A. Baranov, A. V. Astakhov, A. K. Zinchenko, A. A. Kuchinski?, Yu. I. Shevchenko, E. N. Sokolov, A. K. Kalitievski?, O. N. Godisov, S. V. Fedichev, V. Yu. Baranov, A. P. Dyad’kin, and E. A. Ryabov, “Technological complex for laser separation of the isotopes of carbon,” Ros. Khim. Zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleeva) 45, No. 5–6, 89 (2001).

Starodumov, Yu. M.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevski?, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of the radiation of a CO2 laser in GaSe,” Kvant. Elektron. (Moscow) 16, 757 (1989). [Sov. J. Quantum Electron. 19, 494 (1989)].

Sukhorukov, A. P.

D. N. Nikogosyan, A. P. Sukhorukov, and M. I. Golove?, “Saturation of second-harmonic generation of laser radiation on carbon dioxide with a transverse discharge,” Kvant. Elektron. (Moscow) 2, 609 (1975). [Sov. J. Quantum Electron. 5, 344 (1975)].

Tochitskii, S. Ya.

V. A. Gorobets, V. O. Petukhov, S. Ya. Tochitski?, and V. V. Churakov, “Studies of nonlinear-optical characteristics of IR crystals for frequency conversion of TEA CO2 laser radiation,” Opt. Zh. 66, No. 1, 62 (1999). [J. Opt. Technol. 66, 53 (1999)].

van der Laan, J.

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, and J. van der Laan, “Efficient second-harmonic generation of 10-µm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786 (1985).
[CrossRef]

Vedenyapin, V.

L. Isaenko, P. Krinitsin, V. Vedenyapin, A. Yelisseyev, A. Merkulov, J.-J. Zondy, and V. Petrov, “LiGaTe2: a new highly nonlinear chalcopyrite optical crystal for the mid-IR,” Cryst. Growth Design 5, 1325 (2005).
[CrossRef]

Verozubova, G. A.

G. A. Verozubova and A. I. Gribenyukov, “The growth of ZnGeP2 crystals from the melt,” Kristallografiya 53, 175 (2008). [Crystallogr. Rep. 53, 158 (2008)].

Wilson, J. J.

J. H. Churnside, J. J. Wilson, Yu. M. Andreev, A. I. Gribenyukov, S. F. Shubin, S. I. Dolgii, and V. V. Zuev, “Frequency conversion of a CO2 laser with ZnGeP2,” in NOAA Technical Memorandum ERL WPL-224 (Boulder, Colo., Springfield, Va., USA, 1992), pp. 1–18.

Yamshchikov, V. A.

V. V. Apollonov, N. Akhunov, S. I. Derzhavin, I. K. Kononov, A. A. Sirotin, K. N. Firsov, and V. A. Yamshchikov, “A CO2 laser with tunable pulse width of the radiation,” Kvant. Elektron. (Moscow) 10, 1929 (1983). [Sov. J. Quantum Electron. 13, 1284 (1983)].

Yelisseyev, A.

L. Isaenko, P. Krinitsin, V. Vedenyapin, A. Yelisseyev, A. Merkulov, J.-J. Zondy, and V. Petrov, “LiGaTe2: a new highly nonlinear chalcopyrite optical crystal for the mid-IR,” Cryst. Growth Design 5, 1325 (2005).
[CrossRef]

Zielke, D. M.

R. C. Y. Auyeung, D. M. Zielke, and B. J. Feldman, “Multiple harmonic conversion of pulsed CO2 laser radiation in Tl3 AsSe3,” Appl. Phys. B 48, 293 (1989).
[CrossRef]

Zinchenko, A. K.

G. A. Baranov, A. V. Astakhov, A. K. Zinchenko, A. A. Kuchinski?, Yu. I. Shevchenko, E. N. Sokolov, A. K. Kalitievski?, O. N. Godisov, S. V. Fedichev, V. Yu. Baranov, A. P. Dyad’kin, and E. A. Ryabov, “Technological complex for laser separation of the isotopes of carbon,” Ros. Khim. Zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleeva) 45, No. 5–6, 89 (2001).

Zondy, J.-J.

L. Isaenko, P. Krinitsin, V. Vedenyapin, A. Yelisseyev, A. Merkulov, J.-J. Zondy, and V. Petrov, “LiGaTe2: a new highly nonlinear chalcopyrite optical crystal for the mid-IR,” Cryst. Growth Design 5, 1325 (2005).
[CrossRef]

Zuev, V. V.

J. H. Churnside, J. J. Wilson, Yu. M. Andreev, A. I. Gribenyukov, S. F. Shubin, S. I. Dolgii, and V. V. Zuev, “Frequency conversion of a CO2 laser with ZnGeP2,” in NOAA Technical Memorandum ERL WPL-224 (Boulder, Colo., Springfield, Va., USA, 1992), pp. 1–18.

