Abstract

Narrowband UV and VUV excimer radiation can be generated in a variety of nonequilibrium gas discharges: dielectric barrier discharges, microhollow cathode discharges, arrays of microplasmas, corona discharges. Excimer lamps (excilamps) are now available for a large number of wavelengths and in various geometrical shapes. The availability of nearly monochromatic photon fluxes ranging in energy up to 15 eV resulted in a number of innovative photo-induced processes in photophysics, photochemistry and photobiology. This report focuses on progress made in the last decade.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kogelschatz, “Silent-discharge driven excimer UV sources and their applications,” Appl. Surf. Sci. 54, 410–423 (1992).
  2. I. W. Boyd, J.-Y. Zhang, and U. Kogelschatz, “Development and applications of excimer UV lamps,” in Photo-Excited Processes, Diagnostics and Applications (PEPDA), A. Peled, ed. (Kluwer Academic Publishers, Dordrecht, 2003), pp. 161–199.
  3. M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, and M. V. Erofeev, “Excilamps: efficient sources of spontaneous UV and VUV radiation,” Phys. Usp. 46, No. 2, 193–209 (2003).
  4. U. Kogelschatz, “Dielectric-barrier discharges: their history, discharge physics and industrial applications,” Plasma Chem. Plasma Process. 23, No. 1, 1–46 (2003).
  5. U. Kogelschatz, “Excimer lamps: history, discharge physics, and industrial applications,” Proc. SPIE. 5483, 272–286 (2004).
  6. M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).
  7. T. Oppenländer, “Mercury-free sources of VUV/UV radiation: application of modern excimer lamps (excilamps) for water and air treatment,” J. Environ. Eng. Sci. 6, No. 3, 253–264 (2007).
  8. A. M. Boichenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, The Ultraviolet Excilamps: Physics, Technology and Applications (Tomsk: STT Publishing, 2011), p. 510 (in Russian), ISBN: 978-5-93629-433-4.
  9. S. Peng, J. D. Ametepe, and D. M. Manos, “Analysis and kinetic model of a high-pressure KrI excimer emission in a novel capacitively coupled rf lamp,” Appl. Phys. B. 83, No. 4, 643–650 (2006).
  10. S. Beleznai, P. Richter, and L. Balázs, “New modulated pulsed driving signal for efficient excitation of DBD discharges,” Hakone XI 2, 302–306 (2008). Proc.
  11. J. D. Ametepe, J. Diggs, D. M. Manos, and M. J. Kelley, “Characterization and modeling of a microwave driven xenon excimer lamp,” J. Appl. Phys. 85, No. 11, 7505–7510 (1999).
  12. M. Kitamura, K. Mitsuka, and M. A. Sato, “Practical high-power excimer lamp excited by a microwave discharge,” Appl. Surf. Sci. 79–80, 507–513 (2004).
  13. E. A. Sosnin, A. A. Pikulev, and V. F. Tarasenko, “Optical characteristics of cylindrical exciplex and excimer lamps excited by microwave radiation,” Tech. Phys. 56, No. 4, 526–530 (2011).
  14. J. Yan, A. El-Dakrouri, M. Laroussi, and M. C. Gupta, “121.6 nm radiation source for advanced lithography,” J. Vac. Sci. Technol. B 20, No. 6, 2574–2577 (2002).
  15. A. El-Dakrouri, J. Yan, M. Laroussi, M. C. Gupta, and Y. Badr, “VUV emission from a novel DBD-based radiation source,” J. Phys. D: Appl. Phys. 35, No. 21, L109–L114 (2002).
  16. E. A. Sosnin, M. V. Erofeev, V. F. Tarasenko, and D. V. Shitz, “Capacitive discharge excilamps,” Instrum. Exp. Tech. 45, No. 6, 838–839 (2002).
  17. M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).
  18. A. El-Habachi and K. H. Schoenbach, “Generation of intense excimer radiation from high-pressure hollow cathode discharges,” Appl. Phys. Lett. 73, No. 7, 885–887 (1988).
  19. A. El-Habachi and K. H. Schoenbach, “Emission of excimer radiation from direct current, high pressure hollow cathode discharges,” Appl. Phys. Lett. 72, No. 1, 22–24 (1988).
  20. P. Kurunczi, J. Lopez, H. Shah, and K. Becker, “Excimer formation in high-pressure microhollow cathode discharge plasmas in helium initiated by low-energy electron collisions,” Int. J. Mass Spectrom. 205, No. 1–3, 277–283 (2005).
  21. M. Moselhy, W. Shi, R. H. Stark, and K. H. Schoenbach, “(Xenon) Excimer emission from pulsed microhollow cathode discharges,” Appl. Phys. Lett. 79, No. 9, 1240–1242 (2001).
  22. J. P. Boeuf, L. C. Pitchford, and K. H. Schoenbach, “Predicted properties of microhollow cathode discharges in xenon,” Appl. Phys. Lett. 86, No. 7, 071501 (2005).
  23. R. M. Sankaran, K. P. Giapis, M. Moselhy, and K. H. Schoenbach, “Argon excimer emission from high-pressure microdischarges in metal capillaries,” Appl. Phys. Lett. 83, No. 23, 4728–4730 (2003).
  24. W. Zhu, N. Takano, K. H. Schoenbach, D. Guru, J. McLaren, J. Heberlein, R. May, and J. R. Cooper, “Direct current planar excimer source,” J. Phys. D: Appl. Phys. 40, No. 13, 3896–3906 (2007).
  25. K. H. Becker, K. Schoenbach, and J. G. Eden, “Microplasmas and applications,” J. Phys. D: Appl. Phys. 39, No. 3, R55–R70 (2006).
  26. K. H. Schoenbach and W. Zhu, “High-pressure microdischarges-sources of ultraviolet radiation,” IEEE J. Quantum Electron. (2012). in print.
  27. J. G. Eden and S.-J. Park, “Microcavity plasma devices and arrays: a new realm of plasma physics and photonic applications,” Plasma Phys. Controlled Fusion 47, No. 12B, B83–B92 (2005).
  28. S.-J. Park, K.-F. Chen, N. P. Ostrom, and J. G. Eden, “40?000 pixel arrays of ac-excited silicon microcavity plasma devices,” Appl. Phys. Lett. 86, No. 11, 111501 (2005).
  29. M. Salvermoser and D. E. Murnick, “Efficient, stable, corona discharge 172 nm xenon excimer light source,” J. Appl. Phys. 94, No. 6, 3722–3731 (2003).
  30. M. Salvermoser and D. E. Murnick, “High-efficiency, high-power, stable 172 nm xenon excimer light source,” Appl. Phys. Lett. 83, No. 10, 1932–1934 (2003).
  31. J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, “Vacuum ultraviolet rare gas excimer light source,” Rev. Sci. Instrum. 68, No. 3, 1360–1364 (1997).
  32. J. Wieser, A. Ulrich, M. Salvermoser, H. Shaw, D. E. Murnick, and H. Dahi, “Light sources using energy transfer from excimer to line radiation,” Proc. SPIE 3403, 314–320 (1998).
  33. A. V. Fedenev, A. Morozov, R. Krücken, S. Schoop, J. Wieser, and A. Ulrich, “Applications of a broadband electron-beam pumped XUV radiation source,” J. Phys. D: Appl. Phys. 37, No. 11, 1586–1591 (2004).
  34. A. Morozov, T. Heindl, R. Krücken, A. Ulrich, and J. Wieser, “Spatial distribution of fluorescent light emitted from neon and nitrogen excited by low energy electron beams,” J. Appl. Phys. 100, No. 9, 093305 (2006).
  35. A. Morozov, T. Heindl, R. Krücken, A. Ulrich, and J. Wieser, “Conversion efficiencies of electron beam energy to vacuum ultraviolet light for Ne, Ar, Kr, and Xe excited with continuous electron beams,” J. Appl. Phys. 103, No. 10, 103301 (2008).
  36. A. Ulrich, T. Heindl, R. Krücken, A. Morozov, C. Skrobol, and J. Wieser, “Electron beam induced light emission,” Eur. Phys. J. Appl. Phys. 47, No. 2, 22815–228l8 (2009).
  37. http://www.coherent.com/Downloads/SD_EL2-03_tui-bavpho_k1_2.pdf.
  38. S. Kubodera, M. Kitahara, J. Kawanaka, W. Sasaki, and K. Kurosawa, “A vacuum ultraviolet flash lamp with extremely broadened emission spectra,” Appl. Phys. Lett. 69, No. 4, 452–454 (1996).
  39. J. Kawanaka, T. Shirai, S. Kubodera, and W. Sasaki, “1.5 kW high-peak-power vacuum ultraviolet flash lamp using a pulsed silent discharge of krypton gas,” Appl. Phys. Lett. 79, No. 23, 3752–3754 (2001).
  40. R. J. Carman, R. P. Mildren, B. K. Ward, and D. M. Kane, “High-pressure (>1 bar) dielectric barrier discharge lamps generating short pulses of high-peak power vacuum ultraviolet radiation,” J. Phys. D: Appl. Phys. 37, No. 17, 2399–2407 (2004).
  41. V. Tarasenko, M. Erofeev, M. Lomaev, D. Rybka, A. Panchenko, E. Sosnin, V. Skakun, and D. Schitz, “UV and VUV excilamps with high peak power,” J. Light Visual Environ. 35, No. 3, 227–233 (2011).
  42. E. H. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, D. V. Rybka, M. A. Shulepov, and V. F. Tarasenko, “Runaway-electron-preionized diffuse discharge at atmospheric pressure and its application,” J. Phys. D: Appl. Phys. 42, No. 18, 185201 (2009).
  43. R. J. Carman, B. K. Ward, and D. M. Kane, “Enhanced performance of an EUV light source (?=84nm) using short-pulse excitation of a windowless dielectric barrier discharge in neon,” J. Phys. D: Appl. Phys. 43, No. 2, 025205 (2010).
  44. M. V. Erofeev and V. F. Tarasenko, “XeCl-, KrCl-, XeBr- and KrBr-excilamps of the barrier discharge with the nanosecond pulse duration of radiation,” J. Phys. D: Appl. Phys. 39, No. 16, 3609–3614 (2006).
  45. S. M. Avdeev, I. D. Kostyrya, E. A. Sosnin, and V. F. Tarasenko, “Generation of nanosecond pulses in a barrier-discharge in XeBr excimer lamp,” Tech. Phys. 51, No. 7, 878–881 (2006).
  46. R. Bussiahn, A. V. Pipa, and E. Kindel, “A miniaturized XeCl dielectric barrier discharge as a source of short lived, fast decaying UV radiation,” Contrib. Plasma Phys. 50, No. 2, 182–192 (2010).
  47. V. Pipa and R. Bussiahn, “Optimization of a dielectric barrier discharge for pulsed UV emission of XeCl at 308 nm,” Contrib. Plasma Phys. 51, No. 9, 850–862 (2011).
  48. H. Esrom and U. Kogelschatz, “Metal deposition with a windowless VUV excimer source,” Appl. Surf. Sci. 54, 440–444 (1992).
  49. M. Lenk and R. Mehnert, “Design and characteristics of a windowless argon excimer source,” in Proc. RadTech, Europe, Basle, 2001, pp. 153–158.
  50. C. Elsner, M. Lenk, L. Prager, and R. Mehnert, “Windowless argon excimer source for surface modification,” Appl. Surf. Sci. 252, No. 10, 3616–3624 (2006).
  51. M. I. Lomaev, V. S. Skakun, V. F. Tarasenko, D. V. Shitts, and A. A. Lisenko, “A windowless VUV excilamp,” Tech. Phys. Lett. 32, No. 7, 590–592 (2006).
  52. A. Sobottka, L. Drossler, M. Lenk, L. Prager, and R. Buchmeiser, “An open Argon dielectric barrier discharge VUV- source,” Plasma Processes Polym. 7, No. 8, 650–656 (2010).
  53. R. J. Carman and R. P. Mildren, “Computer modelling of a short-pulse excited dielectric barrier discharge xenon excimer lamp (??172nm),” J. Phys. D: Appl. Phys. 36, No. 1, 19–33 (2003).
  54. E. Bogdanov, A. A. Kudryavtsev, R. R. Arslanbekov, and V. I. Kolobov, “Simulation of pulsed dielectric barrier discharge xenon excimer lamp,” J. Phys. D: Appl. Phys. 37, No. 21, 2987–2995 (2004).
  55. E. E. Bogdanov, A. A. Kudryavtsev, and R. R. Arslanbekov, “2D simulations of short-pulsed dielectric barrier discharge Xenon excimer lamp,” Contrib. Plasma Phys. 46, No. 10, 807–816 (2006).
  56. D. Lo, C. Shangguan, I. V. Kochetov, and A. P. Napartovich, “Experimental and numerical studies on Xe2? VUV emission in fast electric discharge afterglow,” J. Phys. D: Appl. Phys. 38, No. 18, 3430–3437 (2005).
  57. S. V. Avtaeva and E. B. Kulumbaev, “Effect of the scheme of plasmachemical processes on the calculated characteristics of a barrier discharge in Xenon,” Plasma Phys. Rep. 34, No. 6, 452–470 (2008).
  58. S. V. Avtaeva and A. V. Skornyakov, “Effect of nonlocal electron kinetics on the characteristics of a dielectric barrier discharge in xenon,” Plasma Phys. Rep. 35, No. 7, 593–602 (2009).
  59. S. V. Avtaeva and A. V. Skornyakov, “Calculation of the characteristics of xenon excilamps using a one-dimensional hydrodynamic model,” Russ. Phys. J. 53, No. 3, 257–262 (2010).
  60. S. Beleznai, G. Mihajlik, A. Agod, I. Maros, and R. Juhasz, “High-efficiency dielectric barrier Xe discharge lamp: theoretical and experimental investigations,” J. Phys. D: Appl. Phys. 39, No. 17, 3777–3787 (2006).
  61. S. Beleznai, G. Mihajlik, I. Maros, L. Balazs, and P. Richter, “High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp,” J. Phys. D: Appl. Phys. 43, No. 3, 015203 (2010).
  62. A. Belasri, K. Khodja, S. Bendella, and Z. Harrache, “One-dimensional modelling of DBDs in Ne-Xe mixtures for excimer lamps,” J. Phys. D: Appl. Phys. 43, No. 44, 445202 (2010).
  63. A. Belasri and Z. Harrache, “Electrical and kinetical aspects of homogeneous dielectric-barrier discharge in xenon for excimer lamps,” Phys. Plasmas 17, No. 12, 123501 (2010).
  64. S. Bendella and A. Belasri, “Xe-Ne-HCl excimer lamp excited by a phototriggered discharge,” Plasma Devices Oper. 15, No. 2, 77–85 (2007).
  65. A. Belasri, S. Bendella, and T. Baba-Hamed, “Study of the first pulse of Ne-Xe-HCl dielectric barrier discharge for the excimer lamp,” Phys. Plasmas 15, No. 5, 053502 (2008).
  66. A. Belasri and Z. Harrache, “Electrical approach of homogenous high pressure Ne/Xe/HCl dielectric barrier discharge for XeCl (308 nm) lamp,” Plasma Chem. Plasma Process. 31, No. 5, 787–798 (2010).
  67. S. V. Avtaeva, B. Saghi, and B. Rahmani, “One-dimensional fluid model and characteristics of the dielectric barrier discharge in 0.99Xe-0.O1 Cl2 mixture,” IEEE Trans. Plasma Sci. 39, No. 9, 1814–1822 (2011).
  68. M. Guivan and A. Guivan, “Characterization of a white-colour DBD-driven Cadmium Bromide exciplex lamp,” Plasma Sources Sci. Technol. 19, No. 5, 055014 (2010).
  69. M. M. Guivan, A. A. Malinina, and A. Brablec, “Experimental and theoretical characterization of a multi-wavelength DBD-driven exciplex lamp operated with mercury bromide/rare gas mixtures,” J. Phys. D: Appl. Phys. 44, No. 22, 224012 (2011).
  70. P. Kurunczi, H. Shah, and K. Becker, “Hydrogen Lyman-? and Lyman-? emissions from high-pressure microhollow cathode discharges in Ne-H2 mixtures,” J. Phys. B: At. Mol. Opt. Phys. 32, No. 22, L651–L658 (1999).
  71. T. McCarthy, D. E. Murnick, M. Salvermoser, and A. Ulrich, “Non-thermal Doppler-broadened Lyman-? line shape in resonant dissociation of H2,” J. Phys. B: At. Mol. Opt. Phys. 38, No. 16, 3043–3054 (2005).
  72. A. Morozov, R. Krücken, A. Ulrich, J. Wieser, and T. McCarthy, “Energy-transfer processes in neon-hydrogen mixtures excited by electron beams,” J. Chem. Phys. 123, No. 23, 234311 (2005).
    [PubMed]
  73. A. V. Karelin and S. I. Yakovlenko, “Electron-beam pumping conversion into spontaneous emission at the Lyman-Alpha line (?=121.6nm) in Ne/H2 and He/H2 mixtures,” Laser Phys. 13, No. 12, 1455–1460 (2003).
  74. A. V. Karelin, “Far-UV sources pumped by an open discharge and electron beam,” Laser Phys. 14, No. 1, 15–22 (2004).
  75. J. Yan and M. C. Gupta, “High power 121.6 nm radiation source,” J. Vac. Sci. Technol. B 21, No. 6, 2839–2842 (2003).
  76. V. Liberman, M. Rothshield, P. G. Murphy, and S. T. Palmacci, “Prospects for photolithography at 121 nm,” J. Vac. Sci. Technol. B 20, No. 6, 2567–2573 (2002).
  77. J. Yan, “High power 121.6 nm radiation source for advanced lithography,” in Ph.D. Thesis, Norfolk, Va (Old Dominium University, 2005), 146 pages, AAT 3191393.
  78. M. Moselhy, R. H. Stark, K. H. Schoenbach, and U. Kogelschatz, “Resonant energy transfer from argon dimers to atomic oxygen in microhollow cathode discharges,” Appl. Phys. Lett. 78, No. 7, 880–882 (2001).
  79. G. A. Volkova and G. N. Gerasimov, “Amplification of ?=147nm radiation from a barrier discharge in a mixture of krypton with xenon,” Quantum Electron. 27, No. 3, 213–216 (1997).
  80. G. N. Gerasimov, “Optical spectra of binary rare-gas mixtures,” Phys. Usp. 47, No. 2, 149–168 (2004).
  81. G. N. Gerasimov, B. E. Krylov, R. Hallin, and A. Arnesen, “Parameters of VUV radiation from a dc capillary discharge in a mixture of krypton and xenon,” Opt. Specrosc. 100, No. 6, 825–829 (2006).
  82. B. Krylov, A. Mozorov, G. Gerasimov, A. Arnesen, R. Hallin, and F. Heijkenskjöld, “Channels of energy transfer to atomic nitrogen in excited argon–nitrogen mixtures,” J. Phys. B: At. Mol. Opt. Phys. 35, No. 20, 4257–4270 (2002).
  83. A. Morozov, R. Krücken, T. Ottenthal, A. Ulrich, and J. Wieser, “Ultraviolet emission from argon water-vapor mixtures excited with low-energy electron beams,” Appl. Phys. Lett. 86, No. 1, 011502 (2005).
  84. http://www.uvsns.com.
  85. H. J. Kuhn, S. E. Braslavsky, and R. Schmidt, “Chemical actinometry,” Pure Appl. Chem. 76, No. 12, 2105–2146 (2004).
  86. M. G. Gonzalez, E. Oliveros, M. Wörner, and A. M. Braun, “Vacuum-ultraviolet photolysis of aqueous reaction systems,” J. Photochem. Photobiol. C: Photochem. Rev. 5, No. 3, 225–246 (2004).
  87. M. J. Salvermoser, U. Kogelschatz, and D. E. Murnick, “Influence of humidity on photochemical ozone generation with 172 nm xenon excimer lamps,” Eur. Phys. J. Appl. Phys. 47, No. 2, 22812 (2009).
  88. Z. Falkenstein, “Surface cleaning mechanisms utilizing VUV radiation in oxygen-containing gaseous environments,” Proc. SPIE 4440, 246–255 (2001).
  89. D. M. Kane, D. B. Hirschausen, B. K. Ward, R. J. Carman, and R. P. Mildren, “Pulsed VUV sources and their application to surface cleaning of optical materials,” Proc. SPIE 5399, 100–106 (2004).
  90. D. M. Kane, D. Hirschausen, B. K. Ward, R. P. Mildren, and R. J. Carman, “Surface cleaning of optical materials using novel VUV sources,” in Laser Cleaning II, D. M. Kane, ed. (World Scientific Publishing Co., Singapore, 2006), pp. 243–256. Chapter 13.
  91. T. M. Bloomstein, V. Liberman, M. Rothschild, D. E. Hardy, and N. N. Efremow, “UV cleaning of contaminated 157-nm reticles,” Proc. SPIE 4346, 669–675 (2001).
  92. T. Oppenländer, “Excilamp photochemistry,” in CRC Handbook of Organic Photochemistry and Photobiology, 3rd. V. 1. 7th ed., A. G. Griesbeck, M. Oelgemöller, and F. Ghetti, eds. (CRC Press, Boca Raton, 2012).
  93. I. I. Liaw and I. W. Boyd, “The development and application of UV excimer lamps in nanofabrication,” in Functionalized Nanoscale Materials, Devices and Systems, A. Vaseashta and I. N. Mihailescu, eds. (Springer, 2008), pp. 61–76.
  94. R. Schubert, T. Scherzer, M. Hinkefuss, B. Marquardt, J. Vogel, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 1. Real-time methods for the determination of the micro-folding kinetics,” Surf. Coat. Technol. 203, No. 13, 1844–1849 (2009).
  95. R. Schubert, F. Frost, M. Hinhefuß, R. Konieczny, B. Marquardt, R. Mehnert, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 2. Characterization of surface properties,” Surf. Coat. Technol. 203, No. 24, 3734–3740 (2009).
  96. F. Bauer, R. Flyunt, K. Czihal, H. Langguth, R. Mehnert, R. Schubert, and M. R. Buchmeiser, “UV curing and matting of acrylate coatings reinforced by nano-silica and microcorundum particles,” Prog. Org. Coat. 60, No. 2, 121–126 (2007).
  97. L. Prager, A. Dierdorf, H. Liebe, S. Naumov, S. Stojanovi?, R. Heller, L. Wennrich, and M. R. Buchmeiser, “Conversion of perhydropolysilazane into a SiOx network triggered by vacuum ultraviolet irradiation: Access to flexible, transparent barrier coatings,” Chem. Eur. J. 13, No. 30, 8522–8529 (2007).
  98. L. Prager, L. Wennrich, R. Heller, W. Knolle, S. Naumov, A. Prager, D. Decker, H. Liebe, and M. R. Buchmeiser, “Vacuum-UV irradiation-based formation of Methyl-Si-O-Si networks from Poly(1,1-Dimethylsilazane-co-1-methylsilazane),” Chem. Eur. J. 15, No. 3, 675–683 (2009).
  99. J. J. Yu and I. W. Boyd, “Low temperature Si and SiGe oxidation through dielectric barrier discharges,” Thin Solid Films 453–454, 63–66 (2004).
  100. J. J. Yu and I. W. Boyd, “Direct nitridation of high-k metal oxide thin films using argon excimer sources,” Electron. Lett. 41, No. 22, 1210–1211 (2005).
  101. T. Gumpenberger, J. Heitz, D. Bäuerle, H. Kahr, I. Graz, C. Romanin, V. Svorcik, and F. Leisch, “Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene,” Biomaterials 24, No. 28, 5139–5144 (2003).
    [PubMed]
  102. M. Olbrich, G. Punshon, I. Frischauf, H. Salacinski, E. Rebollar, C. Romanin, A. M. Seifalian, and J. Heitz, “UV surface modification of a new nanocomposite polymer to improve cyctocompatibility,” J. Biomater. Sci., Polymer Ed. 18, No. 4, 453–454 (2007).
  103. C. Elsner, S. Naumov, J. Zajadacz, and M. R. Buchmeiser, “172 nm excimer VUV-triggered photodegradation and micropatterning of aminosilane films,” Thin Solid Films 517, No. 24, 6772–6776 (2009).
  104. T. Oppenländer, Photochemical Purification of Water and Air, Advanced Oxidation Processes (AOPs): Principles, Reaction Mechanisms, Reactor Concepts (Wiley-VCH, Weinheim (Germany), 2003).
  105. E. A. Sosnin, I. V. Sokolova, and V. F. Tarasenko, “Development and applications of novel UV and VUV excilamps in photochemistry,” in Photochemistry Research Progress, A. Sanchez and S. J. Gutierrez, eds. (Nova Science Publishers, Inc., Hauppauge, USA, 2008), pp. 225–269.
  106. A. Maisels, F. Jordan, and H. Fissan, “On the effect of charge recombination on the aerosol charge distribution in photocharging systems,” J. Aerosol Sci. 34, No. 1, 117–132 (2003).
  107. J. Jiang, C. J. Hogan Jr., D.-R. Chen, and R. Biswas, “Aerosol charging and capture in the nanoparticle size range (6–15 nm) by direct photoionization and diffusion mechanisms,” J. Appl. Phys. 102, No. 3, 034904 (2007).
  108. P. Intra and N. Tippayawong, “An overview of unipolar charger developments for nanoparticle charging,” Aerosol Air Qual. Res. 11, 187–209 (2011).
  109. http://www.ecochem.biz/PAH/PAS2000.htm.
  110. J. S. Vicente, J. L. Gejo, S. Rothenbacher, S. Sarojiniamma, E. Gogritchiani, M. Wörner, G. Kasper, and A. M. Braun, “Oxidation of polystyrene aerosols by VUV-photolysis and/or ozone,” Photochem. Photobiol. Sci. 8, No. 7, 944–952 (2009).
    [PubMed]
  111. B. Zhang, Y.-C. Liao, S. L. Girshick, and J. T. Roberts, “Growth of coatings on nanoparticles by photoinduced chemical vapor deposition,” J. Nanopart. Res. 10, No. 1, 173–178 (2008).
  112. A. M. Boies, J. T. Roberts, S. L. Girshick, B. Zhang, T. Nakamura, and A. Mochizuki, “SiO2 coating of silver nano- particles by photoinduced chemical vapor deposition,” Nanotechnology 20, No. 29, 295604 (2009).
    [PubMed]
  113. F. Mühlberger, J. Wieser, A. Ulrich, and R. Zimmermann, “Single photon ionization (SPI) via incoherent VUV-excimer light: Robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis,” Anal. Chem. A 74, No. 15, 3790–3801 (2002).
  114. F. Mühlberger, J. Wieser, A. Morozov, A. Ulrich, and R. Zimmermann, “Single-photon ionization quadrupole mass spectrometry with an electron beam pumped excimer light source,” Anal Chem. 77, No. 7, 2218–2226 (2005).
    [PubMed]
  115. M. S. Eschner and R. Zimmermann, “Determination of photoionization cross-sections of different organic molecules using gas chromatography coupled to single-photon ionization (SPI) time-of-flight mass spectrometry (TOF-MS) with an electron-beam-pumped rare gas excimer light source (EBEL): influence of molecular structure and analytical implications,” Appl. Spectrosc. 65, No. 7, 806–816 (2011).
    [PubMed]
  116. F. Mühlberger, M. Saraji-Bozorgzad, M. Gonin, K. Fuhrer, and R. Zimmermann, “Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source,” Anal. Chem. 79, No. 21, 8118–8124 (2007).
    [PubMed]
  117. P. Campolmi, L. Mavilia, T. M. Lotti, R. Rossi, B. Brazzini, J. Hercogova, and G. Cappugi, “308 nm monochromatic excimer light for the treatment of palmoplantar psoriasis,” Int. J. Immunopathol. Pharmacol. 13, 11–13 (2002).
  118. K. Köllner, M. B. Wimmershoff, C. Hintz, M. Landthaler, and U. Hohenleutner, “Comparison of the 308-nm excimer laser and a 308-nm excimer lamp with 311-nm narrowband ultraviolet B in the treatment of psoriasis,” British J. Dermatol. 152, No. 4, 750–754 (2005).
  119. V. S. Dmitruck, E. A. Sosnin, and I. A. Obgol’tz, “The first attempt of XeCl-excilamp application in complex psoriasis curing,” Proc. SPIE 6263, 316–321 (2006).
  120. L. Mavilia, M. Mori, R. Rossi, P. Campolmi, A. Puglisi Guerra, and T. Lotti, “308 nm monochromatic excimer light in dermatology: personal experience and review of the literature,” G. Ital. Dermatol. Venereol. 143, No. 5, 329–337 (2008).
    [PubMed]
  121. A. Pacifico and G. Leone, “Photo(chemo)therapy for vitiligo,” Photodermatol. Photoimmunol. Photomed. 27, No. 5, 261–277 (2011).
  122. V. F. Tarasenko, E. A. Sosnin, O. S. Zhdanova, and E. P. Krasnozhenov, “Applications of excilamps in microbiological and medical investigations,” in Plasma for Bio-Decontamination, Medicine and Food Security, Z. Machala, K. Hensel, and Yu. Akishev, eds. (Springer, 2012), pp. 251–263.

2012 (1)

K. H. Schoenbach and W. Zhu, “High-pressure microdischarges-sources of ultraviolet radiation,” IEEE J. Quantum Electron. (2012). in print.

2011 (8)

E. A. Sosnin, A. A. Pikulev, and V. F. Tarasenko, “Optical characteristics of cylindrical exciplex and excimer lamps excited by microwave radiation,” Tech. Phys. 56, No. 4, 526–530 (2011).

V. Tarasenko, M. Erofeev, M. Lomaev, D. Rybka, A. Panchenko, E. Sosnin, V. Skakun, and D. Schitz, “UV and VUV excilamps with high peak power,” J. Light Visual Environ. 35, No. 3, 227–233 (2011).

V. Pipa and R. Bussiahn, “Optimization of a dielectric barrier discharge for pulsed UV emission of XeCl at 308 nm,” Contrib. Plasma Phys. 51, No. 9, 850–862 (2011).

S. V. Avtaeva, B. Saghi, and B. Rahmani, “One-dimensional fluid model and characteristics of the dielectric barrier discharge in 0.99Xe-0.O1 Cl2 mixture,” IEEE Trans. Plasma Sci. 39, No. 9, 1814–1822 (2011).

M. M. Guivan, A. A. Malinina, and A. Brablec, “Experimental and theoretical characterization of a multi-wavelength DBD-driven exciplex lamp operated with mercury bromide/rare gas mixtures,” J. Phys. D: Appl. Phys. 44, No. 22, 224012 (2011).

P. Intra and N. Tippayawong, “An overview of unipolar charger developments for nanoparticle charging,” Aerosol Air Qual. Res. 11, 187–209 (2011).

M. S. Eschner and R. Zimmermann, “Determination of photoionization cross-sections of different organic molecules using gas chromatography coupled to single-photon ionization (SPI) time-of-flight mass spectrometry (TOF-MS) with an electron-beam-pumped rare gas excimer light source (EBEL): influence of molecular structure and analytical implications,” Appl. Spectrosc. 65, No. 7, 806–816 (2011).
[PubMed]

A. Pacifico and G. Leone, “Photo(chemo)therapy for vitiligo,” Photodermatol. Photoimmunol. Photomed. 27, No. 5, 261–277 (2011).

2010 (9)

M. Guivan and A. Guivan, “Characterization of a white-colour DBD-driven Cadmium Bromide exciplex lamp,” Plasma Sources Sci. Technol. 19, No. 5, 055014 (2010).

A. Belasri and Z. Harrache, “Electrical approach of homogenous high pressure Ne/Xe/HCl dielectric barrier discharge for XeCl (308 nm) lamp,” Plasma Chem. Plasma Process. 31, No. 5, 787–798 (2010).

S. V. Avtaeva and A. V. Skornyakov, “Calculation of the characteristics of xenon excilamps using a one-dimensional hydrodynamic model,” Russ. Phys. J. 53, No. 3, 257–262 (2010).

S. Beleznai, G. Mihajlik, I. Maros, L. Balazs, and P. Richter, “High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp,” J. Phys. D: Appl. Phys. 43, No. 3, 015203 (2010).

A. Belasri, K. Khodja, S. Bendella, and Z. Harrache, “One-dimensional modelling of DBDs in Ne-Xe mixtures for excimer lamps,” J. Phys. D: Appl. Phys. 43, No. 44, 445202 (2010).

A. Belasri and Z. Harrache, “Electrical and kinetical aspects of homogeneous dielectric-barrier discharge in xenon for excimer lamps,” Phys. Plasmas 17, No. 12, 123501 (2010).

R. J. Carman, B. K. Ward, and D. M. Kane, “Enhanced performance of an EUV light source (?=84nm) using short-pulse excitation of a windowless dielectric barrier discharge in neon,” J. Phys. D: Appl. Phys. 43, No. 2, 025205 (2010).

A. Sobottka, L. Drossler, M. Lenk, L. Prager, and R. Buchmeiser, “An open Argon dielectric barrier discharge VUV- source,” Plasma Processes Polym. 7, No. 8, 650–656 (2010).

R. Bussiahn, A. V. Pipa, and E. Kindel, “A miniaturized XeCl dielectric barrier discharge as a source of short lived, fast decaying UV radiation,” Contrib. Plasma Phys. 50, No. 2, 182–192 (2010).

2009 (10)

E. H. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, D. V. Rybka, M. A. Shulepov, and V. F. Tarasenko, “Runaway-electron-preionized diffuse discharge at atmospheric pressure and its application,” J. Phys. D: Appl. Phys. 42, No. 18, 185201 (2009).

S. V. Avtaeva and A. V. Skornyakov, “Effect of nonlocal electron kinetics on the characteristics of a dielectric barrier discharge in xenon,” Plasma Phys. Rep. 35, No. 7, 593–602 (2009).

A. Ulrich, T. Heindl, R. Krücken, A. Morozov, C. Skrobol, and J. Wieser, “Electron beam induced light emission,” Eur. Phys. J. Appl. Phys. 47, No. 2, 22815–228l8 (2009).

J. S. Vicente, J. L. Gejo, S. Rothenbacher, S. Sarojiniamma, E. Gogritchiani, M. Wörner, G. Kasper, and A. M. Braun, “Oxidation of polystyrene aerosols by VUV-photolysis and/or ozone,” Photochem. Photobiol. Sci. 8, No. 7, 944–952 (2009).
[PubMed]

A. M. Boies, J. T. Roberts, S. L. Girshick, B. Zhang, T. Nakamura, and A. Mochizuki, “SiO2 coating of silver nano- particles by photoinduced chemical vapor deposition,” Nanotechnology 20, No. 29, 295604 (2009).
[PubMed]

L. Prager, L. Wennrich, R. Heller, W. Knolle, S. Naumov, A. Prager, D. Decker, H. Liebe, and M. R. Buchmeiser, “Vacuum-UV irradiation-based formation of Methyl-Si-O-Si networks from Poly(1,1-Dimethylsilazane-co-1-methylsilazane),” Chem. Eur. J. 15, No. 3, 675–683 (2009).

C. Elsner, S. Naumov, J. Zajadacz, and M. R. Buchmeiser, “172 nm excimer VUV-triggered photodegradation and micropatterning of aminosilane films,” Thin Solid Films 517, No. 24, 6772–6776 (2009).

M. J. Salvermoser, U. Kogelschatz, and D. E. Murnick, “Influence of humidity on photochemical ozone generation with 172 nm xenon excimer lamps,” Eur. Phys. J. Appl. Phys. 47, No. 2, 22812 (2009).

R. Schubert, T. Scherzer, M. Hinkefuss, B. Marquardt, J. Vogel, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 1. Real-time methods for the determination of the micro-folding kinetics,” Surf. Coat. Technol. 203, No. 13, 1844–1849 (2009).

R. Schubert, F. Frost, M. Hinhefuß, R. Konieczny, B. Marquardt, R. Mehnert, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 2. Characterization of surface properties,” Surf. Coat. Technol. 203, No. 24, 3734–3740 (2009).

2008 (6)

B. Zhang, Y.-C. Liao, S. L. Girshick, and J. T. Roberts, “Growth of coatings on nanoparticles by photoinduced chemical vapor deposition,” J. Nanopart. Res. 10, No. 1, 173–178 (2008).

L. Mavilia, M. Mori, R. Rossi, P. Campolmi, A. Puglisi Guerra, and T. Lotti, “308 nm monochromatic excimer light in dermatology: personal experience and review of the literature,” G. Ital. Dermatol. Venereol. 143, No. 5, 329–337 (2008).
[PubMed]

A. Morozov, T. Heindl, R. Krücken, A. Ulrich, and J. Wieser, “Conversion efficiencies of electron beam energy to vacuum ultraviolet light for Ne, Ar, Kr, and Xe excited with continuous electron beams,” J. Appl. Phys. 103, No. 10, 103301 (2008).

S. Beleznai, P. Richter, and L. Balázs, “New modulated pulsed driving signal for efficient excitation of DBD discharges,” Hakone XI 2, 302–306 (2008). Proc.

S. V. Avtaeva and E. B. Kulumbaev, “Effect of the scheme of plasmachemical processes on the calculated characteristics of a barrier discharge in Xenon,” Plasma Phys. Rep. 34, No. 6, 452–470 (2008).

A. Belasri, S. Bendella, and T. Baba-Hamed, “Study of the first pulse of Ne-Xe-HCl dielectric barrier discharge for the excimer lamp,” Phys. Plasmas 15, No. 5, 053502 (2008).

2007 (8)

S. Bendella and A. Belasri, “Xe-Ne-HCl excimer lamp excited by a phototriggered discharge,” Plasma Devices Oper. 15, No. 2, 77–85 (2007).

T. Oppenländer, “Mercury-free sources of VUV/UV radiation: application of modern excimer lamps (excilamps) for water and air treatment,” J. Environ. Eng. Sci. 6, No. 3, 253–264 (2007).

W. Zhu, N. Takano, K. H. Schoenbach, D. Guru, J. McLaren, J. Heberlein, R. May, and J. R. Cooper, “Direct current planar excimer source,” J. Phys. D: Appl. Phys. 40, No. 13, 3896–3906 (2007).

F. Mühlberger, M. Saraji-Bozorgzad, M. Gonin, K. Fuhrer, and R. Zimmermann, “Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source,” Anal. Chem. 79, No. 21, 8118–8124 (2007).
[PubMed]

J. Jiang, C. J. Hogan Jr., D.-R. Chen, and R. Biswas, “Aerosol charging and capture in the nanoparticle size range (6–15 nm) by direct photoionization and diffusion mechanisms,” J. Appl. Phys. 102, No. 3, 034904 (2007).

M. Olbrich, G. Punshon, I. Frischauf, H. Salacinski, E. Rebollar, C. Romanin, A. M. Seifalian, and J. Heitz, “UV surface modification of a new nanocomposite polymer to improve cyctocompatibility,” J. Biomater. Sci., Polymer Ed. 18, No. 4, 453–454 (2007).

F. Bauer, R. Flyunt, K. Czihal, H. Langguth, R. Mehnert, R. Schubert, and M. R. Buchmeiser, “UV curing and matting of acrylate coatings reinforced by nano-silica and microcorundum particles,” Prog. Org. Coat. 60, No. 2, 121–126 (2007).

L. Prager, A. Dierdorf, H. Liebe, S. Naumov, S. Stojanovi?, R. Heller, L. Wennrich, and M. R. Buchmeiser, “Conversion of perhydropolysilazane into a SiOx network triggered by vacuum ultraviolet irradiation: Access to flexible, transparent barrier coatings,” Chem. Eur. J. 13, No. 30, 8522–8529 (2007).

2006 (13)

G. N. Gerasimov, B. E. Krylov, R. Hallin, and A. Arnesen, “Parameters of VUV radiation from a dc capillary discharge in a mixture of krypton and xenon,” Opt. Specrosc. 100, No. 6, 825–829 (2006).

V. S. Dmitruck, E. A. Sosnin, and I. A. Obgol’tz, “The first attempt of XeCl-excilamp application in complex psoriasis curing,” Proc. SPIE 6263, 316–321 (2006).

K. H. Becker, K. Schoenbach, and J. G. Eden, “Microplasmas and applications,” J. Phys. D: Appl. Phys. 39, No. 3, R55–R70 (2006).

A. Morozov, T. Heindl, R. Krücken, A. Ulrich, and J. Wieser, “Spatial distribution of fluorescent light emitted from neon and nitrogen excited by low energy electron beams,” J. Appl. Phys. 100, No. 9, 093305 (2006).

S. Peng, J. D. Ametepe, and D. M. Manos, “Analysis and kinetic model of a high-pressure KrI excimer emission in a novel capacitively coupled rf lamp,” Appl. Phys. B. 83, No. 4, 643–650 (2006).

M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).

M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).

S. Beleznai, G. Mihajlik, A. Agod, I. Maros, and R. Juhasz, “High-efficiency dielectric barrier Xe discharge lamp: theoretical and experimental investigations,” J. Phys. D: Appl. Phys. 39, No. 17, 3777–3787 (2006).

M. V. Erofeev and V. F. Tarasenko, “XeCl-, KrCl-, XeBr- and KrBr-excilamps of the barrier discharge with the nanosecond pulse duration of radiation,” J. Phys. D: Appl. Phys. 39, No. 16, 3609–3614 (2006).

S. M. Avdeev, I. D. Kostyrya, E. A. Sosnin, and V. F. Tarasenko, “Generation of nanosecond pulses in a barrier-discharge in XeBr excimer lamp,” Tech. Phys. 51, No. 7, 878–881 (2006).

E. E. Bogdanov, A. A. Kudryavtsev, and R. R. Arslanbekov, “2D simulations of short-pulsed dielectric barrier discharge Xenon excimer lamp,” Contrib. Plasma Phys. 46, No. 10, 807–816 (2006).

C. Elsner, M. Lenk, L. Prager, and R. Mehnert, “Windowless argon excimer source for surface modification,” Appl. Surf. Sci. 252, No. 10, 3616–3624 (2006).

M. I. Lomaev, V. S. Skakun, V. F. Tarasenko, D. V. Shitts, and A. A. Lisenko, “A windowless VUV excilamp,” Tech. Phys. Lett. 32, No. 7, 590–592 (2006).

2005 (11)

D. Lo, C. Shangguan, I. V. Kochetov, and A. P. Napartovich, “Experimental and numerical studies on Xe2? VUV emission in fast electric discharge afterglow,” J. Phys. D: Appl. Phys. 38, No. 18, 3430–3437 (2005).

T. McCarthy, D. E. Murnick, M. Salvermoser, and A. Ulrich, “Non-thermal Doppler-broadened Lyman-? line shape in resonant dissociation of H2,” J. Phys. B: At. Mol. Opt. Phys. 38, No. 16, 3043–3054 (2005).

A. Morozov, R. Krücken, A. Ulrich, J. Wieser, and T. McCarthy, “Energy-transfer processes in neon-hydrogen mixtures excited by electron beams,” J. Chem. Phys. 123, No. 23, 234311 (2005).
[PubMed]

J. G. Eden and S.-J. Park, “Microcavity plasma devices and arrays: a new realm of plasma physics and photonic applications,” Plasma Phys. Controlled Fusion 47, No. 12B, B83–B92 (2005).

S.-J. Park, K.-F. Chen, N. P. Ostrom, and J. G. Eden, “40?000 pixel arrays of ac-excited silicon microcavity plasma devices,” Appl. Phys. Lett. 86, No. 11, 111501 (2005).

P. Kurunczi, J. Lopez, H. Shah, and K. Becker, “Excimer formation in high-pressure microhollow cathode discharge plasmas in helium initiated by low-energy electron collisions,” Int. J. Mass Spectrom. 205, No. 1–3, 277–283 (2005).

J. P. Boeuf, L. C. Pitchford, and K. H. Schoenbach, “Predicted properties of microhollow cathode discharges in xenon,” Appl. Phys. Lett. 86, No. 7, 071501 (2005).

K. Köllner, M. B. Wimmershoff, C. Hintz, M. Landthaler, and U. Hohenleutner, “Comparison of the 308-nm excimer laser and a 308-nm excimer lamp with 311-nm narrowband ultraviolet B in the treatment of psoriasis,” British J. Dermatol. 152, No. 4, 750–754 (2005).

A. Morozov, R. Krücken, T. Ottenthal, A. Ulrich, and J. Wieser, “Ultraviolet emission from argon water-vapor mixtures excited with low-energy electron beams,” Appl. Phys. Lett. 86, No. 1, 011502 (2005).

J. J. Yu and I. W. Boyd, “Direct nitridation of high-k metal oxide thin films using argon excimer sources,” Electron. Lett. 41, No. 22, 1210–1211 (2005).

F. Mühlberger, J. Wieser, A. Morozov, A. Ulrich, and R. Zimmermann, “Single-photon ionization quadrupole mass spectrometry with an electron beam pumped excimer light source,” Anal Chem. 77, No. 7, 2218–2226 (2005).
[PubMed]

2004 (11)

J. J. Yu and I. W. Boyd, “Low temperature Si and SiGe oxidation through dielectric barrier discharges,” Thin Solid Films 453–454, 63–66 (2004).

G. N. Gerasimov, “Optical spectra of binary rare-gas mixtures,” Phys. Usp. 47, No. 2, 149–168 (2004).

H. J. Kuhn, S. E. Braslavsky, and R. Schmidt, “Chemical actinometry,” Pure Appl. Chem. 76, No. 12, 2105–2146 (2004).

M. G. Gonzalez, E. Oliveros, M. Wörner, and A. M. Braun, “Vacuum-ultraviolet photolysis of aqueous reaction systems,” J. Photochem. Photobiol. C: Photochem. Rev. 5, No. 3, 225–246 (2004).