Appl. Phys. B (1)

R. C. Y. Auyeung, D. M. Zielke, and B. J. Feldman, “Multiple harmonic conversion of pulsed CO2 laser radiation in Tl3 AsSe3,” Appl. Phys. B 48, 293 (1989).
[CrossRef]

Appl. Phys. Lett. (2)

N. Menyuk, G. W. Iseler, and A. Mooradian, “High-efficiency high-average-power second-harmonic generation with CdGeAs2,” Appl. Phys. Lett. 29, 422 (1976).
[CrossRef]

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, and J. van der Laan, “Efficient second-harmonic generation of 10-µm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786 (1985).
[CrossRef]

Cryst. Growth Design (1)

L. Isaenko, P. Krinitsin, V. Vedenyapin, A. Yelisseyev, A. Merkulov, J.-J. Zondy, and V. Petrov, “LiGaTe2: a new highly nonlinear chalcopyrite optical crystal for the mid-IR,” Cryst. Growth Design 5, 1325 (2005).
[CrossRef]

Izv. Akad. Nauk SSSR, Ser. Fiz. (1)

D. A. Goryachkin, V. M. Irtuganov, V. P. Kalinin, Yu. T. Mazurenko, and Yu. A. Rubinov, “Atmospheric and superatmospheric-pressure CO2 lasers with a self-maintained discharge,” Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1877 (1982).

Kristallografiya (1)

G. A. Verozubova and A. I. Gribenyukov, “The growth of ZnGeP2 crystals from the melt,” Kristallografiya 53, 175 (2008). [Crystallogr. Rep. 53, 158 (2008)].

Kvant. Elektron. (Moscow) (3)

V. V. Apollonov, N. Akhunov, S. I. Derzhavin, I. K. Kononov, A. A. Sirotin, K. N. Firsov, and V. A. Yamshchikov, “A CO2 laser with tunable pulse width of the radiation,” Kvant. Elektron. (Moscow) 10, 1929 (1983). [Sov. J. Quantum Electron. 13, 1284 (1983)].

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevski?, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of the radiation of a CO2 laser in GaSe,” Kvant. Elektron. (Moscow) 16, 757 (1989). [Sov. J. Quantum Electron. 19, 494 (1989)].

D. N. Nikogosyan, A. P. Sukhorukov, and M. I. Golove?, “Saturation of second-harmonic generation of laser radiation on carbon dioxide with a transverse discharge,” Kvant. Elektron. (Moscow) 2, 609 (1975). [Sov. J. Quantum Electron. 5, 344 (1975)].

Opt. Atm. Okeana (1)

A. I. Gribenyukov, “Nonlinear-optical ZnGeP2 crystals: retrospective analysis of the technological studies,” Opt. Atm. Okeana 15, 71 (2002).

Opt. Commun. (1)

P. D. Mason, D. J. Jackson, and E. K. Gorton, “CO2 frequency doubling in ZnGeP2,” Opt. Commun. 110, No. 8, 163 (1994).
[CrossRef]

Opt. Express (1)

Opt. Zh. (1)

V. A. Gorobets, V. O. Petukhov, S. Ya. Tochitski?, and V. V. Churakov, “Studies of nonlinear-optical characteristics of IR crystals for frequency conversion of TEA CO2 laser radiation,” Opt. Zh. 66, No. 1, 62 (1999). [J. Opt. Technol. 66, 53 (1999)].

Ros. Khim. Zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleeva) (1)

G. A. Baranov, A. V. Astakhov, A. K. Zinchenko, A. A. Kuchinski?, Yu. I. Shevchenko, E. N. Sokolov, A. K. Kalitievski?, O. N. Godisov, S. V. Fedichev, V. Yu. Baranov, A. P. Dyad’kin, and E. A. Ryabov, “Technological complex for laser separation of the isotopes of carbon,” Ros. Khim. Zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleeva) 45, No. 5–6, 89 (2001).

Other (3)

“Datasheet Zinc Germanium Phosphide,” www.inrad.com.

A. G. Kalintsev, N. A. Kalintseva, V. A. Serebryakov, and A. V. Kopyl’tsov, “Mathematical modelling of multistage parametric frequency converters,” in Abstracts of Reports of the Fourteenth International Conference on Laser Optics, St. Petersburg, 2010, WeR1 p. 45.

J. H. Churnside, J. J. Wilson, Yu. M. Andreev, A. I. Gribenyukov, S. F. Shubin, S. I. Dolgii, and V. V. Zuev, “Frequency conversion of a CO2 laser with ZnGeP2,” in NOAA Technical Memorandum ERL WPL-224 (Boulder, Colo., Springfield, Va., USA, 1992), pp. 1–18.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.