A. V. Karelin, “Far-UV sources pumped by an open discharge and electron beam,” Laser Phys. 14, No. 1, 15–22 (2004).

D. M. Kane, D. B. Hirschausen, B. K. Ward, R. J. Carman, and R. P. Mildren, “Pulsed VUV sources and their application to surface cleaning of optical materials,” Proc. SPIE 5399, 100–106 (2004).

A. V. Fedenev, A. Morozov, R. Krücken, S. Schoop, J. Wieser, and A. Ulrich, “Applications of a broadband electron-beam pumped XUV radiation source,” J. Phys. D: Appl. Phys. 37, No. 11, 1586–1591 (2004).

M. Kitamura, K. Mitsuka, and M. A. Sato, “Practical high-power excimer lamp excited by a microwave discharge,” Appl. Surf. Sci. 79–80, 507–513 (2004).

U. Kogelschatz, “Excimer lamps: history, discharge physics, and industrial applications,” Proc. SPIE. 5483, 272–286 (2004).

E. Bogdanov, A. A. Kudryavtsev, R. R. Arslanbekov, and V. I. Kolobov, “Simulation of pulsed dielectric barrier discharge xenon excimer lamp,” J. Phys. D: Appl. Phys. 37, No. 21, 2987–2995 (2004).

R. J. Carman, R. P. Mildren, B. K. Ward, and D. M. Kane, “High-pressure (>1 bar) dielectric barrier discharge lamps generating short pulses of high-peak power vacuum ultraviolet radiation,” J. Phys. D: Appl. Phys. 37, No. 17, 2399–2407 (2004).

2003 (10)

R. J. Carman and R. P. Mildren, “Computer modelling of a short-pulse excited dielectric barrier discharge xenon excimer lamp (??172nm),” J. Phys. D: Appl. Phys. 36, No. 1, 19–33 (2003).

A. V. Karelin and S. I. Yakovlenko, “Electron-beam pumping conversion into spontaneous emission at the Lyman-Alpha line (?=121.6nm) in Ne/H2 and He/H2 mixtures,” Laser Phys. 13, No. 12, 1455–1460 (2003).

M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, and M. V. Erofeev, “Excilamps: efficient sources of spontaneous UV and VUV radiation,” Phys. Usp. 46, No. 2, 193–209 (2003).

U. Kogelschatz, “Dielectric-barrier discharges: their history, discharge physics and industrial applications,” Plasma Chem. Plasma Process. 23, No. 1, 1–46 (2003).

R. M. Sankaran, K. P. Giapis, M. Moselhy, and K. H. Schoenbach, “Argon excimer emission from high-pressure microdischarges in metal capillaries,” Appl. Phys. Lett. 83, No. 23, 4728–4730 (2003).

M. Salvermoser and D. E. Murnick, “Efficient, stable, corona discharge 172 nm xenon excimer light source,” J. Appl. Phys. 94, No. 6, 3722–3731 (2003).

M. Salvermoser and D. E. Murnick, “High-efficiency, high-power, stable 172 nm xenon excimer light source,” Appl. Phys. Lett. 83, No. 10, 1932–1934 (2003).

J. Yan and M. C. Gupta, “High power 121.6 nm radiation source,” J. Vac. Sci. Technol. B 21, No. 6, 2839–2842 (2003).

A. Maisels, F. Jordan, and H. Fissan, “On the effect of charge recombination on the aerosol charge distribution in photocharging systems,” J. Aerosol Sci. 34, No. 1, 117–132 (2003).

T. Gumpenberger, J. Heitz, D. Bäuerle, H. Kahr, I. Graz, C. Romanin, V. Svorcik, and F. Leisch, “Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene,” Biomaterials 24, No. 28, 5139–5144 (2003).
[PubMed]

2002 (7)

P. Campolmi, L. Mavilia, T. M. Lotti, R. Rossi, B. Brazzini, J. Hercogova, and G. Cappugi, “308 nm monochromatic excimer light for the treatment of palmoplantar psoriasis,” Int. J. Immunopathol. Pharmacol. 13, 11–13 (2002).

F. Mühlberger, J. Wieser, A. Ulrich, and R. Zimmermann, “Single photon ionization (SPI) via incoherent VUV-excimer light: Robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis,” Anal. Chem. A 74, No. 15, 3790–3801 (2002).

V. Liberman, M. Rothshield, P. G. Murphy, and S. T. Palmacci, “Prospects for photolithography at 121 nm,” J. Vac. Sci. Technol. B 20, No. 6, 2567–2573 (2002).

B. Krylov, A. Mozorov, G. Gerasimov, A. Arnesen, R. Hallin, and F. Heijkenskjöld, “Channels of energy transfer to atomic nitrogen in excited argon–nitrogen mixtures,” J. Phys. B: At. Mol. Opt. Phys. 35, No. 20, 4257–4270 (2002).

J. Yan, A. El-Dakrouri, M. Laroussi, and M. C. Gupta, “121.6 nm radiation source for advanced lithography,” J. Vac. Sci. Technol. B 20, No. 6, 2574–2577 (2002).

A. El-Dakrouri, J. Yan, M. Laroussi, M. C. Gupta, and Y. Badr, “VUV emission from a novel DBD-based radiation source,” J. Phys. D: Appl. Phys. 35, No. 21, L109–L114 (2002).

E. A. Sosnin, M. V. Erofeev, V. F. Tarasenko, and D. V. Shitz, “Capacitive discharge excilamps,” Instrum. Exp. Tech. 45, No. 6, 838–839 (2002).

2001 (5)

M. Moselhy, W. Shi, R. H. Stark, and K. H. Schoenbach, “(Xenon) Excimer emission from pulsed microhollow cathode discharges,” Appl. Phys. Lett. 79, No. 9, 1240–1242 (2001).

J. Kawanaka, T. Shirai, S. Kubodera, and W. Sasaki, “1.5 kW high-peak-power vacuum ultraviolet flash lamp using a pulsed silent discharge of krypton gas,” Appl. Phys. Lett. 79, No. 23, 3752–3754 (2001).

M. Moselhy, R. H. Stark, K. H. Schoenbach, and U. Kogelschatz, “Resonant energy transfer from argon dimers to atomic oxygen in microhollow cathode discharges,” Appl. Phys. Lett. 78, No. 7, 880–882 (2001).

T. M. Bloomstein, V. Liberman, M. Rothschild, D. E. Hardy, and N. N. Efremow, “UV cleaning of contaminated 157-nm reticles,” Proc. SPIE 4346, 669–675 (2001).

Z. Falkenstein, “Surface cleaning mechanisms utilizing VUV radiation in oxygen-containing gaseous environments,” Proc. SPIE 4440, 246–255 (2001).

1999 (2)

P. Kurunczi, H. Shah, and K. Becker, “Hydrogen Lyman-? and Lyman-? emissions from high-pressure microhollow cathode discharges in Ne-H2 mixtures,” J. Phys. B: At. Mol. Opt. Phys. 32, No. 22, L651–L658 (1999).

J. D. Ametepe, J. Diggs, D. M. Manos, and M. J. Kelley, “Characterization and modeling of a microwave driven xenon excimer lamp,” J. Appl. Phys. 85, No. 11, 7505–7510 (1999).

1998 (1)

J. Wieser, A. Ulrich, M. Salvermoser, H. Shaw, D. E. Murnick, and H. Dahi, “Light sources using energy transfer from excimer to line radiation,” Proc. SPIE 3403, 314–320 (1998).

1997 (2)

J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, “Vacuum ultraviolet rare gas excimer light source,” Rev. Sci. Instrum. 68, No. 3, 1360–1364 (1997).

G. A. Volkova and G. N. Gerasimov, “Amplification of ?=147nm radiation from a barrier discharge in a mixture of krypton with xenon,” Quantum Electron. 27, No. 3, 213–216 (1997).

1996 (1)

S. Kubodera, M. Kitahara, J. Kawanaka, W. Sasaki, and K. Kurosawa, “A vacuum ultraviolet flash lamp with extremely broadened emission spectra,” Appl. Phys. Lett. 69, No. 4, 452–454 (1996).

1992 (2)

U. Kogelschatz, “Silent-discharge driven excimer UV sources and their applications,” Appl. Surf. Sci. 54, 410–423 (1992).

H. Esrom and U. Kogelschatz, “Metal deposition with a windowless VUV excimer source,” Appl. Surf. Sci. 54, 440–444 (1992).

1988 (2)

A. El-Habachi and K. H. Schoenbach, “Generation of intense excimer radiation from high-pressure hollow cathode discharges,” Appl. Phys. Lett. 73, No. 7, 885–887 (1988).

A. El-Habachi and K. H. Schoenbach, “Emission of excimer radiation from direct current, high pressure hollow cathode discharges,” Appl. Phys. Lett. 72, No. 1, 22–24 (1988).

Agod, A.

S. Beleznai, G. Mihajlik, A. Agod, I. Maros, and R. Juhasz, “High-efficiency dielectric barrier Xe discharge lamp: theoretical and experimental investigations,” J. Phys. D: Appl. Phys. 39, No. 17, 3777–3787 (2006).

Ametepe, J. D.

S. Peng, J. D. Ametepe, and D. M. Manos, “Analysis and kinetic model of a high-pressure KrI excimer emission in a novel capacitively coupled rf lamp,” Appl. Phys. B. 83, No. 4, 643–650 (2006).

J. D. Ametepe, J. Diggs, D. M. Manos, and M. J. Kelley, “Characterization and modeling of a microwave driven xenon excimer lamp,” J. Appl. Phys. 85, No. 11, 7505–7510 (1999).

Arnesen, A.

G. N. Gerasimov, B. E. Krylov, R. Hallin, and A. Arnesen, “Parameters of VUV radiation from a dc capillary discharge in a mixture of krypton and xenon,” Opt. Specrosc. 100, No. 6, 825–829 (2006).

B. Krylov, A. Mozorov, G. Gerasimov, A. Arnesen, R. Hallin, and F. Heijkenskjöld, “Channels of energy transfer to atomic nitrogen in excited argon–nitrogen mixtures,” J. Phys. B: At. Mol. Opt. Phys. 35, No. 20, 4257–4270 (2002).

Arslanbekov, R. R.

E. E. Bogdanov, A. A. Kudryavtsev, and R. R. Arslanbekov, “2D simulations of short-pulsed dielectric barrier discharge Xenon excimer lamp,” Contrib. Plasma Phys. 46, No. 10, 807–816 (2006).

E. Bogdanov, A. A. Kudryavtsev, R. R. Arslanbekov, and V. I. Kolobov, “Simulation of pulsed dielectric barrier discharge xenon excimer lamp,” J. Phys. D: Appl. Phys. 37, No. 21, 2987–2995 (2004).

Avdeev, S. M.

S. M. Avdeev, I. D. Kostyrya, E. A. Sosnin, and V. F. Tarasenko, “Generation of nanosecond pulses in a barrier-discharge in XeBr excimer lamp,” Tech. Phys. 51, No. 7, 878–881 (2006).

Avtaeva, S. V.

S. V. Avtaeva, B. Saghi, and B. Rahmani, “One-dimensional fluid model and characteristics of the dielectric barrier discharge in 0.99Xe-0.O1 Cl2 mixture,” IEEE Trans. Plasma Sci. 39, No. 9, 1814–1822 (2011).

S. V. Avtaeva and A. V. Skornyakov, “Calculation of the characteristics of xenon excilamps using a one-dimensional hydrodynamic model,” Russ. Phys. J. 53, No. 3, 257–262 (2010).

S. V. Avtaeva and A. V. Skornyakov, “Effect of nonlocal electron kinetics on the characteristics of a dielectric barrier discharge in xenon,” Plasma Phys. Rep. 35, No. 7, 593–602 (2009).

S. V. Avtaeva and E. B. Kulumbaev, “Effect of the scheme of plasmachemical processes on the calculated characteristics of a barrier discharge in Xenon,” Plasma Phys. Rep. 34, No. 6, 452–470 (2008).

Baba-Hamed, T.

A. Belasri, S. Bendella, and T. Baba-Hamed, “Study of the first pulse of Ne-Xe-HCl dielectric barrier discharge for the excimer lamp,” Phys. Plasmas 15, No. 5, 053502 (2008).

Badr, Y.

A. El-Dakrouri, J. Yan, M. Laroussi, M. C. Gupta, and Y. Badr, “VUV emission from a novel DBD-based radiation source,” J. Phys. D: Appl. Phys. 35, No. 21, L109–L114 (2002).

Baksht, E. H.

E. H. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, D. V. Rybka, M. A. Shulepov, and V. F. Tarasenko, “Runaway-electron-preionized diffuse discharge at atmospheric pressure and its application,” J. Phys. D: Appl. Phys. 42, No. 18, 185201 (2009).

Balazs, L.

S. Beleznai, G. Mihajlik, I. Maros, L. Balazs, and P. Richter, “High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp,” J. Phys. D: Appl. Phys. 43, No. 3, 015203 (2010).

Balázs, L.

S. Beleznai, P. Richter, and L. Balázs, “New modulated pulsed driving signal for efficient excitation of DBD discharges,” Hakone XI 2, 302–306 (2008). Proc.

Bauer, F.

F. Bauer, R. Flyunt, K. Czihal, H. Langguth, R. Mehnert, R. Schubert, and M. R. Buchmeiser, “UV curing and matting of acrylate coatings reinforced by nano-silica and microcorundum particles,” Prog. Org. Coat. 60, No. 2, 121–126 (2007).

Bäuerle, D.

T. Gumpenberger, J. Heitz, D. Bäuerle, H. Kahr, I. Graz, C. Romanin, V. Svorcik, and F. Leisch, “Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene,” Biomaterials 24, No. 28, 5139–5144 (2003).
[PubMed]

Becker, K.

P. Kurunczi, J. Lopez, H. Shah, and K. Becker, “Excimer formation in high-pressure microhollow cathode discharge plasmas in helium initiated by low-energy electron collisions,” Int. J. Mass Spectrom. 205, No. 1–3, 277–283 (2005).

P. Kurunczi, H. Shah, and K. Becker, “Hydrogen Lyman-? and Lyman-? emissions from high-pressure microhollow cathode discharges in Ne-H2 mixtures,” J. Phys. B: At. Mol. Opt. Phys. 32, No. 22, L651–L658 (1999).

Becker, K. H.

K. H. Becker, K. Schoenbach, and J. G. Eden, “Microplasmas and applications,” J. Phys. D: Appl. Phys. 39, No. 3, R55–R70 (2006).

Belasri, A.

A. Belasri and Z. Harrache, “Electrical approach of homogenous high pressure Ne/Xe/HCl dielectric barrier discharge for XeCl (308 nm) lamp,” Plasma Chem. Plasma Process. 31, No. 5, 787–798 (2010).

A. Belasri, K. Khodja, S. Bendella, and Z. Harrache, “One-dimensional modelling of DBDs in Ne-Xe mixtures for excimer lamps,” J. Phys. D: Appl. Phys. 43, No. 44, 445202 (2010).

A. Belasri and Z. Harrache, “Electrical and kinetical aspects of homogeneous dielectric-barrier discharge in xenon for excimer lamps,” Phys. Plasmas 17, No. 12, 123501 (2010).

A. Belasri, S. Bendella, and T. Baba-Hamed, “Study of the first pulse of Ne-Xe-HCl dielectric barrier discharge for the excimer lamp,” Phys. Plasmas 15, No. 5, 053502 (2008).

S. Bendella and A. Belasri, “Xe-Ne-HCl excimer lamp excited by a phototriggered discharge,” Plasma Devices Oper. 15, No. 2, 77–85 (2007).

Beleznai, S.

S. Beleznai, G. Mihajlik, I. Maros, L. Balazs, and P. Richter, “High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp,” J. Phys. D: Appl. Phys. 43, No. 3, 015203 (2010).

S. Beleznai, P. Richter, and L. Balázs, “New modulated pulsed driving signal for efficient excitation of DBD discharges,” Hakone XI 2, 302–306 (2008). Proc.

S. Beleznai, G. Mihajlik, A. Agod, I. Maros, and R. Juhasz, “High-efficiency dielectric barrier Xe discharge lamp: theoretical and experimental investigations,” J. Phys. D: Appl. Phys. 39, No. 17, 3777–3787 (2006).

Bendella, S.

A. Belasri, K. Khodja, S. Bendella, and Z. Harrache, “One-dimensional modelling of DBDs in Ne-Xe mixtures for excimer lamps,” J. Phys. D: Appl. Phys. 43, No. 44, 445202 (2010).

A. Belasri, S. Bendella, and T. Baba-Hamed, “Study of the first pulse of Ne-Xe-HCl dielectric barrier discharge for the excimer lamp,” Phys. Plasmas 15, No. 5, 053502 (2008).

S. Bendella and A. Belasri, “Xe-Ne-HCl excimer lamp excited by a phototriggered discharge,” Plasma Devices Oper. 15, No. 2, 77–85 (2007).

Biswas, R.

J. Jiang, C. J. Hogan Jr., D.-R. Chen, and R. Biswas, “Aerosol charging and capture in the nanoparticle size range (6–15 nm) by direct photoionization and diffusion mechanisms,” J. Appl. Phys. 102, No. 3, 034904 (2007).

Bloomstein, T. M.

T. M. Bloomstein, V. Liberman, M. Rothschild, D. E. Hardy, and N. N. Efremow, “UV cleaning of contaminated 157-nm reticles,” Proc. SPIE 4346, 669–675 (2001).

Boeuf, J. P.

J. P. Boeuf, L. C. Pitchford, and K. H. Schoenbach, “Predicted properties of microhollow cathode discharges in xenon,” Appl. Phys. Lett. 86, No. 7, 071501 (2005).

Bogdanov, E.

E. Bogdanov, A. A. Kudryavtsev, R. R. Arslanbekov, and V. I. Kolobov, “Simulation of pulsed dielectric barrier discharge xenon excimer lamp,” J. Phys. D: Appl. Phys. 37, No. 21, 2987–2995 (2004).

Bogdanov, E. E.

E. E. Bogdanov, A. A. Kudryavtsev, and R. R. Arslanbekov, “2D simulations of short-pulsed dielectric barrier discharge Xenon excimer lamp,” Contrib. Plasma Phys. 46, No. 10, 807–816 (2006).

Boichenko, A. M.

A. M. Boichenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, The Ultraviolet Excilamps: Physics, Technology and Applications (Tomsk: STT Publishing, 2011), p. 510 (in Russian), ISBN: 978-5-93629-433-4.

Boies, A. M.

A. M. Boies, J. T. Roberts, S. L. Girshick, B. Zhang, T. Nakamura, and A. Mochizuki, “SiO2 coating of silver nano- particles by photoinduced chemical vapor deposition,” Nanotechnology 20, No. 29, 295604 (2009).
[PubMed]

Boyd, I. W.

J. J. Yu and I. W. Boyd, “Direct nitridation of high-k metal oxide thin films using argon excimer sources,” Electron. Lett. 41, No. 22, 1210–1211 (2005).

J. J. Yu and I. W. Boyd, “Low temperature Si and SiGe oxidation through dielectric barrier discharges,” Thin Solid Films 453–454, 63–66 (2004).

I. I. Liaw and I. W. Boyd, “The development and application of UV excimer lamps in nanofabrication,” in Functionalized Nanoscale Materials, Devices and Systems, A. Vaseashta and I. N. Mihailescu, eds. (Springer, 2008), pp. 61–76.

I. W. Boyd, J.-Y. Zhang, and U. Kogelschatz, “Development and applications of excimer UV lamps,” in Photo-Excited Processes, Diagnostics and Applications (PEPDA), A. Peled, ed. (Kluwer Academic Publishers, Dordrecht, 2003), pp. 161–199.

Brablec, A.

M. M. Guivan, A. A. Malinina, and A. Brablec, “Experimental and theoretical characterization of a multi-wavelength DBD-driven exciplex lamp operated with mercury bromide/rare gas mixtures,” J. Phys. D: Appl. Phys. 44, No. 22, 224012 (2011).

Braslavsky, S. E.

H. J. Kuhn, S. E. Braslavsky, and R. Schmidt, “Chemical actinometry,” Pure Appl. Chem. 76, No. 12, 2105–2146 (2004).

Braun, A. M.

J. S. Vicente, J. L. Gejo, S. Rothenbacher, S. Sarojiniamma, E. Gogritchiani, M. Wörner, G. Kasper, and A. M. Braun, “Oxidation of polystyrene aerosols by VUV-photolysis and/or ozone,” Photochem. Photobiol. Sci. 8, No. 7, 944–952 (2009).
[PubMed]

M. G. Gonzalez, E. Oliveros, M. Wörner, and A. M. Braun, “Vacuum-ultraviolet photolysis of aqueous reaction systems,” J. Photochem. Photobiol. C: Photochem. Rev. 5, No. 3, 225–246 (2004).

Brazzini, B.

P. Campolmi, L. Mavilia, T. M. Lotti, R. Rossi, B. Brazzini, J. Hercogova, and G. Cappugi, “308 nm monochromatic excimer light for the treatment of palmoplantar psoriasis,” Int. J. Immunopathol. Pharmacol. 13, 11–13 (2002).

Brown, W. L.

J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, “Vacuum ultraviolet rare gas excimer light source,” Rev. Sci. Instrum. 68, No. 3, 1360–1364 (1997).

Buchmeiser, M. R.

R. Schubert, T. Scherzer, M. Hinkefuss, B. Marquardt, J. Vogel, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 1. Real-time methods for the determination of the micro-folding kinetics,” Surf. Coat. Technol. 203, No. 13, 1844–1849 (2009).

R. Schubert, F. Frost, M. Hinhefuß, R. Konieczny, B. Marquardt, R. Mehnert, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 2. Characterization of surface properties,” Surf. Coat. Technol. 203, No. 24, 3734–3740 (2009).

L. Prager, L. Wennrich, R. Heller, W. Knolle, S. Naumov, A. Prager, D. Decker, H. Liebe, and M. R. Buchmeiser, “Vacuum-UV irradiation-based formation of Methyl-Si-O-Si networks from Poly(1,1-Dimethylsilazane-co-1-methylsilazane),” Chem. Eur. J. 15, No. 3, 675–683 (2009).

C. Elsner, S. Naumov, J. Zajadacz, and M. R. Buchmeiser, “172 nm excimer VUV-triggered photodegradation and micropatterning of aminosilane films,” Thin Solid Films 517, No. 24, 6772–6776 (2009).

L. Prager, A. Dierdorf, H. Liebe, S. Naumov, S. Stojanovi?, R. Heller, L. Wennrich, and M. R. Buchmeiser, “Conversion of perhydropolysilazane into a SiOx network triggered by vacuum ultraviolet irradiation: Access to flexible, transparent barrier coatings,” Chem. Eur. J. 13, No. 30, 8522–8529 (2007).

F. Bauer, R. Flyunt, K. Czihal, H. Langguth, R. Mehnert, R. Schubert, and M. R. Buchmeiser, “UV curing and matting of acrylate coatings reinforced by nano-silica and microcorundum particles,” Prog. Org. Coat. 60, No. 2, 121–126 (2007).

Buchmeiser, R.

A. Sobottka, L. Drossler, M. Lenk, L. Prager, and R. Buchmeiser, “An open Argon dielectric barrier discharge VUV- source,” Plasma Processes Polym. 7, No. 8, 650–656 (2010).

Burachenko, A. G.

E. H. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, D. V. Rybka, M. A. Shulepov, and V. F. Tarasenko, “Runaway-electron-preionized diffuse discharge at atmospheric pressure and its application,” J. Phys. D: Appl. Phys. 42, No. 18, 185201 (2009).

Bussiahn, R.

V. Pipa and R. Bussiahn, “Optimization of a dielectric barrier discharge for pulsed UV emission of XeCl at 308 nm,” Contrib. Plasma Phys. 51, No. 9, 850–862 (2011).

R. Bussiahn, A. V. Pipa, and E. Kindel, “A miniaturized XeCl dielectric barrier discharge as a source of short lived, fast decaying UV radiation,” Contrib. Plasma Phys. 50, No. 2, 182–192 (2010).

Campolmi, P.

L. Mavilia, M. Mori, R. Rossi, P. Campolmi, A. Puglisi Guerra, and T. Lotti, “308 nm monochromatic excimer light in dermatology: personal experience and review of the literature,” G. Ital. Dermatol. Venereol. 143, No. 5, 329–337 (2008).
[PubMed]

P. Campolmi, L. Mavilia, T. M. Lotti, R. Rossi, B. Brazzini, J. Hercogova, and G. Cappugi, “308 nm monochromatic excimer light for the treatment of palmoplantar psoriasis,” Int. J. Immunopathol. Pharmacol. 13, 11–13 (2002).

Cappugi, G.

P. Campolmi, L. Mavilia, T. M. Lotti, R. Rossi, B. Brazzini, J. Hercogova, and G. Cappugi, “308 nm monochromatic excimer light for the treatment of palmoplantar psoriasis,” Int. J. Immunopathol. Pharmacol. 13, 11–13 (2002).

Carman, R. J.

R. J. Carman, B. K. Ward, and D. M. Kane, “Enhanced performance of an EUV light source (?=84nm) using short-pulse excitation of a windowless dielectric barrier discharge in neon,” J. Phys. D: Appl. Phys. 43, No. 2, 025205 (2010).

R. J. Carman, R. P. Mildren, B. K. Ward, and D. M. Kane, “High-pressure (>1 bar) dielectric barrier discharge lamps generating short pulses of high-peak power vacuum ultraviolet radiation,” J. Phys. D: Appl. Phys. 37, No. 17, 2399–2407 (2004).

D. M. Kane, D. B. Hirschausen, B. K. Ward, R. J. Carman, and R. P. Mildren, “Pulsed VUV sources and their application to surface cleaning of optical materials,” Proc. SPIE 5399, 100–106 (2004).

R. J. Carman and R. P. Mildren, “Computer modelling of a short-pulse excited dielectric barrier discharge xenon excimer lamp (??172nm),” J. Phys. D: Appl. Phys. 36, No. 1, 19–33 (2003).

D. M. Kane, D. Hirschausen, B. K. Ward, R. P. Mildren, and R. J. Carman, “Surface cleaning of optical materials using novel VUV sources,” in Laser Cleaning II, D. M. Kane, ed. (World Scientific Publishing Co., Singapore, 2006), pp. 243–256. Chapter 13.

Chen, D.-R.

J. Jiang, C. J. Hogan Jr., D.-R. Chen, and R. Biswas, “Aerosol charging and capture in the nanoparticle size range (6–15 nm) by direct photoionization and diffusion mechanisms,” J. Appl. Phys. 102, No. 3, 034904 (2007).

Chen, K.-F.

S.-J. Park, K.-F. Chen, N. P. Ostrom, and J. G. Eden, “40?000 pixel arrays of ac-excited silicon microcavity plasma devices,” Appl. Phys. Lett. 86, No. 11, 111501 (2005).

Cooper, J. R.

W. Zhu, N. Takano, K. H. Schoenbach, D. Guru, J. McLaren, J. Heberlein, R. May, and J. R. Cooper, “Direct current planar excimer source,” J. Phys. D: Appl. Phys. 40, No. 13, 3896–3906 (2007).

Czihal, K.

F. Bauer, R. Flyunt, K. Czihal, H. Langguth, R. Mehnert, R. Schubert, and M. R. Buchmeiser, “UV curing and matting of acrylate coatings reinforced by nano-silica and microcorundum particles,” Prog. Org. Coat. 60, No. 2, 121–126 (2007).

Dahi, H.

J. Wieser, A. Ulrich, M. Salvermoser, H. Shaw, D. E. Murnick, and H. Dahi, “Light sources using energy transfer from excimer to line radiation,” Proc. SPIE 3403, 314–320 (1998).

Decker, D.

L. Prager, L. Wennrich, R. Heller, W. Knolle, S. Naumov, A. Prager, D. Decker, H. Liebe, and M. R. Buchmeiser, “Vacuum-UV irradiation-based formation of Methyl-Si-O-Si networks from Poly(1,1-Dimethylsilazane-co-1-methylsilazane),” Chem. Eur. J. 15, No. 3, 675–683 (2009).

Dierdorf, A.

L. Prager, A. Dierdorf, H. Liebe, S. Naumov, S. Stojanovi?, R. Heller, L. Wennrich, and M. R. Buchmeiser, “Conversion of perhydropolysilazane into a SiOx network triggered by vacuum ultraviolet irradiation: Access to flexible, transparent barrier coatings,” Chem. Eur. J. 13, No. 30, 8522–8529 (2007).

Diggs, J.

J. D. Ametepe, J. Diggs, D. M. Manos, and M. J. Kelley, “Characterization and modeling of a microwave driven xenon excimer lamp,” J. Appl. Phys. 85, No. 11, 7505–7510 (1999).

Dmitruck, V. S.

V. S. Dmitruck, E. A. Sosnin, and I. A. Obgol’tz, “The first attempt of XeCl-excilamp application in complex psoriasis curing,” Proc. SPIE 6263, 316–321 (2006).

Drossler, L.

A. Sobottka, L. Drossler, M. Lenk, L. Prager, and R. Buchmeiser, “An open Argon dielectric barrier discharge VUV- source,” Plasma Processes Polym. 7, No. 8, 650–656 (2010).

Eden, J. G.

K. H. Becker, K. Schoenbach, and J. G. Eden, “Microplasmas and applications,” J. Phys. D: Appl. Phys. 39, No. 3, R55–R70 (2006).

J. G. Eden and S.-J. Park, “Microcavity plasma devices and arrays: a new realm of plasma physics and photonic applications,” Plasma Phys. Controlled Fusion 47, No. 12B, B83–B92 (2005).

S.-J. Park, K.-F. Chen, N. P. Ostrom, and J. G. Eden, “40?000 pixel arrays of ac-excited silicon microcavity plasma devices,” Appl. Phys. Lett. 86, No. 11, 111501 (2005).

Efremow, N. N.

T. M. Bloomstein, V. Liberman, M. Rothschild, D. E. Hardy, and N. N. Efremow, “UV cleaning of contaminated 157-nm reticles,” Proc. SPIE 4346, 669–675 (2001).

El-Dakrouri, A.

J. Yan, A. El-Dakrouri, M. Laroussi, and M. C. Gupta, “121.6 nm radiation source for advanced lithography,” J. Vac. Sci. Technol. B 20, No. 6, 2574–2577 (2002).

A. El-Dakrouri, J. Yan, M. Laroussi, M. C. Gupta, and Y. Badr, “VUV emission from a novel DBD-based radiation source,” J. Phys. D: Appl. Phys. 35, No. 21, L109–L114 (2002).

El-Habachi, A.

A. El-Habachi and K. H. Schoenbach, “Emission of excimer radiation from direct current, high pressure hollow cathode discharges,” Appl. Phys. Lett. 72, No. 1, 22–24 (1988).

A. El-Habachi and K. H. Schoenbach, “Generation of intense excimer radiation from high-pressure hollow cathode discharges,” Appl. Phys. Lett. 73, No. 7, 885–887 (1988).

Elsner, C.

C. Elsner, S. Naumov, J. Zajadacz, and M. R. Buchmeiser, “172 nm excimer VUV-triggered photodegradation and micropatterning of aminosilane films,” Thin Solid Films 517, No. 24, 6772–6776 (2009).

C. Elsner, M. Lenk, L. Prager, and R. Mehnert, “Windowless argon excimer source for surface modification,” Appl. Surf. Sci. 252, No. 10, 3616–3624 (2006).

Erofeev, M.

V. Tarasenko, M. Erofeev, M. Lomaev, D. Rybka, A. Panchenko, E. Sosnin, V. Skakun, and D. Schitz, “UV and VUV excilamps with high peak power,” J. Light Visual Environ. 35, No. 3, 227–233 (2011).

Erofeev, M. V.

M. V. Erofeev and V. F. Tarasenko, “XeCl-, KrCl-, XeBr- and KrBr-excilamps of the barrier discharge with the nanosecond pulse duration of radiation,” J. Phys. D: Appl. Phys. 39, No. 16, 3609–3614 (2006).

M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).

M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).

M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, and M. V. Erofeev, “Excilamps: efficient sources of spontaneous UV and VUV radiation,” Phys. Usp. 46, No. 2, 193–209 (2003).

E. A. Sosnin, M. V. Erofeev, V. F. Tarasenko, and D. V. Shitz, “Capacitive discharge excilamps,” Instrum. Exp. Tech. 45, No. 6, 838–839 (2002).

Eschner, M. S.

Esrom, H.

H. Esrom and U. Kogelschatz, “Metal deposition with a windowless VUV excimer source,” Appl. Surf. Sci. 54, 440–444 (1992).

Falkenstein, Z.

Z. Falkenstein, “Surface cleaning mechanisms utilizing VUV radiation in oxygen-containing gaseous environments,” Proc. SPIE 4440, 246–255 (2001).

Fedenev, A. V.

A. V. Fedenev, A. Morozov, R. Krücken, S. Schoop, J. Wieser, and A. Ulrich, “Applications of a broadband electron-beam pumped XUV radiation source,” J. Phys. D: Appl. Phys. 37, No. 11, 1586–1591 (2004).

Fissan, H.

A. Maisels, F. Jordan, and H. Fissan, “On the effect of charge recombination on the aerosol charge distribution in photocharging systems,” J. Aerosol Sci. 34, No. 1, 117–132 (2003).

Flyunt, R.

F. Bauer, R. Flyunt, K. Czihal, H. Langguth, R. Mehnert, R. Schubert, and M. R. Buchmeiser, “UV curing and matting of acrylate coatings reinforced by nano-silica and microcorundum particles,” Prog. Org. Coat. 60, No. 2, 121–126 (2007).

Frischauf, I.

M. Olbrich, G. Punshon, I. Frischauf, H. Salacinski, E. Rebollar, C. Romanin, A. M. Seifalian, and J. Heitz, “UV surface modification of a new nanocomposite polymer to improve cyctocompatibility,” J. Biomater. Sci., Polymer Ed. 18, No. 4, 453–454 (2007).

Frost, F.

R. Schubert, F. Frost, M. Hinhefuß, R. Konieczny, B. Marquardt, R. Mehnert, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 2. Characterization of surface properties,” Surf. Coat. Technol. 203, No. 24, 3734–3740 (2009).

Fuhrer, K.

F. Mühlberger, M. Saraji-Bozorgzad, M. Gonin, K. Fuhrer, and R. Zimmermann, “Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source,” Anal. Chem. 79, No. 21, 8118–8124 (2007).
[PubMed]

Gejo, J. L.

J. S. Vicente, J. L. Gejo, S. Rothenbacher, S. Sarojiniamma, E. Gogritchiani, M. Wörner, G. Kasper, and A. M. Braun, “Oxidation of polystyrene aerosols by VUV-photolysis and/or ozone,” Photochem. Photobiol. Sci. 8, No. 7, 944–952 (2009).
[PubMed]

Gerasimov, G.

B. Krylov, A. Mozorov, G. Gerasimov, A. Arnesen, R. Hallin, and F. Heijkenskjöld, “Channels of energy transfer to atomic nitrogen in excited argon–nitrogen mixtures,” J. Phys. B: At. Mol. Opt. Phys. 35, No. 20, 4257–4270 (2002).

Gerasimov, G. N.

G. N. Gerasimov, B. E. Krylov, R. Hallin, and A. Arnesen, “Parameters of VUV radiation from a dc capillary discharge in a mixture of krypton and xenon,” Opt. Specrosc. 100, No. 6, 825–829 (2006).

G. N. Gerasimov, “Optical spectra of binary rare-gas mixtures,” Phys. Usp. 47, No. 2, 149–168 (2004).

G. A. Volkova and G. N. Gerasimov, “Amplification of ?=147nm radiation from a barrier discharge in a mixture of krypton with xenon,” Quantum Electron. 27, No. 3, 213–216 (1997).

Giapis, K. P.

R. M. Sankaran, K. P. Giapis, M. Moselhy, and K. H. Schoenbach, “Argon excimer emission from high-pressure microdischarges in metal capillaries,” Appl. Phys. Lett. 83, No. 23, 4728–4730 (2003).

Girshick, S. L.

A. M. Boies, J. T. Roberts, S. L. Girshick, B. Zhang, T. Nakamura, and A. Mochizuki, “SiO2 coating of silver nano- particles by photoinduced chemical vapor deposition,” Nanotechnology 20, No. 29, 295604 (2009).
[PubMed]

B. Zhang, Y.-C. Liao, S. L. Girshick, and J. T. Roberts, “Growth of coatings on nanoparticles by photoinduced chemical vapor deposition,” J. Nanopart. Res. 10, No. 1, 173–178 (2008).

Gogritchiani, E.

J. S. Vicente, J. L. Gejo, S. Rothenbacher, S. Sarojiniamma, E. Gogritchiani, M. Wörner, G. Kasper, and A. M. Braun, “Oxidation of polystyrene aerosols by VUV-photolysis and/or ozone,” Photochem. Photobiol. Sci. 8, No. 7, 944–952 (2009).
[PubMed]

Gonin, M.

F. Mühlberger, M. Saraji-Bozorgzad, M. Gonin, K. Fuhrer, and R. Zimmermann, “Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source,” Anal. Chem. 79, No. 21, 8118–8124 (2007).
[PubMed]

Gonzalez, M. G.

M. G. Gonzalez, E. Oliveros, M. Wörner, and A. M. Braun, “Vacuum-ultraviolet photolysis of aqueous reaction systems,” J. Photochem. Photobiol. C: Photochem. Rev. 5, No. 3, 225–246 (2004).

Graz, I.

T. Gumpenberger, J. Heitz, D. Bäuerle, H. Kahr, I. Graz, C. Romanin, V. Svorcik, and F. Leisch, “Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene,” Biomaterials 24, No. 28, 5139–5144 (2003).
[PubMed]

Guivan, A.

M. Guivan and A. Guivan, “Characterization of a white-colour DBD-driven Cadmium Bromide exciplex lamp,” Plasma Sources Sci. Technol. 19, No. 5, 055014 (2010).

Guivan, M.

M. Guivan and A. Guivan, “Characterization of a white-colour DBD-driven Cadmium Bromide exciplex lamp,” Plasma Sources Sci. Technol. 19, No. 5, 055014 (2010).

Guivan, M. M.

M. M. Guivan, A. A. Malinina, and A. Brablec, “Experimental and theoretical characterization of a multi-wavelength DBD-driven exciplex lamp operated with mercury bromide/rare gas mixtures,” J. Phys. D: Appl. Phys. 44, No. 22, 224012 (2011).

Gumpenberger, T.

T. Gumpenberger, J. Heitz, D. Bäuerle, H. Kahr, I. Graz, C. Romanin, V. Svorcik, and F. Leisch, “Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene,” Biomaterials 24, No. 28, 5139–5144 (2003).
[PubMed]

Gupta, M. C.

J. Yan and M. C. Gupta, “High power 121.6 nm radiation source,” J. Vac. Sci. Technol. B 21, No. 6, 2839–2842 (2003).

A. El-Dakrouri, J. Yan, M. Laroussi, M. C. Gupta, and Y. Badr, “VUV emission from a novel DBD-based radiation source,” J. Phys. D: Appl. Phys. 35, No. 21, L109–L114 (2002).

J. Yan, A. El-Dakrouri, M. Laroussi, and M. C. Gupta, “121.6 nm radiation source for advanced lithography,” J. Vac. Sci. Technol. B 20, No. 6, 2574–2577 (2002).

Guru, D.

W. Zhu, N. Takano, K. H. Schoenbach, D. Guru, J. McLaren, J. Heberlein, R. May, and J. R. Cooper, “Direct current planar excimer source,” J. Phys. D: Appl. Phys. 40, No. 13, 3896–3906 (2007).

Hallin, R.

G. N. Gerasimov, B. E. Krylov, R. Hallin, and A. Arnesen, “Parameters of VUV radiation from a dc capillary discharge in a mixture of krypton and xenon,” Opt. Specrosc. 100, No. 6, 825–829 (2006).

B. Krylov, A. Mozorov, G. Gerasimov, A. Arnesen, R. Hallin, and F. Heijkenskjöld, “Channels of energy transfer to atomic nitrogen in excited argon–nitrogen mixtures,” J. Phys. B: At. Mol. Opt. Phys. 35, No. 20, 4257–4270 (2002).

Hardy, D. E.

T. M. Bloomstein, V. Liberman, M. Rothschild, D. E. Hardy, and N. N. Efremow, “UV cleaning of contaminated 157-nm reticles,” Proc. SPIE 4346, 669–675 (2001).

Harrache, Z.

A. Belasri and Z. Harrache, “Electrical approach of homogenous high pressure Ne/Xe/HCl dielectric barrier discharge for XeCl (308 nm) lamp,” Plasma Chem. Plasma Process. 31, No. 5, 787–798 (2010).

A. Belasri and Z. Harrache, “Electrical and kinetical aspects of homogeneous dielectric-barrier discharge in xenon for excimer lamps,” Phys. Plasmas 17, No. 12, 123501 (2010).

A. Belasri, K. Khodja, S. Bendella, and Z. Harrache, “One-dimensional modelling of DBDs in Ne-Xe mixtures for excimer lamps,” J. Phys. D: Appl. Phys. 43, No. 44, 445202 (2010).

Heberlein, J.

W. Zhu, N. Takano, K. H. Schoenbach, D. Guru, J. McLaren, J. Heberlein, R. May, and J. R. Cooper, “Direct current planar excimer source,” J. Phys. D: Appl. Phys. 40, No. 13, 3896–3906 (2007).

Heijkenskjöld, F.

B. Krylov, A. Mozorov, G. Gerasimov, A. Arnesen, R. Hallin, and F. Heijkenskjöld, “Channels of energy transfer to atomic nitrogen in excited argon–nitrogen mixtures,” J. Phys. B: At. Mol. Opt. Phys. 35, No. 20, 4257–4270 (2002).

Heindl, T.

A. Ulrich, T. Heindl, R. Krücken, A. Morozov, C. Skrobol, and J. Wieser, “Electron beam induced light emission,” Eur. Phys. J. Appl. Phys. 47, No. 2, 22815–228l8 (2009).

A. Morozov, T. Heindl, R. Krücken, A. Ulrich, and J. Wieser, “Conversion efficiencies of electron beam energy to vacuum ultraviolet light for Ne, Ar, Kr, and Xe excited with continuous electron beams,” J. Appl. Phys. 103, No. 10, 103301 (2008).

A. Morozov, T. Heindl, R. Krücken, A. Ulrich, and J. Wieser, “Spatial distribution of fluorescent light emitted from neon and nitrogen excited by low energy electron beams,” J. Appl. Phys. 100, No. 9, 093305 (2006).

Heitz, J.

M. Olbrich, G. Punshon, I. Frischauf, H. Salacinski, E. Rebollar, C. Romanin, A. M. Seifalian, and J. Heitz, “UV surface modification of a new nanocomposite polymer to improve cyctocompatibility,” J. Biomater. Sci., Polymer Ed. 18, No. 4, 453–454 (2007).

T. Gumpenberger, J. Heitz, D. Bäuerle, H. Kahr, I. Graz, C. Romanin, V. Svorcik, and F. Leisch, “Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene,” Biomaterials 24, No. 28, 5139–5144 (2003).
[PubMed]

Heller, R.

L. Prager, L. Wennrich, R. Heller, W. Knolle, S. Naumov, A. Prager, D. Decker, H. Liebe, and M. R. Buchmeiser, “Vacuum-UV irradiation-based formation of Methyl-Si-O-Si networks from Poly(1,1-Dimethylsilazane-co-1-methylsilazane),” Chem. Eur. J. 15, No. 3, 675–683 (2009).

L. Prager, A. Dierdorf, H. Liebe, S. Naumov, S. Stojanovi?, R. Heller, L. Wennrich, and M. R. Buchmeiser, “Conversion of perhydropolysilazane into a SiOx network triggered by vacuum ultraviolet irradiation: Access to flexible, transparent barrier coatings,” Chem. Eur. J. 13, No. 30, 8522–8529 (2007).

Hercogova, J.

P. Campolmi, L. Mavilia, T. M. Lotti, R. Rossi, B. Brazzini, J. Hercogova, and G. Cappugi, “308 nm monochromatic excimer light for the treatment of palmoplantar psoriasis,” Int. J. Immunopathol. Pharmacol. 13, 11–13 (2002).

Hinhefuß, M.

R. Schubert, F. Frost, M. Hinhefuß, R. Konieczny, B. Marquardt, R. Mehnert, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 2. Characterization of surface properties,” Surf. Coat. Technol. 203, No. 24, 3734–3740 (2009).

Hinkefuss, M.

R. Schubert, T. Scherzer, M. Hinkefuss, B. Marquardt, J. Vogel, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 1. Real-time methods for the determination of the micro-folding kinetics,” Surf. Coat. Technol. 203, No. 13, 1844–1849 (2009).

Hintz, C.

K. Köllner, M. B. Wimmershoff, C. Hintz, M. Landthaler, and U. Hohenleutner, “Comparison of the 308-nm excimer laser and a 308-nm excimer lamp with 311-nm narrowband ultraviolet B in the treatment of psoriasis,” British J. Dermatol. 152, No. 4, 750–754 (2005).

Hirschausen, D.

D. M. Kane, D. Hirschausen, B. K. Ward, R. P. Mildren, and R. J. Carman, “Surface cleaning of optical materials using novel VUV sources,” in Laser Cleaning II, D. M. Kane, ed. (World Scientific Publishing Co., Singapore, 2006), pp. 243–256. Chapter 13.

Hirschausen, D. B.

D. M. Kane, D. B. Hirschausen, B. K. Ward, R. J. Carman, and R. P. Mildren, “Pulsed VUV sources and their application to surface cleaning of optical materials,” Proc. SPIE 5399, 100–106 (2004).

Hogan Jr., C. J.

J. Jiang, C. J. Hogan Jr., D.-R. Chen, and R. Biswas, “Aerosol charging and capture in the nanoparticle size range (6–15 nm) by direct photoionization and diffusion mechanisms,” J. Appl. Phys. 102, No. 3, 034904 (2007).

Hohenleutner, U.

K. Köllner, M. B. Wimmershoff, C. Hintz, M. Landthaler, and U. Hohenleutner, “Comparison of the 308-nm excimer laser and a 308-nm excimer lamp with 311-nm narrowband ultraviolet B in the treatment of psoriasis,” British J. Dermatol. 152, No. 4, 750–754 (2005).

Huggins, H. A.

J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, “Vacuum ultraviolet rare gas excimer light source,” Rev. Sci. Instrum. 68, No. 3, 1360–1364 (1997).

Intra, P.

P. Intra and N. Tippayawong, “An overview of unipolar charger developments for nanoparticle charging,” Aerosol Air Qual. Res. 11, 187–209 (2011).

Jiang, J.

J. Jiang, C. J. Hogan Jr., D.-R. Chen, and R. Biswas, “Aerosol charging and capture in the nanoparticle size range (6–15 nm) by direct photoionization and diffusion mechanisms,” J. Appl. Phys. 102, No. 3, 034904 (2007).

Jordan, F.

A. Maisels, F. Jordan, and H. Fissan, “On the effect of charge recombination on the aerosol charge distribution in photocharging systems,” J. Aerosol Sci. 34, No. 1, 117–132 (2003).

Juhasz, R.

S. Beleznai, G. Mihajlik, A. Agod, I. Maros, and R. Juhasz, “High-efficiency dielectric barrier Xe discharge lamp: theoretical and experimental investigations,” J. Phys. D: Appl. Phys. 39, No. 17, 3777–3787 (2006).

Kahr, H.

T. Gumpenberger, J. Heitz, D. Bäuerle, H. Kahr, I. Graz, C. Romanin, V. Svorcik, and F. Leisch, “Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene,” Biomaterials 24, No. 28, 5139–5144 (2003).
[PubMed]

Kane, D. M.

R. J. Carman, B. K. Ward, and D. M. Kane, “Enhanced performance of an EUV light source (?=84nm) using short-pulse excitation of a windowless dielectric barrier discharge in neon,” J. Phys. D: Appl. Phys. 43, No. 2, 025205 (2010).

R. J. Carman, R. P. Mildren, B. K. Ward, and D. M. Kane, “High-pressure (>1 bar) dielectric barrier discharge lamps generating short pulses of high-peak power vacuum ultraviolet radiation,” J. Phys. D: Appl. Phys. 37, No. 17, 2399–2407 (2004).

D. M. Kane, D. B. Hirschausen, B. K. Ward, R. J. Carman, and R. P. Mildren, “Pulsed VUV sources and their application to surface cleaning of optical materials,” Proc. SPIE 5399, 100–106 (2004).

D. M. Kane, D. Hirschausen, B. K. Ward, R. P. Mildren, and R. J. Carman, “Surface cleaning of optical materials using novel VUV sources,” in Laser Cleaning II, D. M. Kane, ed. (World Scientific Publishing Co., Singapore, 2006), pp. 243–256. Chapter 13.

Karelin, A. V.

A. V. Karelin, “Far-UV sources pumped by an open discharge and electron beam,” Laser Phys. 14, No. 1, 15–22 (2004).

A. V. Karelin and S. I. Yakovlenko, “Electron-beam pumping conversion into spontaneous emission at the Lyman-Alpha line (?=121.6nm) in Ne/H2 and He/H2 mixtures,” Laser Phys. 13, No. 12, 1455–1460 (2003).

Kasper, G.

J. S. Vicente, J. L. Gejo, S. Rothenbacher, S. Sarojiniamma, E. Gogritchiani, M. Wörner, G. Kasper, and A. M. Braun, “Oxidation of polystyrene aerosols by VUV-photolysis and/or ozone,” Photochem. Photobiol. Sci. 8, No. 7, 944–952 (2009).
[PubMed]

Kawanaka, J.

J. Kawanaka, T. Shirai, S. Kubodera, and W. Sasaki, “1.5 kW high-peak-power vacuum ultraviolet flash lamp using a pulsed silent discharge of krypton gas,” Appl. Phys. Lett. 79, No. 23, 3752–3754 (2001).

S. Kubodera, M. Kitahara, J. Kawanaka, W. Sasaki, and K. Kurosawa, “A vacuum ultraviolet flash lamp with extremely broadened emission spectra,” Appl. Phys. Lett. 69, No. 4, 452–454 (1996).

Kelley, M. J.

J. D. Ametepe, J. Diggs, D. M. Manos, and M. J. Kelley, “Characterization and modeling of a microwave driven xenon excimer lamp,” J. Appl. Phys. 85, No. 11, 7505–7510 (1999).

Khodja, K.

A. Belasri, K. Khodja, S. Bendella, and Z. Harrache, “One-dimensional modelling of DBDs in Ne-Xe mixtures for excimer lamps,” J. Phys. D: Appl. Phys. 43, No. 44, 445202 (2010).

Kindel, E.

R. Bussiahn, A. V. Pipa, and E. Kindel, “A miniaturized XeCl dielectric barrier discharge as a source of short lived, fast decaying UV radiation,” Contrib. Plasma Phys. 50, No. 2, 182–192 (2010).

Kitahara, M.

S. Kubodera, M. Kitahara, J. Kawanaka, W. Sasaki, and K. Kurosawa, “A vacuum ultraviolet flash lamp with extremely broadened emission spectra,” Appl. Phys. Lett. 69, No. 4, 452–454 (1996).

Kitamura, M.

M. Kitamura, K. Mitsuka, and M. A. Sato, “Practical high-power excimer lamp excited by a microwave discharge,” Appl. Surf. Sci. 79–80, 507–513 (2004).

Knolle, W.

L. Prager, L. Wennrich, R. Heller, W. Knolle, S. Naumov, A. Prager, D. Decker, H. Liebe, and M. R. Buchmeiser, “Vacuum-UV irradiation-based formation of Methyl-Si-O-Si networks from Poly(1,1-Dimethylsilazane-co-1-methylsilazane),” Chem. Eur. J. 15, No. 3, 675–683 (2009).

Kochetov, I. V.

D. Lo, C. Shangguan, I. V. Kochetov, and A. P. Napartovich, “Experimental and numerical studies on Xe2? VUV emission in fast electric discharge afterglow,” J. Phys. D: Appl. Phys. 38, No. 18, 3430–3437 (2005).

Kogelschatz, U.

M. J. Salvermoser, U. Kogelschatz, and D. E. Murnick, “Influence of humidity on photochemical ozone generation with 172 nm xenon excimer lamps,” Eur. Phys. J. Appl. Phys. 47, No. 2, 22812 (2009).

U. Kogelschatz, “Excimer lamps: history, discharge physics, and industrial applications,” Proc. SPIE. 5483, 272–286 (2004).

U. Kogelschatz, “Dielectric-barrier discharges: their history, discharge physics and industrial applications,” Plasma Chem. Plasma Process. 23, No. 1, 1–46 (2003).

M. Moselhy, R. H. Stark, K. H. Schoenbach, and U. Kogelschatz, “Resonant energy transfer from argon dimers to atomic oxygen in microhollow cathode discharges,” Appl. Phys. Lett. 78, No. 7, 880–882 (2001).

H. Esrom and U. Kogelschatz, “Metal deposition with a windowless VUV excimer source,” Appl. Surf. Sci. 54, 440–444 (1992).

U. Kogelschatz, “Silent-discharge driven excimer UV sources and their applications,” Appl. Surf. Sci. 54, 410–423 (1992).

I. W. Boyd, J.-Y. Zhang, and U. Kogelschatz, “Development and applications of excimer UV lamps,” in Photo-Excited Processes, Diagnostics and Applications (PEPDA), A. Peled, ed. (Kluwer Academic Publishers, Dordrecht, 2003), pp. 161–199.

Köllner, K.

K. Köllner, M. B. Wimmershoff, C. Hintz, M. Landthaler, and U. Hohenleutner, “Comparison of the 308-nm excimer laser and a 308-nm excimer lamp with 311-nm narrowband ultraviolet B in the treatment of psoriasis,” British J. Dermatol. 152, No. 4, 750–754 (2005).

Kolobov, V. I.

E. Bogdanov, A. A. Kudryavtsev, R. R. Arslanbekov, and V. I. Kolobov, “Simulation of pulsed dielectric barrier discharge xenon excimer lamp,” J. Phys. D: Appl. Phys. 37, No. 21, 2987–2995 (2004).

Konieczny, R.

R. Schubert, F. Frost, M. Hinhefuß, R. Konieczny, B. Marquardt, R. Mehnert, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 2. Characterization of surface properties,” Surf. Coat. Technol. 203, No. 24, 3734–3740 (2009).

Kostyrya, I. D.

E. H. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, D. V. Rybka, M. A. Shulepov, and V. F. Tarasenko, “Runaway-electron-preionized diffuse discharge at atmospheric pressure and its application,” J. Phys. D: Appl. Phys. 42, No. 18, 185201 (2009).

S. M. Avdeev, I. D. Kostyrya, E. A. Sosnin, and V. F. Tarasenko, “Generation of nanosecond pulses in a barrier-discharge in XeBr excimer lamp,” Tech. Phys. 51, No. 7, 878–881 (2006).

Krasnozhenov, E. P.

V. F. Tarasenko, E. A. Sosnin, O. S. Zhdanova, and E. P. Krasnozhenov, “Applications of excilamps in microbiological and medical investigations,” in Plasma for Bio-Decontamination, Medicine and Food Security, Z. Machala, K. Hensel, and Yu. Akishev, eds. (Springer, 2012), pp. 251–263.

Krücken, R.

A. Ulrich, T. Heindl, R. Krücken, A. Morozov, C. Skrobol, and J. Wieser, “Electron beam induced light emission,” Eur. Phys. J. Appl. Phys. 47, No. 2, 22815–228l8 (2009).

A. Morozov, T. Heindl, R. Krücken, A. Ulrich, and J. Wieser, “Conversion efficiencies of electron beam energy to vacuum ultraviolet light for Ne, Ar, Kr, and Xe excited with continuous electron beams,” J. Appl. Phys. 103, No. 10, 103301 (2008).

A. Morozov, T. Heindl, R. Krücken, A. Ulrich, and J. Wieser, “Spatial distribution of fluorescent light emitted from neon and nitrogen excited by low energy electron beams,” J. Appl. Phys. 100, No. 9, 093305 (2006).

A. Morozov, R. Krücken, T. Ottenthal, A. Ulrich, and J. Wieser, “Ultraviolet emission from argon water-vapor mixtures excited with low-energy electron beams,” Appl. Phys. Lett. 86, No. 1, 011502 (2005).

A. Morozov, R. Krücken, A. Ulrich, J. Wieser, and T. McCarthy, “Energy-transfer processes in neon-hydrogen mixtures excited by electron beams,” J. Chem. Phys. 123, No. 23, 234311 (2005).
[PubMed]

A. V. Fedenev, A. Morozov, R. Krücken, S. Schoop, J. Wieser, and A. Ulrich, “Applications of a broadband electron-beam pumped XUV radiation source,” J. Phys. D: Appl. Phys. 37, No. 11, 1586–1591 (2004).

Krylov, B.

B. Krylov, A. Mozorov, G. Gerasimov, A. Arnesen, R. Hallin, and F. Heijkenskjöld, “Channels of energy transfer to atomic nitrogen in excited argon–nitrogen mixtures,” J. Phys. B: At. Mol. Opt. Phys. 35, No. 20, 4257–4270 (2002).

Krylov, B. E.

G. N. Gerasimov, B. E. Krylov, R. Hallin, and A. Arnesen, “Parameters of VUV radiation from a dc capillary discharge in a mixture of krypton and xenon,” Opt. Specrosc. 100, No. 6, 825–829 (2006).

Kubodera, S.

J. Kawanaka, T. Shirai, S. Kubodera, and W. Sasaki, “1.5 kW high-peak-power vacuum ultraviolet flash lamp using a pulsed silent discharge of krypton gas,” Appl. Phys. Lett. 79, No. 23, 3752–3754 (2001).

S. Kubodera, M. Kitahara, J. Kawanaka, W. Sasaki, and K. Kurosawa, “A vacuum ultraviolet flash lamp with extremely broadened emission spectra,” Appl. Phys. Lett. 69, No. 4, 452–454 (1996).

Kudryavtsev, A. A.

E. E. Bogdanov, A. A. Kudryavtsev, and R. R. Arslanbekov, “2D simulations of short-pulsed dielectric barrier discharge Xenon excimer lamp,” Contrib. Plasma Phys. 46, No. 10, 807–816 (2006).

E. Bogdanov, A. A. Kudryavtsev, R. R. Arslanbekov, and V. I. Kolobov, “Simulation of pulsed dielectric barrier discharge xenon excimer lamp,” J. Phys. D: Appl. Phys. 37, No. 21, 2987–2995 (2004).

Kuhn, H. J.

H. J. Kuhn, S. E. Braslavsky, and R. Schmidt, “Chemical actinometry,” Pure Appl. Chem. 76, No. 12, 2105–2146 (2004).

Kulumbaev, E. B.

S. V. Avtaeva and E. B. Kulumbaev, “Effect of the scheme of plasmachemical processes on the calculated characteristics of a barrier discharge in Xenon,” Plasma Phys. Rep. 34, No. 6, 452–470 (2008).

Kurosawa, K.

S. Kubodera, M. Kitahara, J. Kawanaka, W. Sasaki, and K. Kurosawa, “A vacuum ultraviolet flash lamp with extremely broadened emission spectra,” Appl. Phys. Lett. 69, No. 4, 452–454 (1996).

Kurunczi, P.

P. Kurunczi, J. Lopez, H. Shah, and K. Becker, “Excimer formation in high-pressure microhollow cathode discharge plasmas in helium initiated by low-energy electron collisions,” Int. J. Mass Spectrom. 205, No. 1–3, 277–283 (2005).

P. Kurunczi, H. Shah, and K. Becker, “Hydrogen Lyman-? and Lyman-? emissions from high-pressure microhollow cathode discharges in Ne-H2 mixtures,” J. Phys. B: At. Mol. Opt. Phys. 32, No. 22, L651–L658 (1999).

Landthaler, M.

K. Köllner, M. B. Wimmershoff, C. Hintz, M. Landthaler, and U. Hohenleutner, “Comparison of the 308-nm excimer laser and a 308-nm excimer lamp with 311-nm narrowband ultraviolet B in the treatment of psoriasis,” British J. Dermatol. 152, No. 4, 750–754 (2005).

Langguth, H.

F. Bauer, R. Flyunt, K. Czihal, H. Langguth, R. Mehnert, R. Schubert, and M. R. Buchmeiser, “UV curing and matting of acrylate coatings reinforced by nano-silica and microcorundum particles,” Prog. Org. Coat. 60, No. 2, 121–126 (2007).

Laroussi, M.

A. El-Dakrouri, J. Yan, M. Laroussi, M. C. Gupta, and Y. Badr, “VUV emission from a novel DBD-based radiation source,” J. Phys. D: Appl. Phys. 35, No. 21, L109–L114 (2002).

J. Yan, A. El-Dakrouri, M. Laroussi, and M. C. Gupta, “121.6 nm radiation source for advanced lithography,” J. Vac. Sci. Technol. B 20, No. 6, 2574–2577 (2002).

Leisch, F.

T. Gumpenberger, J. Heitz, D. Bäuerle, H. Kahr, I. Graz, C. Romanin, V. Svorcik, and F. Leisch, “Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene,” Biomaterials 24, No. 28, 5139–5144 (2003).
[PubMed]

Lenk, M.

A. Sobottka, L. Drossler, M. Lenk, L. Prager, and R. Buchmeiser, “An open Argon dielectric barrier discharge VUV- source,” Plasma Processes Polym. 7, No. 8, 650–656 (2010).

C. Elsner, M. Lenk, L. Prager, and R. Mehnert, “Windowless argon excimer source for surface modification,” Appl. Surf. Sci. 252, No. 10, 3616–3624 (2006).

M. Lenk and R. Mehnert, “Design and characteristics of a windowless argon excimer source,” in Proc. RadTech, Europe, Basle, 2001, pp. 153–158.

Leone, G.

A. Pacifico and G. Leone, “Photo(chemo)therapy for vitiligo,” Photodermatol. Photoimmunol. Photomed. 27, No. 5, 261–277 (2011).

Liao, Y.-C.

B. Zhang, Y.-C. Liao, S. L. Girshick, and J. T. Roberts, “Growth of coatings on nanoparticles by photoinduced chemical vapor deposition,” J. Nanopart. Res. 10, No. 1, 173–178 (2008).

Liaw, I. I.

I. I. Liaw and I. W. Boyd, “The development and application of UV excimer lamps in nanofabrication,” in Functionalized Nanoscale Materials, Devices and Systems, A. Vaseashta and I. N. Mihailescu, eds. (Springer, 2008), pp. 61–76.

Liberman, V.

V. Liberman, M. Rothshield, P. G. Murphy, and S. T. Palmacci, “Prospects for photolithography at 121 nm,” J. Vac. Sci. Technol. B 20, No. 6, 2567–2573 (2002).

T. M. Bloomstein, V. Liberman, M. Rothschild, D. E. Hardy, and N. N. Efremow, “UV cleaning of contaminated 157-nm reticles,” Proc. SPIE 4346, 669–675 (2001).

Liddle, A.

J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, “Vacuum ultraviolet rare gas excimer light source,” Rev. Sci. Instrum. 68, No. 3, 1360–1364 (1997).

Liebe, H.

L. Prager, L. Wennrich, R. Heller, W. Knolle, S. Naumov, A. Prager, D. Decker, H. Liebe, and M. R. Buchmeiser, “Vacuum-UV irradiation-based formation of Methyl-Si-O-Si networks from Poly(1,1-Dimethylsilazane-co-1-methylsilazane),” Chem. Eur. J. 15, No. 3, 675–683 (2009).

L. Prager, A. Dierdorf, H. Liebe, S. Naumov, S. Stojanovi?, R. Heller, L. Wennrich, and M. R. Buchmeiser, “Conversion of perhydropolysilazane into a SiOx network triggered by vacuum ultraviolet irradiation: Access to flexible, transparent barrier coatings,” Chem. Eur. J. 13, No. 30, 8522–8529 (2007).

Lisenko, A. A.

M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).

M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).

M. I. Lomaev, V. S. Skakun, V. F. Tarasenko, D. V. Shitts, and A. A. Lisenko, “A windowless VUV excilamp,” Tech. Phys. Lett. 32, No. 7, 590–592 (2006).

Lo, D.

D. Lo, C. Shangguan, I. V. Kochetov, and A. P. Napartovich, “Experimental and numerical studies on Xe2? VUV emission in fast electric discharge afterglow,” J. Phys. D: Appl. Phys. 38, No. 18, 3430–3437 (2005).

Lomaev, M.

V. Tarasenko, M. Erofeev, M. Lomaev, D. Rybka, A. Panchenko, E. Sosnin, V. Skakun, and D. Schitz, “UV and VUV excilamps with high peak power,” J. Light Visual Environ. 35, No. 3, 227–233 (2011).

Lomaev, M. I.

E. H. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, D. V. Rybka, M. A. Shulepov, and V. F. Tarasenko, “Runaway-electron-preionized diffuse discharge at atmospheric pressure and its application,” J. Phys. D: Appl. Phys. 42, No. 18, 185201 (2009).

M. I. Lomaev, V. S. Skakun, V. F. Tarasenko, D. V. Shitts, and A. A. Lisenko, “A windowless VUV excilamp,” Tech. Phys. Lett. 32, No. 7, 590–592 (2006).

M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).

M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).

M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, and M. V. Erofeev, “Excilamps: efficient sources of spontaneous UV and VUV radiation,” Phys. Usp. 46, No. 2, 193–209 (2003).

A. M. Boichenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, The Ultraviolet Excilamps: Physics, Technology and Applications (Tomsk: STT Publishing, 2011), p. 510 (in Russian), ISBN: 978-5-93629-433-4.

Lopez, J.

P. Kurunczi, J. Lopez, H. Shah, and K. Becker, “Excimer formation in high-pressure microhollow cathode discharge plasmas in helium initiated by low-energy electron collisions,” Int. J. Mass Spectrom. 205, No. 1–3, 277–283 (2005).

Lotti, T.

L. Mavilia, M. Mori, R. Rossi, P. Campolmi, A. Puglisi Guerra, and T. Lotti, “308 nm monochromatic excimer light in dermatology: personal experience and review of the literature,” G. Ital. Dermatol. Venereol. 143, No. 5, 329–337 (2008).
[PubMed]

Lotti, T. M.

P. Campolmi, L. Mavilia, T. M. Lotti, R. Rossi, B. Brazzini, J. Hercogova, and G. Cappugi, “308 nm monochromatic excimer light for the treatment of palmoplantar psoriasis,” Int. J. Immunopathol. Pharmacol. 13, 11–13 (2002).

Maisels, A.

A. Maisels, F. Jordan, and H. Fissan, “On the effect of charge recombination on the aerosol charge distribution in photocharging systems,” J. Aerosol Sci. 34, No. 1, 117–132 (2003).

Malinina, A. A.

M. M. Guivan, A. A. Malinina, and A. Brablec, “Experimental and theoretical characterization of a multi-wavelength DBD-driven exciplex lamp operated with mercury bromide/rare gas mixtures,” J. Phys. D: Appl. Phys. 44, No. 22, 224012 (2011).

Manos, D. M.

S. Peng, J. D. Ametepe, and D. M. Manos, “Analysis and kinetic model of a high-pressure KrI excimer emission in a novel capacitively coupled rf lamp,” Appl. Phys. B. 83, No. 4, 643–650 (2006).

J. D. Ametepe, J. Diggs, D. M. Manos, and M. J. Kelley, “Characterization and modeling of a microwave driven xenon excimer lamp,” J. Appl. Phys. 85, No. 11, 7505–7510 (1999).

Maros, I.

S. Beleznai, G. Mihajlik, I. Maros, L. Balazs, and P. Richter, “High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp,” J. Phys. D: Appl. Phys. 43, No. 3, 015203 (2010).

S. Beleznai, G. Mihajlik, A. Agod, I. Maros, and R. Juhasz, “High-efficiency dielectric barrier Xe discharge lamp: theoretical and experimental investigations,” J. Phys. D: Appl. Phys. 39, No. 17, 3777–3787 (2006).

Marquardt, B.

R. Schubert, F. Frost, M. Hinhefuß, R. Konieczny, B. Marquardt, R. Mehnert, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 2. Characterization of surface properties,” Surf. Coat. Technol. 203, No. 24, 3734–3740 (2009).

R. Schubert, T. Scherzer, M. Hinkefuss, B. Marquardt, J. Vogel, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 1. Real-time methods for the determination of the micro-folding kinetics,” Surf. Coat. Technol. 203, No. 13, 1844–1849 (2009).

Mavilia, L.

L. Mavilia, M. Mori, R. Rossi, P. Campolmi, A. Puglisi Guerra, and T. Lotti, “308 nm monochromatic excimer light in dermatology: personal experience and review of the literature,” G. Ital. Dermatol. Venereol. 143, No. 5, 329–337 (2008).
[PubMed]

P. Campolmi, L. Mavilia, T. M. Lotti, R. Rossi, B. Brazzini, J. Hercogova, and G. Cappugi, “308 nm monochromatic excimer light for the treatment of palmoplantar psoriasis,” Int. J. Immunopathol. Pharmacol. 13, 11–13 (2002).

May, R.

W. Zhu, N. Takano, K. H. Schoenbach, D. Guru, J. McLaren, J. Heberlein, R. May, and J. R. Cooper, “Direct current planar excimer source,” J. Phys. D: Appl. Phys. 40, No. 13, 3896–3906 (2007).

McCarthy, T.

T. McCarthy, D. E. Murnick, M. Salvermoser, and A. Ulrich, “Non-thermal Doppler-broadened Lyman-? line shape in resonant dissociation of H2,” J. Phys. B: At. Mol. Opt. Phys. 38, No. 16, 3043–3054 (2005).

A. Morozov, R. Krücken, A. Ulrich, J. Wieser, and T. McCarthy, “Energy-transfer processes in neon-hydrogen mixtures excited by electron beams,” J. Chem. Phys. 123, No. 23, 234311 (2005).
[PubMed]

McLaren, J.

W. Zhu, N. Takano, K. H. Schoenbach, D. Guru, J. McLaren, J. Heberlein, R. May, and J. R. Cooper, “Direct current planar excimer source,” J. Phys. D: Appl. Phys. 40, No. 13, 3896–3906 (2007).

Mehnert, R.

R. Schubert, F. Frost, M. Hinhefuß, R. Konieczny, B. Marquardt, R. Mehnert, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 2. Characterization of surface properties,” Surf. Coat. Technol. 203, No. 24, 3734–3740 (2009).

F. Bauer, R. Flyunt, K. Czihal, H. Langguth, R. Mehnert, R. Schubert, and M. R. Buchmeiser, “UV curing and matting of acrylate coatings reinforced by nano-silica and microcorundum particles,” Prog. Org. Coat. 60, No. 2, 121–126 (2007).

C. Elsner, M. Lenk, L. Prager, and R. Mehnert, “Windowless argon excimer source for surface modification,” Appl. Surf. Sci. 252, No. 10, 3616–3624 (2006).

M. Lenk and R. Mehnert, “Design and characteristics of a windowless argon excimer source,” in Proc. RadTech, Europe, Basle, 2001, pp. 153–158.

Mihajlik, G.

S. Beleznai, G. Mihajlik, I. Maros, L. Balazs, and P. Richter, “High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp,” J. Phys. D: Appl. Phys. 43, No. 3, 015203 (2010).

S. Beleznai, G. Mihajlik, A. Agod, I. Maros, and R. Juhasz, “High-efficiency dielectric barrier Xe discharge lamp: theoretical and experimental investigations,” J. Phys. D: Appl. Phys. 39, No. 17, 3777–3787 (2006).

Mildren, R. P.

R. J. Carman, R. P. Mildren, B. K. Ward, and D. M. Kane, “High-pressure (>1 bar) dielectric barrier discharge lamps generating short pulses of high-peak power vacuum ultraviolet radiation,” J. Phys. D: Appl. Phys. 37, No. 17, 2399–2407 (2004).

D. M. Kane, D. B. Hirschausen, B. K. Ward, R. J. Carman, and R. P. Mildren, “Pulsed VUV sources and their application to surface cleaning of optical materials,” Proc. SPIE 5399, 100–106 (2004).

R. J. Carman and R. P. Mildren, “Computer modelling of a short-pulse excited dielectric barrier discharge xenon excimer lamp (??172nm),” J. Phys. D: Appl. Phys. 36, No. 1, 19–33 (2003).

D. M. Kane, D. Hirschausen, B. K. Ward, R. P. Mildren, and R. J. Carman, “Surface cleaning of optical materials using novel VUV sources,” in Laser Cleaning II, D. M. Kane, ed. (World Scientific Publishing Co., Singapore, 2006), pp. 243–256. Chapter 13.

Mitsuka, K.

M. Kitamura, K. Mitsuka, and M. A. Sato, “Practical high-power excimer lamp excited by a microwave discharge,” Appl. Surf. Sci. 79–80, 507–513 (2004).

Mochizuki, A.

A. M. Boies, J. T. Roberts, S. L. Girshick, B. Zhang, T. Nakamura, and A. Mochizuki, “SiO2 coating of silver nano- particles by photoinduced chemical vapor deposition,” Nanotechnology 20, No. 29, 295604 (2009).
[PubMed]

Mori, M.

L. Mavilia, M. Mori, R. Rossi, P. Campolmi, A. Puglisi Guerra, and T. Lotti, “308 nm monochromatic excimer light in dermatology: personal experience and review of the literature,” G. Ital. Dermatol. Venereol. 143, No. 5, 329–337 (2008).
[PubMed]

Morozov, A.

A. Ulrich, T. Heindl, R. Krücken, A. Morozov, C. Skrobol, and J. Wieser, “Electron beam induced light emission,” Eur. Phys. J. Appl. Phys. 47, No. 2, 22815–228l8 (2009).

A. Morozov, T. Heindl, R. Krücken, A. Ulrich, and J. Wieser, “Conversion efficiencies of electron beam energy to vacuum ultraviolet light for Ne, Ar, Kr, and Xe excited with continuous electron beams,” J. Appl. Phys. 103, No. 10, 103301 (2008).

A. Morozov, T. Heindl, R. Krücken, A. Ulrich, and J. Wieser, “Spatial distribution of fluorescent light emitted from neon and nitrogen excited by low energy electron beams,” J. Appl. Phys. 100, No. 9, 093305 (2006).

A. Morozov, R. Krücken, A. Ulrich, J. Wieser, and T. McCarthy, “Energy-transfer processes in neon-hydrogen mixtures excited by electron beams,” J. Chem. Phys. 123, No. 23, 234311 (2005).
[PubMed]

A. Morozov, R. Krücken, T. Ottenthal, A. Ulrich, and J. Wieser, “Ultraviolet emission from argon water-vapor mixtures excited with low-energy electron beams,” Appl. Phys. Lett. 86, No. 1, 011502 (2005).

F. Mühlberger, J. Wieser, A. Morozov, A. Ulrich, and R. Zimmermann, “Single-photon ionization quadrupole mass spectrometry with an electron beam pumped excimer light source,” Anal Chem. 77, No. 7, 2218–2226 (2005).
[PubMed]

A. V. Fedenev, A. Morozov, R. Krücken, S. Schoop, J. Wieser, and A. Ulrich, “Applications of a broadband electron-beam pumped XUV radiation source,” J. Phys. D: Appl. Phys. 37, No. 11, 1586–1591 (2004).

Moselhy, M.

R. M. Sankaran, K. P. Giapis, M. Moselhy, and K. H. Schoenbach, “Argon excimer emission from high-pressure microdischarges in metal capillaries,” Appl. Phys. Lett. 83, No. 23, 4728–4730 (2003).

M. Moselhy, W. Shi, R. H. Stark, and K. H. Schoenbach, “(Xenon) Excimer emission from pulsed microhollow cathode discharges,” Appl. Phys. Lett. 79, No. 9, 1240–1242 (2001).

M. Moselhy, R. H. Stark, K. H. Schoenbach, and U. Kogelschatz, “Resonant energy transfer from argon dimers to atomic oxygen in microhollow cathode discharges,” Appl. Phys. Lett. 78, No. 7, 880–882 (2001).

Mozorov, A.

B. Krylov, A. Mozorov, G. Gerasimov, A. Arnesen, R. Hallin, and F. Heijkenskjöld, “Channels of energy transfer to atomic nitrogen in excited argon–nitrogen mixtures,” J. Phys. B: At. Mol. Opt. Phys. 35, No. 20, 4257–4270 (2002).

Mühlberger, F.

F. Mühlberger, M. Saraji-Bozorgzad, M. Gonin, K. Fuhrer, and R. Zimmermann, “Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source,” Anal. Chem. 79, No. 21, 8118–8124 (2007).
[PubMed]

F. Mühlberger, J. Wieser, A. Morozov, A. Ulrich, and R. Zimmermann, “Single-photon ionization quadrupole mass spectrometry with an electron beam pumped excimer light source,” Anal Chem. 77, No. 7, 2218–2226 (2005).
[PubMed]

F. Mühlberger, J. Wieser, A. Ulrich, and R. Zimmermann, “Single photon ionization (SPI) via incoherent VUV-excimer light: Robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis,” Anal. Chem. A 74, No. 15, 3790–3801 (2002).

Murnick, D. E.

M. J. Salvermoser, U. Kogelschatz, and D. E. Murnick, “Influence of humidity on photochemical ozone generation with 172 nm xenon excimer lamps,” Eur. Phys. J. Appl. Phys. 47, No. 2, 22812 (2009).

T. McCarthy, D. E. Murnick, M. Salvermoser, and A. Ulrich, “Non-thermal Doppler-broadened Lyman-? line shape in resonant dissociation of H2,” J. Phys. B: At. Mol. Opt. Phys. 38, No. 16, 3043–3054 (2005).

M. Salvermoser and D. E. Murnick, “Efficient, stable, corona discharge 172 nm xenon excimer light source,” J. Appl. Phys. 94, No. 6, 3722–3731 (2003).

M. Salvermoser and D. E. Murnick, “High-efficiency, high-power, stable 172 nm xenon excimer light source,” Appl. Phys. Lett. 83, No. 10, 1932–1934 (2003).

J. Wieser, A. Ulrich, M. Salvermoser, H. Shaw, D. E. Murnick, and H. Dahi, “Light sources using energy transfer from excimer to line radiation,” Proc. SPIE 3403, 314–320 (1998).

J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, “Vacuum ultraviolet rare gas excimer light source,” Rev. Sci. Instrum. 68, No. 3, 1360–1364 (1997).

Murphy, P. G.

V. Liberman, M. Rothshield, P. G. Murphy, and S. T. Palmacci, “Prospects for photolithography at 121 nm,” J. Vac. Sci. Technol. B 20, No. 6, 2567–2573 (2002).

Nakamura, T.

A. M. Boies, J. T. Roberts, S. L. Girshick, B. Zhang, T. Nakamura, and A. Mochizuki, “SiO2 coating of silver nano- particles by photoinduced chemical vapor deposition,” Nanotechnology 20, No. 29, 295604 (2009).
[PubMed]

Napartovich, A. P.

D. Lo, C. Shangguan, I. V. Kochetov, and A. P. Napartovich, “Experimental and numerical studies on Xe2? VUV emission in fast electric discharge afterglow,” J. Phys. D: Appl. Phys. 38, No. 18, 3430–3437 (2005).

Naumov, S.

C. Elsner, S. Naumov, J. Zajadacz, and M. R. Buchmeiser, “172 nm excimer VUV-triggered photodegradation and micropatterning of aminosilane films,” Thin Solid Films 517, No. 24, 6772–6776 (2009).

L. Prager, L. Wennrich, R. Heller, W. Knolle, S. Naumov, A. Prager, D. Decker, H. Liebe, and M. R. Buchmeiser, “Vacuum-UV irradiation-based formation of Methyl-Si-O-Si networks from Poly(1,1-Dimethylsilazane-co-1-methylsilazane),” Chem. Eur. J. 15, No. 3, 675–683 (2009).

L. Prager, A. Dierdorf, H. Liebe, S. Naumov, S. Stojanovi?, R. Heller, L. Wennrich, and M. R. Buchmeiser, “Conversion of perhydropolysilazane into a SiOx network triggered by vacuum ultraviolet irradiation: Access to flexible, transparent barrier coatings,” Chem. Eur. J. 13, No. 30, 8522–8529 (2007).

Obgol’tz, I. A.

V. S. Dmitruck, E. A. Sosnin, and I. A. Obgol’tz, “The first attempt of XeCl-excilamp application in complex psoriasis curing,” Proc. SPIE 6263, 316–321 (2006).

Olbrich, M.

M. Olbrich, G. Punshon, I. Frischauf, H. Salacinski, E. Rebollar, C. Romanin, A. M. Seifalian, and J. Heitz, “UV surface modification of a new nanocomposite polymer to improve cyctocompatibility,” J. Biomater. Sci., Polymer Ed. 18, No. 4, 453–454 (2007).

Oliveros, E.

M. G. Gonzalez, E. Oliveros, M. Wörner, and A. M. Braun, “Vacuum-ultraviolet photolysis of aqueous reaction systems,” J. Photochem. Photobiol. C: Photochem. Rev. 5, No. 3, 225–246 (2004).

Oppenländer, T.

T. Oppenländer, “Mercury-free sources of VUV/UV radiation: application of modern excimer lamps (excilamps) for water and air treatment,” J. Environ. Eng. Sci. 6, No. 3, 253–264 (2007).

T. Oppenländer, “Excilamp photochemistry,” in CRC Handbook of Organic Photochemistry and Photobiology, 3rd. V. 1. 7th ed., A. G. Griesbeck, M. Oelgemöller, and F. Ghetti, eds. (CRC Press, Boca Raton, 2012).

T. Oppenländer, Photochemical Purification of Water and Air, Advanced Oxidation Processes (AOPs): Principles, Reaction Mechanisms, Reactor Concepts (Wiley-VCH, Weinheim (Germany), 2003).

Ostrom, N. P.

S.-J. Park, K.-F. Chen, N. P. Ostrom, and J. G. Eden, “40?000 pixel arrays of ac-excited silicon microcavity plasma devices,” Appl. Phys. Lett. 86, No. 11, 111501 (2005).

Ottenthal, T.

A. Morozov, R. Krücken, T. Ottenthal, A. Ulrich, and J. Wieser, “Ultraviolet emission from argon water-vapor mixtures excited with low-energy electron beams,” Appl. Phys. Lett. 86, No. 1, 011502 (2005).

Pacifico, A.

A. Pacifico and G. Leone, “Photo(chemo)therapy for vitiligo,” Photodermatol. Photoimmunol. Photomed. 27, No. 5, 261–277 (2011).

Palmacci, S. T.

V. Liberman, M. Rothshield, P. G. Murphy, and S. T. Palmacci, “Prospects for photolithography at 121 nm,” J. Vac. Sci. Technol. B 20, No. 6, 2567–2573 (2002).

Panchenko, A.

V. Tarasenko, M. Erofeev, M. Lomaev, D. Rybka, A. Panchenko, E. Sosnin, V. Skakun, and D. Schitz, “UV and VUV excilamps with high peak power,” J. Light Visual Environ. 35, No. 3, 227–233 (2011).

Panchenko, A. N.

A. M. Boichenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, The Ultraviolet Excilamps: Physics, Technology and Applications (Tomsk: STT Publishing, 2011), p. 510 (in Russian), ISBN: 978-5-93629-433-4.

Park, S.-J.

J. G. Eden and S.-J. Park, “Microcavity plasma devices and arrays: a new realm of plasma physics and photonic applications,” Plasma Phys. Controlled Fusion 47, No. 12B, B83–B92 (2005).

S.-J. Park, K.-F. Chen, N. P. Ostrom, and J. G. Eden, “40?000 pixel arrays of ac-excited silicon microcavity plasma devices,” Appl. Phys. Lett. 86, No. 11, 111501 (2005).

Peng, S.

S. Peng, J. D. Ametepe, and D. M. Manos, “Analysis and kinetic model of a high-pressure KrI excimer emission in a novel capacitively coupled rf lamp,” Appl. Phys. B. 83, No. 4, 643–650 (2006).

Pikulev, A. A.

E. A. Sosnin, A. A. Pikulev, and V. F. Tarasenko, “Optical characteristics of cylindrical exciplex and excimer lamps excited by microwave radiation,” Tech. Phys. 56, No. 4, 526–530 (2011).

Pipa, A. V.

R. Bussiahn, A. V. Pipa, and E. Kindel, “A miniaturized XeCl dielectric barrier discharge as a source of short lived, fast decaying UV radiation,” Contrib. Plasma Phys. 50, No. 2, 182–192 (2010).

Pipa, V.

V. Pipa and R. Bussiahn, “Optimization of a dielectric barrier discharge for pulsed UV emission of XeCl at 308 nm,” Contrib. Plasma Phys. 51, No. 9, 850–862 (2011).

Pitchford, L. C.

J. P. Boeuf, L. C. Pitchford, and K. H. Schoenbach, “Predicted properties of microhollow cathode discharges in xenon,” Appl. Phys. Lett. 86, No. 7, 071501 (2005).

Prager, A.

L. Prager, L. Wennrich, R. Heller, W. Knolle, S. Naumov, A. Prager, D. Decker, H. Liebe, and M. R. Buchmeiser, “Vacuum-UV irradiation-based formation of Methyl-Si-O-Si networks from Poly(1,1-Dimethylsilazane-co-1-methylsilazane),” Chem. Eur. J. 15, No. 3, 675–683 (2009).

Prager, L.

A. Sobottka, L. Drossler, M. Lenk, L. Prager, and R. Buchmeiser, “An open Argon dielectric barrier discharge VUV- source,” Plasma Processes Polym. 7, No. 8, 650–656 (2010).

L. Prager, L. Wennrich, R. Heller, W. Knolle, S. Naumov, A. Prager, D. Decker, H. Liebe, and M. R. Buchmeiser, “Vacuum-UV irradiation-based formation of Methyl-Si-O-Si networks from Poly(1,1-Dimethylsilazane-co-1-methylsilazane),” Chem. Eur. J. 15, No. 3, 675–683 (2009).

L. Prager, A. Dierdorf, H. Liebe, S. Naumov, S. Stojanovi?, R. Heller, L. Wennrich, and M. R. Buchmeiser, “Conversion of perhydropolysilazane into a SiOx network triggered by vacuum ultraviolet irradiation: Access to flexible, transparent barrier coatings,” Chem. Eur. J. 13, No. 30, 8522–8529 (2007).

C. Elsner, M. Lenk, L. Prager, and R. Mehnert, “Windowless argon excimer source for surface modification,” Appl. Surf. Sci. 252, No. 10, 3616–3624 (2006).

Puglisi Guerra, A.

L. Mavilia, M. Mori, R. Rossi, P. Campolmi, A. Puglisi Guerra, and T. Lotti, “308 nm monochromatic excimer light in dermatology: personal experience and review of the literature,” G. Ital. Dermatol. Venereol. 143, No. 5, 329–337 (2008).
[PubMed]

Punshon, G.

M. Olbrich, G. Punshon, I. Frischauf, H. Salacinski, E. Rebollar, C. Romanin, A. M. Seifalian, and J. Heitz, “UV surface modification of a new nanocomposite polymer to improve cyctocompatibility,” J. Biomater. Sci., Polymer Ed. 18, No. 4, 453–454 (2007).

Rahmani, B.

S. V. Avtaeva, B. Saghi, and B. Rahmani, “One-dimensional fluid model and characteristics of the dielectric barrier discharge in 0.99Xe-0.O1 Cl2 mixture,” IEEE Trans. Plasma Sci. 39, No. 9, 1814–1822 (2011).

Rebollar, E.

M. Olbrich, G. Punshon, I. Frischauf, H. Salacinski, E. Rebollar, C. Romanin, A. M. Seifalian, and J. Heitz, “UV surface modification of a new nanocomposite polymer to improve cyctocompatibility,” J. Biomater. Sci., Polymer Ed. 18, No. 4, 453–454 (2007).

Richter, P.

S. Beleznai, G. Mihajlik, I. Maros, L. Balazs, and P. Richter, “High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp,” J. Phys. D: Appl. Phys. 43, No. 3, 015203 (2010).

S. Beleznai, P. Richter, and L. Balázs, “New modulated pulsed driving signal for efficient excitation of DBD discharges,” Hakone XI 2, 302–306 (2008). Proc.

Roberts, J. T.

A. M. Boies, J. T. Roberts, S. L. Girshick, B. Zhang, T. Nakamura, and A. Mochizuki, “SiO2 coating of silver nano- particles by photoinduced chemical vapor deposition,” Nanotechnology 20, No. 29, 295604 (2009).
[PubMed]

B. Zhang, Y.-C. Liao, S. L. Girshick, and J. T. Roberts, “Growth of coatings on nanoparticles by photoinduced chemical vapor deposition,” J. Nanopart. Res. 10, No. 1, 173–178 (2008).

Romanin, C.

M. Olbrich, G. Punshon, I. Frischauf, H. Salacinski, E. Rebollar, C. Romanin, A. M. Seifalian, and J. Heitz, “UV surface modification of a new nanocomposite polymer to improve cyctocompatibility,” J. Biomater. Sci., Polymer Ed. 18, No. 4, 453–454 (2007).

T. Gumpenberger, J. Heitz, D. Bäuerle, H. Kahr, I. Graz, C. Romanin, V. Svorcik, and F. Leisch, “Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene,” Biomaterials 24, No. 28, 5139–5144 (2003).
[PubMed]

Rossi, R.

L. Mavilia, M. Mori, R. Rossi, P. Campolmi, A. Puglisi Guerra, and T. Lotti, “308 nm monochromatic excimer light in dermatology: personal experience and review of the literature,” G. Ital. Dermatol. Venereol. 143, No. 5, 329–337 (2008).
[PubMed]

P. Campolmi, L. Mavilia, T. M. Lotti, R. Rossi, B. Brazzini, J. Hercogova, and G. Cappugi, “308 nm monochromatic excimer light for the treatment of palmoplantar psoriasis,” Int. J. Immunopathol. Pharmacol. 13, 11–13 (2002).

Rothenbacher, S.

J. S. Vicente, J. L. Gejo, S. Rothenbacher, S. Sarojiniamma, E. Gogritchiani, M. Wörner, G. Kasper, and A. M. Braun, “Oxidation of polystyrene aerosols by VUV-photolysis and/or ozone,” Photochem. Photobiol. Sci. 8, No. 7, 944–952 (2009).
[PubMed]

Rothschild, M.

T. M. Bloomstein, V. Liberman, M. Rothschild, D. E. Hardy, and N. N. Efremow, “UV cleaning of contaminated 157-nm reticles,” Proc. SPIE 4346, 669–675 (2001).

Rothshield, M.

V. Liberman, M. Rothshield, P. G. Murphy, and S. T. Palmacci, “Prospects for photolithography at 121 nm,” J. Vac. Sci. Technol. B 20, No. 6, 2567–2573 (2002).

Rybka, D.

V. Tarasenko, M. Erofeev, M. Lomaev, D. Rybka, A. Panchenko, E. Sosnin, V. Skakun, and D. Schitz, “UV and VUV excilamps with high peak power,” J. Light Visual Environ. 35, No. 3, 227–233 (2011).

Rybka, D. V.

E. H. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, D. V. Rybka, M. A. Shulepov, and V. F. Tarasenko, “Runaway-electron-preionized diffuse discharge at atmospheric pressure and its application,” J. Phys. D: Appl. Phys. 42, No. 18, 185201 (2009).

Saghi, B.

S. V. Avtaeva, B. Saghi, and B. Rahmani, “One-dimensional fluid model and characteristics of the dielectric barrier discharge in 0.99Xe-0.O1 Cl2 mixture,” IEEE Trans. Plasma Sci. 39, No. 9, 1814–1822 (2011).

Salacinski, H.

M. Olbrich, G. Punshon, I. Frischauf, H. Salacinski, E. Rebollar, C. Romanin, A. M. Seifalian, and J. Heitz, “UV surface modification of a new nanocomposite polymer to improve cyctocompatibility,” J. Biomater. Sci., Polymer Ed. 18, No. 4, 453–454 (2007).

Salvermoser, M.

T. McCarthy, D. E. Murnick, M. Salvermoser, and A. Ulrich, “Non-thermal Doppler-broadened Lyman-? line shape in resonant dissociation of H2,” J. Phys. B: At. Mol. Opt. Phys. 38, No. 16, 3043–3054 (2005).

M. Salvermoser and D. E. Murnick, “Efficient, stable, corona discharge 172 nm xenon excimer light source,” J. Appl. Phys. 94, No. 6, 3722–3731 (2003).

M. Salvermoser and D. E. Murnick, “High-efficiency, high-power, stable 172 nm xenon excimer light source,” Appl. Phys. Lett. 83, No. 10, 1932–1934 (2003).

J. Wieser, A. Ulrich, M. Salvermoser, H. Shaw, D. E. Murnick, and H. Dahi, “Light sources using energy transfer from excimer to line radiation,” Proc. SPIE 3403, 314–320 (1998).

Salvermoser, M. J.

M. J. Salvermoser, U. Kogelschatz, and D. E. Murnick, “Influence of humidity on photochemical ozone generation with 172 nm xenon excimer lamps,” Eur. Phys. J. Appl. Phys. 47, No. 2, 22812 (2009).

Sankaran, R. M.

R. M. Sankaran, K. P. Giapis, M. Moselhy, and K. H. Schoenbach, “Argon excimer emission from high-pressure microdischarges in metal capillaries,” Appl. Phys. Lett. 83, No. 23, 4728–4730 (2003).

Saraji-Bozorgzad, M.

F. Mühlberger, M. Saraji-Bozorgzad, M. Gonin, K. Fuhrer, and R. Zimmermann, “Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source,” Anal. Chem. 79, No. 21, 8118–8124 (2007).
[PubMed]

Sarojiniamma, S.

J. S. Vicente, J. L. Gejo, S. Rothenbacher, S. Sarojiniamma, E. Gogritchiani, M. Wörner, G. Kasper, and A. M. Braun, “Oxidation of polystyrene aerosols by VUV-photolysis and/or ozone,” Photochem. Photobiol. Sci. 8, No. 7, 944–952 (2009).
[PubMed]

Sasaki, W.

J. Kawanaka, T. Shirai, S. Kubodera, and W. Sasaki, “1.5 kW high-peak-power vacuum ultraviolet flash lamp using a pulsed silent discharge of krypton gas,” Appl. Phys. Lett. 79, No. 23, 3752–3754 (2001).

S. Kubodera, M. Kitahara, J. Kawanaka, W. Sasaki, and K. Kurosawa, “A vacuum ultraviolet flash lamp with extremely broadened emission spectra,” Appl. Phys. Lett. 69, No. 4, 452–454 (1996).

Sato, M. A.

M. Kitamura, K. Mitsuka, and M. A. Sato, “Practical high-power excimer lamp excited by a microwave discharge,” Appl. Surf. Sci. 79–80, 507–513 (2004).

Scherzer, T.

R. Schubert, T. Scherzer, M. Hinkefuss, B. Marquardt, J. Vogel, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 1. Real-time methods for the determination of the micro-folding kinetics,” Surf. Coat. Technol. 203, No. 13, 1844–1849 (2009).

Schitz, D.

V. Tarasenko, M. Erofeev, M. Lomaev, D. Rybka, A. Panchenko, E. Sosnin, V. Skakun, and D. Schitz, “UV and VUV excilamps with high peak power,” J. Light Visual Environ. 35, No. 3, 227–233 (2011).

Schmidt, R.

H. J. Kuhn, S. E. Braslavsky, and R. Schmidt, “Chemical actinometry,” Pure Appl. Chem. 76, No. 12, 2105–2146 (2004).

Schoenbach, K.

K. H. Becker, K. Schoenbach, and J. G. Eden, “Microplasmas and applications,” J. Phys. D: Appl. Phys. 39, No. 3, R55–R70 (2006).

Schoenbach, K. H.

K. H. Schoenbach and W. Zhu, “High-pressure microdischarges-sources of ultraviolet radiation,” IEEE J. Quantum Electron. (2012). in print.

W. Zhu, N. Takano, K. H. Schoenbach, D. Guru, J. McLaren, J. Heberlein, R. May, and J. R. Cooper, “Direct current planar excimer source,” J. Phys. D: Appl. Phys. 40, No. 13, 3896–3906 (2007).

J. P. Boeuf, L. C. Pitchford, and K. H. Schoenbach, “Predicted properties of microhollow cathode discharges in xenon,” Appl. Phys. Lett. 86, No. 7, 071501 (2005).

R. M. Sankaran, K. P. Giapis, M. Moselhy, and K. H. Schoenbach, “Argon excimer emission from high-pressure microdischarges in metal capillaries,” Appl. Phys. Lett. 83, No. 23, 4728–4730 (2003).

M. Moselhy, W. Shi, R. H. Stark, and K. H. Schoenbach, “(Xenon) Excimer emission from pulsed microhollow cathode discharges,” Appl. Phys. Lett. 79, No. 9, 1240–1242 (2001).

M. Moselhy, R. H. Stark, K. H. Schoenbach, and U. Kogelschatz, “Resonant energy transfer from argon dimers to atomic oxygen in microhollow cathode discharges,” Appl. Phys. Lett. 78, No. 7, 880–882 (2001).

A. El-Habachi and K. H. Schoenbach, “Emission of excimer radiation from direct current, high pressure hollow cathode discharges,” Appl. Phys. Lett. 72, No. 1, 22–24 (1988).

A. El-Habachi and K. H. Schoenbach, “Generation of intense excimer radiation from high-pressure hollow cathode discharges,” Appl. Phys. Lett. 73, No. 7, 885–887 (1988).

Schoop, S.

A. V. Fedenev, A. Morozov, R. Krücken, S. Schoop, J. Wieser, and A. Ulrich, “Applications of a broadband electron-beam pumped XUV radiation source,” J. Phys. D: Appl. Phys. 37, No. 11, 1586–1591 (2004).

Schubert, R.

R. Schubert, T. Scherzer, M. Hinkefuss, B. Marquardt, J. Vogel, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 1. Real-time methods for the determination of the micro-folding kinetics,” Surf. Coat. Technol. 203, No. 13, 1844–1849 (2009).

R. Schubert, F. Frost, M. Hinhefuß, R. Konieczny, B. Marquardt, R. Mehnert, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 2. Characterization of surface properties,” Surf. Coat. Technol. 203, No. 24, 3734–3740 (2009).

F. Bauer, R. Flyunt, K. Czihal, H. Langguth, R. Mehnert, R. Schubert, and M. R. Buchmeiser, “UV curing and matting of acrylate coatings reinforced by nano-silica and microcorundum particles,” Prog. Org. Coat. 60, No. 2, 121–126 (2007).

Seifalian, A. M.

M. Olbrich, G. Punshon, I. Frischauf, H. Salacinski, E. Rebollar, C. Romanin, A. M. Seifalian, and J. Heitz, “UV surface modification of a new nanocomposite polymer to improve cyctocompatibility,” J. Biomater. Sci., Polymer Ed. 18, No. 4, 453–454 (2007).

Shah, H.

P. Kurunczi, J. Lopez, H. Shah, and K. Becker, “Excimer formation in high-pressure microhollow cathode discharge plasmas in helium initiated by low-energy electron collisions,” Int. J. Mass Spectrom. 205, No. 1–3, 277–283 (2005).

P. Kurunczi, H. Shah, and K. Becker, “Hydrogen Lyman-? and Lyman-? emissions from high-pressure microhollow cathode discharges in Ne-H2 mixtures,” J. Phys. B: At. Mol. Opt. Phys. 32, No. 22, L651–L658 (1999).

Shangguan, C.

D. Lo, C. Shangguan, I. V. Kochetov, and A. P. Napartovich, “Experimental and numerical studies on Xe2? VUV emission in fast electric discharge afterglow,” J. Phys. D: Appl. Phys. 38, No. 18, 3430–3437 (2005).

Shaw, H.

J. Wieser, A. Ulrich, M. Salvermoser, H. Shaw, D. E. Murnick, and H. Dahi, “Light sources using energy transfer from excimer to line radiation,” Proc. SPIE 3403, 314–320 (1998).

Shi, W.

M. Moselhy, W. Shi, R. H. Stark, and K. H. Schoenbach, “(Xenon) Excimer emission from pulsed microhollow cathode discharges,” Appl. Phys. Lett. 79, No. 9, 1240–1242 (2001).

Shirai, T.

J. Kawanaka, T. Shirai, S. Kubodera, and W. Sasaki, “1.5 kW high-peak-power vacuum ultraviolet flash lamp using a pulsed silent discharge of krypton gas,” Appl. Phys. Lett. 79, No. 23, 3752–3754 (2001).

Shits, D. V.

M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).

M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).

M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, and M. V. Erofeev, “Excilamps: efficient sources of spontaneous UV and VUV radiation,” Phys. Usp. 46, No. 2, 193–209 (2003).

Shitts, D. V.

M. I. Lomaev, V. S. Skakun, V. F. Tarasenko, D. V. Shitts, and A. A. Lisenko, “A windowless VUV excilamp,” Tech. Phys. Lett. 32, No. 7, 590–592 (2006).

Shitz, D. V.

E. A. Sosnin, M. V. Erofeev, V. F. Tarasenko, and D. V. Shitz, “Capacitive discharge excilamps,” Instrum. Exp. Tech. 45, No. 6, 838–839 (2002).

Shulepov, M. A.

E. H. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, D. V. Rybka, M. A. Shulepov, and V. F. Tarasenko, “Runaway-electron-preionized diffuse discharge at atmospheric pressure and its application,” J. Phys. D: Appl. Phys. 42, No. 18, 185201 (2009).

Skakun, V.

V. Tarasenko, M. Erofeev, M. Lomaev, D. Rybka, A. Panchenko, E. Sosnin, V. Skakun, and D. Schitz, “UV and VUV excilamps with high peak power,” J. Light Visual Environ. 35, No. 3, 227–233 (2011).

Skakun, V. S.

M. I. Lomaev, V. S. Skakun, V. F. Tarasenko, D. V. Shitts, and A. A. Lisenko, “A windowless VUV excilamp,” Tech. Phys. Lett. 32, No. 7, 590–592 (2006).

M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).

M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).

M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, and M. V. Erofeev, “Excilamps: efficient sources of spontaneous UV and VUV radiation,” Phys. Usp. 46, No. 2, 193–209 (2003).

Skornyakov, A. V.

S. V. Avtaeva and A. V. Skornyakov, “Calculation of the characteristics of xenon excilamps using a one-dimensional hydrodynamic model,” Russ. Phys. J. 53, No. 3, 257–262 (2010).

S. V. Avtaeva and A. V. Skornyakov, “Effect of nonlocal electron kinetics on the characteristics of a dielectric barrier discharge in xenon,” Plasma Phys. Rep. 35, No. 7, 593–602 (2009).

Skrobol, C.

A. Ulrich, T. Heindl, R. Krücken, A. Morozov, C. Skrobol, and J. Wieser, “Electron beam induced light emission,” Eur. Phys. J. Appl. Phys. 47, No. 2, 22815–228l8 (2009).

Sobottka, A.

A. Sobottka, L. Drossler, M. Lenk, L. Prager, and R. Buchmeiser, “An open Argon dielectric barrier discharge VUV- source,” Plasma Processes Polym. 7, No. 8, 650–656 (2010).

Sokolova, I. V.

E. A. Sosnin, I. V. Sokolova, and V. F. Tarasenko, “Development and applications of novel UV and VUV excilamps in photochemistry,” in Photochemistry Research Progress, A. Sanchez and S. J. Gutierrez, eds. (Nova Science Publishers, Inc., Hauppauge, USA, 2008), pp. 225–269.

Sosnin, E.

V. Tarasenko, M. Erofeev, M. Lomaev, D. Rybka, A. Panchenko, E. Sosnin, V. Skakun, and D. Schitz, “UV and VUV excilamps with high peak power,” J. Light Visual Environ. 35, No. 3, 227–233 (2011).

Sosnin, E. A.

E. A. Sosnin, A. A. Pikulev, and V. F. Tarasenko, “Optical characteristics of cylindrical exciplex and excimer lamps excited by microwave radiation,” Tech. Phys. 56, No. 4, 526–530 (2011).

M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).

M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).

S. M. Avdeev, I. D. Kostyrya, E. A. Sosnin, and V. F. Tarasenko, “Generation of nanosecond pulses in a barrier-discharge in XeBr excimer lamp,” Tech. Phys. 51, No. 7, 878–881 (2006).

V. S. Dmitruck, E. A. Sosnin, and I. A. Obgol’tz, “The first attempt of XeCl-excilamp application in complex psoriasis curing,” Proc. SPIE 6263, 316–321 (2006).

M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, and M. V. Erofeev, “Excilamps: efficient sources of spontaneous UV and VUV radiation,” Phys. Usp. 46, No. 2, 193–209 (2003).

E. A. Sosnin, M. V. Erofeev, V. F. Tarasenko, and D. V. Shitz, “Capacitive discharge excilamps,” Instrum. Exp. Tech. 45, No. 6, 838–839 (2002).

A. M. Boichenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, The Ultraviolet Excilamps: Physics, Technology and Applications (Tomsk: STT Publishing, 2011), p. 510 (in Russian), ISBN: 978-5-93629-433-4.

V. F. Tarasenko, E. A. Sosnin, O. S. Zhdanova, and E. P. Krasnozhenov, “Applications of excilamps in microbiological and medical investigations,” in Plasma for Bio-Decontamination, Medicine and Food Security, Z. Machala, K. Hensel, and Yu. Akishev, eds. (Springer, 2012), pp. 251–263.

E. A. Sosnin, I. V. Sokolova, and V. F. Tarasenko, “Development and applications of novel UV and VUV excilamps in photochemistry,” in Photochemistry Research Progress, A. Sanchez and S. J. Gutierrez, eds. (Nova Science Publishers, Inc., Hauppauge, USA, 2008), pp. 225–269.

Stark, R. H.

M. Moselhy, W. Shi, R. H. Stark, and K. H. Schoenbach, “(Xenon) Excimer emission from pulsed microhollow cathode discharges,” Appl. Phys. Lett. 79, No. 9, 1240–1242 (2001).

M. Moselhy, R. H. Stark, K. H. Schoenbach, and U. Kogelschatz, “Resonant energy transfer from argon dimers to atomic oxygen in microhollow cathode discharges,” Appl. Phys. Lett. 78, No. 7, 880–882 (2001).

Stojanovic, S.

L. Prager, A. Dierdorf, H. Liebe, S. Naumov, S. Stojanovi?, R. Heller, L. Wennrich, and M. R. Buchmeiser, “Conversion of perhydropolysilazane into a SiOx network triggered by vacuum ultraviolet irradiation: Access to flexible, transparent barrier coatings,” Chem. Eur. J. 13, No. 30, 8522–8529 (2007).

Svorcik, V.

T. Gumpenberger, J. Heitz, D. Bäuerle, H. Kahr, I. Graz, C. Romanin, V. Svorcik, and F. Leisch, “Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene,” Biomaterials 24, No. 28, 5139–5144 (2003).
[PubMed]

Takano, N.

W. Zhu, N. Takano, K. H. Schoenbach, D. Guru, J. McLaren, J. Heberlein, R. May, and J. R. Cooper, “Direct current planar excimer source,” J. Phys. D: Appl. Phys. 40, No. 13, 3896–3906 (2007).

Tarasenko, V.

V. Tarasenko, M. Erofeev, M. Lomaev, D. Rybka, A. Panchenko, E. Sosnin, V. Skakun, and D. Schitz, “UV and VUV excilamps with high peak power,” J. Light Visual Environ. 35, No. 3, 227–233 (2011).

Tarasenko, V. F.

E. A. Sosnin, A. A. Pikulev, and V. F. Tarasenko, “Optical characteristics of cylindrical exciplex and excimer lamps excited by microwave radiation,” Tech. Phys. 56, No. 4, 526–530 (2011).

E. H. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, D. V. Rybka, M. A. Shulepov, and V. F. Tarasenko, “Runaway-electron-preionized diffuse discharge at atmospheric pressure and its application,” J. Phys. D: Appl. Phys. 42, No. 18, 185201 (2009).

S. M. Avdeev, I. D. Kostyrya, E. A. Sosnin, and V. F. Tarasenko, “Generation of nanosecond pulses in a barrier-discharge in XeBr excimer lamp,” Tech. Phys. 51, No. 7, 878–881 (2006).

M. V. Erofeev and V. F. Tarasenko, “XeCl-, KrCl-, XeBr- and KrBr-excilamps of the barrier discharge with the nanosecond pulse duration of radiation,” J. Phys. D: Appl. Phys. 39, No. 16, 3609–3614 (2006).

M. I. Lomaev, V. S. Skakun, V. F. Tarasenko, D. V. Shitts, and A. A. Lisenko, “A windowless VUV excilamp,” Tech. Phys. Lett. 32, No. 7, 590–592 (2006).

M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).

M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).

M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, and M. V. Erofeev, “Excilamps: efficient sources of spontaneous UV and VUV radiation,” Phys. Usp. 46, No. 2, 193–209 (2003).

E. A. Sosnin, M. V. Erofeev, V. F. Tarasenko, and D. V. Shitz, “Capacitive discharge excilamps,” Instrum. Exp. Tech. 45, No. 6, 838–839 (2002).

A. M. Boichenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, The Ultraviolet Excilamps: Physics, Technology and Applications (Tomsk: STT Publishing, 2011), p. 510 (in Russian), ISBN: 978-5-93629-433-4.

E. A. Sosnin, I. V. Sokolova, and V. F. Tarasenko, “Development and applications of novel UV and VUV excilamps in photochemistry,” in Photochemistry Research Progress, A. Sanchez and S. J. Gutierrez, eds. (Nova Science Publishers, Inc., Hauppauge, USA, 2008), pp. 225–269.

V. F. Tarasenko, E. A. Sosnin, O. S. Zhdanova, and E. P. Krasnozhenov, “Applications of excilamps in microbiological and medical investigations,” in Plasma for Bio-Decontamination, Medicine and Food Security, Z. Machala, K. Hensel, and Yu. Akishev, eds. (Springer, 2012), pp. 251–263.

Tippayawong, N.

P. Intra and N. Tippayawong, “An overview of unipolar charger developments for nanoparticle charging,” Aerosol Air Qual. Res. 11, 187–209 (2011).

Ulrich, A.

A. Ulrich, T. Heindl, R. Krücken, A. Morozov, C. Skrobol, and J. Wieser, “Electron beam induced light emission,” Eur. Phys. J. Appl. Phys. 47, No. 2, 22815–228l8 (2009).

A. Morozov, T. Heindl, R. Krücken, A. Ulrich, and J. Wieser, “Conversion efficiencies of electron beam energy to vacuum ultraviolet light for Ne, Ar, Kr, and Xe excited with continuous electron beams,” J. Appl. Phys. 103, No. 10, 103301 (2008).

A. Morozov, T. Heindl, R. Krücken, A. Ulrich, and J. Wieser, “Spatial distribution of fluorescent light emitted from neon and nitrogen excited by low energy electron beams,” J. Appl. Phys. 100, No. 9, 093305 (2006).

A. Morozov, R. Krücken, A. Ulrich, J. Wieser, and T. McCarthy, “Energy-transfer processes in neon-hydrogen mixtures excited by electron beams,” J. Chem. Phys. 123, No. 23, 234311 (2005).
[PubMed]

A. Morozov, R. Krücken, T. Ottenthal, A. Ulrich, and J. Wieser, “Ultraviolet emission from argon water-vapor mixtures excited with low-energy electron beams,” Appl. Phys. Lett. 86, No. 1, 011502 (2005).

T. McCarthy, D. E. Murnick, M. Salvermoser, and A. Ulrich, “Non-thermal Doppler-broadened Lyman-? line shape in resonant dissociation of H2,” J. Phys. B: At. Mol. Opt. Phys. 38, No. 16, 3043–3054 (2005).

F. Mühlberger, J. Wieser, A. Morozov, A. Ulrich, and R. Zimmermann, “Single-photon ionization quadrupole mass spectrometry with an electron beam pumped excimer light source,” Anal Chem. 77, No. 7, 2218–2226 (2005).
[PubMed]

A. V. Fedenev, A. Morozov, R. Krücken, S. Schoop, J. Wieser, and A. Ulrich, “Applications of a broadband electron-beam pumped XUV radiation source,” J. Phys. D: Appl. Phys. 37, No. 11, 1586–1591 (2004).

F. Mühlberger, J. Wieser, A. Ulrich, and R. Zimmermann, “Single photon ionization (SPI) via incoherent VUV-excimer light: Robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis,” Anal. Chem. A 74, No. 15, 3790–3801 (2002).

J. Wieser, A. Ulrich, M. Salvermoser, H. Shaw, D. E. Murnick, and H. Dahi, “Light sources using energy transfer from excimer to line radiation,” Proc. SPIE 3403, 314–320 (1998).

J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, “Vacuum ultraviolet rare gas excimer light source,” Rev. Sci. Instrum. 68, No. 3, 1360–1364 (1997).

Vicente, J. S.

J. S. Vicente, J. L. Gejo, S. Rothenbacher, S. Sarojiniamma, E. Gogritchiani, M. Wörner, G. Kasper, and A. M. Braun, “Oxidation of polystyrene aerosols by VUV-photolysis and/or ozone,” Photochem. Photobiol. Sci. 8, No. 7, 944–952 (2009).
[PubMed]

Vogel, J.

R. Schubert, T. Scherzer, M. Hinkefuss, B. Marquardt, J. Vogel, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 1. Real-time methods for the determination of the micro-folding kinetics,” Surf. Coat. Technol. 203, No. 13, 1844–1849 (2009).

Volkova, G. A.

G. A. Volkova and G. N. Gerasimov, “Amplification of ?=147nm radiation from a barrier discharge in a mixture of krypton with xenon,” Quantum Electron. 27, No. 3, 213–216 (1997).

Ward, B. K.

R. J. Carman, B. K. Ward, and D. M. Kane, “Enhanced performance of an EUV light source (?=84nm) using short-pulse excitation of a windowless dielectric barrier discharge in neon,” J. Phys. D: Appl. Phys. 43, No. 2, 025205 (2010).

R. J. Carman, R. P. Mildren, B. K. Ward, and D. M. Kane, “High-pressure (>1 bar) dielectric barrier discharge lamps generating short pulses of high-peak power vacuum ultraviolet radiation,” J. Phys. D: Appl. Phys. 37, No. 17, 2399–2407 (2004).

D. M. Kane, D. B. Hirschausen, B. K. Ward, R. J. Carman, and R. P. Mildren, “Pulsed VUV sources and their application to surface cleaning of optical materials,” Proc. SPIE 5399, 100–106 (2004).

D. M. Kane, D. Hirschausen, B. K. Ward, R. P. Mildren, and R. J. Carman, “Surface cleaning of optical materials using novel VUV sources,” in Laser Cleaning II, D. M. Kane, ed. (World Scientific Publishing Co., Singapore, 2006), pp. 243–256. Chapter 13.

Wennrich, L.

L. Prager, L. Wennrich, R. Heller, W. Knolle, S. Naumov, A. Prager, D. Decker, H. Liebe, and M. R. Buchmeiser, “Vacuum-UV irradiation-based formation of Methyl-Si-O-Si networks from Poly(1,1-Dimethylsilazane-co-1-methylsilazane),” Chem. Eur. J. 15, No. 3, 675–683 (2009).

L. Prager, A. Dierdorf, H. Liebe, S. Naumov, S. Stojanovi?, R. Heller, L. Wennrich, and M. R. Buchmeiser, “Conversion of perhydropolysilazane into a SiOx network triggered by vacuum ultraviolet irradiation: Access to flexible, transparent barrier coatings,” Chem. Eur. J. 13, No. 30, 8522–8529 (2007).

Wieser, J.

A. Ulrich, T. Heindl, R. Krücken, A. Morozov, C. Skrobol, and J. Wieser, “Electron beam induced light emission,” Eur. Phys. J. Appl. Phys. 47, No. 2, 22815–228l8 (2009).

A. Morozov, T. Heindl, R. Krücken, A. Ulrich, and J. Wieser, “Conversion efficiencies of electron beam energy to vacuum ultraviolet light for Ne, Ar, Kr, and Xe excited with continuous electron beams,” J. Appl. Phys. 103, No. 10, 103301 (2008).

A. Morozov, T. Heindl, R. Krücken, A. Ulrich, and J. Wieser, “Spatial distribution of fluorescent light emitted from neon and nitrogen excited by low energy electron beams,” J. Appl. Phys. 100, No. 9, 093305 (2006).

A. Morozov, R. Krücken, T. Ottenthal, A. Ulrich, and J. Wieser, “Ultraviolet emission from argon water-vapor mixtures excited with low-energy electron beams,” Appl. Phys. Lett. 86, No. 1, 011502 (2005).

A. Morozov, R. Krücken, A. Ulrich, J. Wieser, and T. McCarthy, “Energy-transfer processes in neon-hydrogen mixtures excited by electron beams,” J. Chem. Phys. 123, No. 23, 234311 (2005).
[PubMed]

F. Mühlberger, J. Wieser, A. Morozov, A. Ulrich, and R. Zimmermann, “Single-photon ionization quadrupole mass spectrometry with an electron beam pumped excimer light source,” Anal Chem. 77, No. 7, 2218–2226 (2005).
[PubMed]

A. V. Fedenev, A. Morozov, R. Krücken, S. Schoop, J. Wieser, and A. Ulrich, “Applications of a broadband electron-beam pumped XUV radiation source,” J. Phys. D: Appl. Phys. 37, No. 11, 1586–1591 (2004).

F. Mühlberger, J. Wieser, A. Ulrich, and R. Zimmermann, “Single photon ionization (SPI) via incoherent VUV-excimer light: Robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis,” Anal. Chem. A 74, No. 15, 3790–3801 (2002).

J. Wieser, A. Ulrich, M. Salvermoser, H. Shaw, D. E. Murnick, and H. Dahi, “Light sources using energy transfer from excimer to line radiation,” Proc. SPIE 3403, 314–320 (1998).

J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, “Vacuum ultraviolet rare gas excimer light source,” Rev. Sci. Instrum. 68, No. 3, 1360–1364 (1997).

Wimmershoff, M. B.

K. Köllner, M. B. Wimmershoff, C. Hintz, M. Landthaler, and U. Hohenleutner, “Comparison of the 308-nm excimer laser and a 308-nm excimer lamp with 311-nm narrowband ultraviolet B in the treatment of psoriasis,” British J. Dermatol. 152, No. 4, 750–754 (2005).

Wörner, M.

J. S. Vicente, J. L. Gejo, S. Rothenbacher, S. Sarojiniamma, E. Gogritchiani, M. Wörner, G. Kasper, and A. M. Braun, “Oxidation of polystyrene aerosols by VUV-photolysis and/or ozone,” Photochem. Photobiol. Sci. 8, No. 7, 944–952 (2009).
[PubMed]

M. G. Gonzalez, E. Oliveros, M. Wörner, and A. M. Braun, “Vacuum-ultraviolet photolysis of aqueous reaction systems,” J. Photochem. Photobiol. C: Photochem. Rev. 5, No. 3, 225–246 (2004).

Yakovlenko, S. I.

A. V. Karelin and S. I. Yakovlenko, “Electron-beam pumping conversion into spontaneous emission at the Lyman-Alpha line (?=121.6nm) in Ne/H2 and He/H2 mixtures,” Laser Phys. 13, No. 12, 1455–1460 (2003).

Yan, J.

J. Yan and M. C. Gupta, “High power 121.6 nm radiation source,” J. Vac. Sci. Technol. B 21, No. 6, 2839–2842 (2003).

J. Yan, A. El-Dakrouri, M. Laroussi, and M. C. Gupta, “121.6 nm radiation source for advanced lithography,” J. Vac. Sci. Technol. B 20, No. 6, 2574–2577 (2002).

A. El-Dakrouri, J. Yan, M. Laroussi, M. C. Gupta, and Y. Badr, “VUV emission from a novel DBD-based radiation source,” J. Phys. D: Appl. Phys. 35, No. 21, L109–L114 (2002).

J. Yan, “High power 121.6 nm radiation source for advanced lithography,” in Ph.D. Thesis, Norfolk, Va (Old Dominium University, 2005), 146 pages, AAT 3191393.

Yu, J. J.

J. J. Yu and I. W. Boyd, “Direct nitridation of high-k metal oxide thin films using argon excimer sources,” Electron. Lett. 41, No. 22, 1210–1211 (2005).

J. J. Yu and I. W. Boyd, “Low temperature Si and SiGe oxidation through dielectric barrier discharges,” Thin Solid Films 453–454, 63–66 (2004).

Zajadacz, J.

C. Elsner, S. Naumov, J. Zajadacz, and M. R. Buchmeiser, “172 nm excimer VUV-triggered photodegradation and micropatterning of aminosilane films,” Thin Solid Films 517, No. 24, 6772–6776 (2009).

Zhang, B.

A. M. Boies, J. T. Roberts, S. L. Girshick, B. Zhang, T. Nakamura, and A. Mochizuki, “SiO2 coating of silver nano- particles by photoinduced chemical vapor deposition,” Nanotechnology 20, No. 29, 295604 (2009).
[PubMed]

B. Zhang, Y.-C. Liao, S. L. Girshick, and J. T. Roberts, “Growth of coatings on nanoparticles by photoinduced chemical vapor deposition,” J. Nanopart. Res. 10, No. 1, 173–178 (2008).

Zhang, J.-Y.

I. W. Boyd, J.-Y. Zhang, and U. Kogelschatz, “Development and applications of excimer UV lamps,” in Photo-Excited Processes, Diagnostics and Applications (PEPDA), A. Peled, ed. (Kluwer Academic Publishers, Dordrecht, 2003), pp. 161–199.

Zhdanova, O. S.

V. F. Tarasenko, E. A. Sosnin, O. S. Zhdanova, and E. P. Krasnozhenov, “Applications of excilamps in microbiological and medical investigations,” in Plasma for Bio-Decontamination, Medicine and Food Security, Z. Machala, K. Hensel, and Yu. Akishev, eds. (Springer, 2012), pp. 251–263.

Zhu, W.

K. H. Schoenbach and W. Zhu, “High-pressure microdischarges-sources of ultraviolet radiation,” IEEE J. Quantum Electron. (2012). in print.

W. Zhu, N. Takano, K. H. Schoenbach, D. Guru, J. McLaren, J. Heberlein, R. May, and J. R. Cooper, “Direct current planar excimer source,” J. Phys. D: Appl. Phys. 40, No. 13, 3896–3906 (2007).

Zimmermann, R.

M. S. Eschner and R. Zimmermann, “Determination of photoionization cross-sections of different organic molecules using gas chromatography coupled to single-photon ionization (SPI) time-of-flight mass spectrometry (TOF-MS) with an electron-beam-pumped rare gas excimer light source (EBEL): influence of molecular structure and analytical implications,” Appl. Spectrosc. 65, No. 7, 806–816 (2011).
[PubMed]

F. Mühlberger, M. Saraji-Bozorgzad, M. Gonin, K. Fuhrer, and R. Zimmermann, “Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source,” Anal. Chem. 79, No. 21, 8118–8124 (2007).
[PubMed]

F. Mühlberger, J. Wieser, A. Morozov, A. Ulrich, and R. Zimmermann, “Single-photon ionization quadrupole mass spectrometry with an electron beam pumped excimer light source,” Anal Chem. 77, No. 7, 2218–2226 (2005).
[PubMed]

F. Mühlberger, J. Wieser, A. Ulrich, and R. Zimmermann, “Single photon ionization (SPI) via incoherent VUV-excimer light: Robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis,” Anal. Chem. A 74, No. 15, 3790–3801 (2002).

Aerosol Air Qual. Res. (1)

P. Intra and N. Tippayawong, “An overview of unipolar charger developments for nanoparticle charging,” Aerosol Air Qual. Res. 11, 187–209 (2011).

Anal Chem. (1)

F. Mühlberger, J. Wieser, A. Morozov, A. Ulrich, and R. Zimmermann, “Single-photon ionization quadrupole mass spectrometry with an electron beam pumped excimer light source,” Anal Chem. 77, No. 7, 2218–2226 (2005).
[PubMed]

Anal. Chem. (1)

F. Mühlberger, M. Saraji-Bozorgzad, M. Gonin, K. Fuhrer, and R. Zimmermann, “Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source,” Anal. Chem. 79, No. 21, 8118–8124 (2007).
[PubMed]

Anal. Chem. A (1)

F. Mühlberger, J. Wieser, A. Ulrich, and R. Zimmermann, “Single photon ionization (SPI) via incoherent VUV-excimer light: Robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis,” Anal. Chem. A 74, No. 15, 3790–3801 (2002).

Appl. Phys. B. (1)

S. Peng, J. D. Ametepe, and D. M. Manos, “Analysis and kinetic model of a high-pressure KrI excimer emission in a novel capacitively coupled rf lamp,” Appl. Phys. B. 83, No. 4, 643–650 (2006).

Appl. Phys. Lett. (11)

A. El-Habachi and K. H. Schoenbach, “Generation of intense excimer radiation from high-pressure hollow cathode discharges,” Appl. Phys. Lett. 73, No. 7, 885–887 (1988).

A. El-Habachi and K. H. Schoenbach, “Emission of excimer radiation from direct current, high pressure hollow cathode discharges,” Appl. Phys. Lett. 72, No. 1, 22–24 (1988).

M. Moselhy, W. Shi, R. H. Stark, and K. H. Schoenbach, “(Xenon) Excimer emission from pulsed microhollow cathode discharges,” Appl. Phys. Lett. 79, No. 9, 1240–1242 (2001).

J. P. Boeuf, L. C. Pitchford, and K. H. Schoenbach, “Predicted properties of microhollow cathode discharges in xenon,” Appl. Phys. Lett. 86, No. 7, 071501 (2005).

R. M. Sankaran, K. P. Giapis, M. Moselhy, and K. H. Schoenbach, “Argon excimer emission from high-pressure microdischarges in metal capillaries,” Appl. Phys. Lett. 83, No. 23, 4728–4730 (2003).

S.-J. Park, K.-F. Chen, N. P. Ostrom, and J. G. Eden, “40?000 pixel arrays of ac-excited silicon microcavity plasma devices,” Appl. Phys. Lett. 86, No. 11, 111501 (2005).

M. Salvermoser and D. E. Murnick, “High-efficiency, high-power, stable 172 nm xenon excimer light source,” Appl. Phys. Lett. 83, No. 10, 1932–1934 (2003).

S. Kubodera, M. Kitahara, J. Kawanaka, W. Sasaki, and K. Kurosawa, “A vacuum ultraviolet flash lamp with extremely broadened emission spectra,” Appl. Phys. Lett. 69, No. 4, 452–454 (1996).

J. Kawanaka, T. Shirai, S. Kubodera, and W. Sasaki, “1.5 kW high-peak-power vacuum ultraviolet flash lamp using a pulsed silent discharge of krypton gas,” Appl. Phys. Lett. 79, No. 23, 3752–3754 (2001).

M. Moselhy, R. H. Stark, K. H. Schoenbach, and U. Kogelschatz, “Resonant energy transfer from argon dimers to atomic oxygen in microhollow cathode discharges,” Appl. Phys. Lett. 78, No. 7, 880–882 (2001).

A. Morozov, R. Krücken, T. Ottenthal, A. Ulrich, and J. Wieser, “Ultraviolet emission from argon water-vapor mixtures excited with low-energy electron beams,” Appl. Phys. Lett. 86, No. 1, 011502 (2005).

Appl. Spectrosc. (1)

Appl. Surf. Sci. (4)

H. Esrom and U. Kogelschatz, “Metal deposition with a windowless VUV excimer source,” Appl. Surf. Sci. 54, 440–444 (1992).

C. Elsner, M. Lenk, L. Prager, and R. Mehnert, “Windowless argon excimer source for surface modification,” Appl. Surf. Sci. 252, No. 10, 3616–3624 (2006).

M. Kitamura, K. Mitsuka, and M. A. Sato, “Practical high-power excimer lamp excited by a microwave discharge,” Appl. Surf. Sci. 79–80, 507–513 (2004).

U. Kogelschatz, “Silent-discharge driven excimer UV sources and their applications,” Appl. Surf. Sci. 54, 410–423 (1992).

Biomaterials (1)

T. Gumpenberger, J. Heitz, D. Bäuerle, H. Kahr, I. Graz, C. Romanin, V. Svorcik, and F. Leisch, “Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene,” Biomaterials 24, No. 28, 5139–5144 (2003).
[PubMed]

British J. Dermatol. (1)

K. Köllner, M. B. Wimmershoff, C. Hintz, M. Landthaler, and U. Hohenleutner, “Comparison of the 308-nm excimer laser and a 308-nm excimer lamp with 311-nm narrowband ultraviolet B in the treatment of psoriasis,” British J. Dermatol. 152, No. 4, 750–754 (2005).

Chem. Eur. J. (2)

L. Prager, A. Dierdorf, H. Liebe, S. Naumov, S. Stojanovi?, R. Heller, L. Wennrich, and M. R. Buchmeiser, “Conversion of perhydropolysilazane into a SiOx network triggered by vacuum ultraviolet irradiation: Access to flexible, transparent barrier coatings,” Chem. Eur. J. 13, No. 30, 8522–8529 (2007).

L. Prager, L. Wennrich, R. Heller, W. Knolle, S. Naumov, A. Prager, D. Decker, H. Liebe, and M. R. Buchmeiser, “Vacuum-UV irradiation-based formation of Methyl-Si-O-Si networks from Poly(1,1-Dimethylsilazane-co-1-methylsilazane),” Chem. Eur. J. 15, No. 3, 675–683 (2009).

Contrib. Plasma Phys. (3)

E. E. Bogdanov, A. A. Kudryavtsev, and R. R. Arslanbekov, “2D simulations of short-pulsed dielectric barrier discharge Xenon excimer lamp,” Contrib. Plasma Phys. 46, No. 10, 807–816 (2006).

R. Bussiahn, A. V. Pipa, and E. Kindel, “A miniaturized XeCl dielectric barrier discharge as a source of short lived, fast decaying UV radiation,” Contrib. Plasma Phys. 50, No. 2, 182–192 (2010).

V. Pipa and R. Bussiahn, “Optimization of a dielectric barrier discharge for pulsed UV emission of XeCl at 308 nm,” Contrib. Plasma Phys. 51, No. 9, 850–862 (2011).

Electron. Lett. (1)

J. J. Yu and I. W. Boyd, “Direct nitridation of high-k metal oxide thin films using argon excimer sources,” Electron. Lett. 41, No. 22, 1210–1211 (2005).

Eur. Phys. J. Appl. Phys. (2)

M. J. Salvermoser, U. Kogelschatz, and D. E. Murnick, “Influence of humidity on photochemical ozone generation with 172 nm xenon excimer lamps,” Eur. Phys. J. Appl. Phys. 47, No. 2, 22812 (2009).

A. Ulrich, T. Heindl, R. Krücken, A. Morozov, C. Skrobol, and J. Wieser, “Electron beam induced light emission,” Eur. Phys. J. Appl. Phys. 47, No. 2, 22815–228l8 (2009).

G. Ital. Dermatol. Venereol. (1)

L. Mavilia, M. Mori, R. Rossi, P. Campolmi, A. Puglisi Guerra, and T. Lotti, “308 nm monochromatic excimer light in dermatology: personal experience and review of the literature,” G. Ital. Dermatol. Venereol. 143, No. 5, 329–337 (2008).
[PubMed]

Hakone XI (1)

S. Beleznai, P. Richter, and L. Balázs, “New modulated pulsed driving signal for efficient excitation of DBD discharges,” Hakone XI 2, 302–306 (2008). Proc.

IEEE J. Quantum Electron. (1)

K. H. Schoenbach and W. Zhu, “High-pressure microdischarges-sources of ultraviolet radiation,” IEEE J. Quantum Electron. (2012). in print.

IEEE Trans. Plasma Sci. (1)

S. V. Avtaeva, B. Saghi, and B. Rahmani, “One-dimensional fluid model and characteristics of the dielectric barrier discharge in 0.99Xe-0.O1 Cl2 mixture,” IEEE Trans. Plasma Sci. 39, No. 9, 1814–1822 (2011).

Instrum. Exp. Tech. (3)

M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).

E. A. Sosnin, M. V. Erofeev, V. F. Tarasenko, and D. V. Shitz, “Capacitive discharge excilamps,” Instrum. Exp. Tech. 45, No. 6, 838–839 (2002).

M. I. Lomaev, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, V. S. Skakun, M. V. Erofeev, and A. A. Lisenko, “Capacitive and barrier discharge excilamps and their applications (Review),” Instrum. Exp. Tech. 49, No. 5, 595–616 (2006).

Int. J. Immunopathol. Pharmacol. (1)

P. Campolmi, L. Mavilia, T. M. Lotti, R. Rossi, B. Brazzini, J. Hercogova, and G. Cappugi, “308 nm monochromatic excimer light for the treatment of palmoplantar psoriasis,” Int. J. Immunopathol. Pharmacol. 13, 11–13 (2002).

Int. J. Mass Spectrom. (1)

P. Kurunczi, J. Lopez, H. Shah, and K. Becker, “Excimer formation in high-pressure microhollow cathode discharge plasmas in helium initiated by low-energy electron collisions,” Int. J. Mass Spectrom. 205, No. 1–3, 277–283 (2005).

J. Aerosol Sci. (1)

A. Maisels, F. Jordan, and H. Fissan, “On the effect of charge recombination on the aerosol charge distribution in photocharging systems,” J. Aerosol Sci. 34, No. 1, 117–132 (2003).

J. Appl. Phys. (5)

J. Jiang, C. J. Hogan Jr., D.-R. Chen, and R. Biswas, “Aerosol charging and capture in the nanoparticle size range (6–15 nm) by direct photoionization and diffusion mechanisms,” J. Appl. Phys. 102, No. 3, 034904 (2007).

J. D. Ametepe, J. Diggs, D. M. Manos, and M. J. Kelley, “Characterization and modeling of a microwave driven xenon excimer lamp,” J. Appl. Phys. 85, No. 11, 7505–7510 (1999).

M. Salvermoser and D. E. Murnick, “Efficient, stable, corona discharge 172 nm xenon excimer light source,” J. Appl. Phys. 94, No. 6, 3722–3731 (2003).

A. Morozov, T. Heindl, R. Krücken, A. Ulrich, and J. Wieser, “Spatial distribution of fluorescent light emitted from neon and nitrogen excited by low energy electron beams,” J. Appl. Phys. 100, No. 9, 093305 (2006).

A. Morozov, T. Heindl, R. Krücken, A. Ulrich, and J. Wieser, “Conversion efficiencies of electron beam energy to vacuum ultraviolet light for Ne, Ar, Kr, and Xe excited with continuous electron beams,” J. Appl. Phys. 103, No. 10, 103301 (2008).

J. Biomater. Sci., Polymer Ed. (1)

M. Olbrich, G. Punshon, I. Frischauf, H. Salacinski, E. Rebollar, C. Romanin, A. M. Seifalian, and J. Heitz, “UV surface modification of a new nanocomposite polymer to improve cyctocompatibility,” J. Biomater. Sci., Polymer Ed. 18, No. 4, 453–454 (2007).

J. Chem. Phys. (1)

A. Morozov, R. Krücken, A. Ulrich, J. Wieser, and T. McCarthy, “Energy-transfer processes in neon-hydrogen mixtures excited by electron beams,” J. Chem. Phys. 123, No. 23, 234311 (2005).
[PubMed]

J. Environ. Eng. Sci. (1)

T. Oppenländer, “Mercury-free sources of VUV/UV radiation: application of modern excimer lamps (excilamps) for water and air treatment,” J. Environ. Eng. Sci. 6, No. 3, 253–264 (2007).

J. Light Visual Environ. (1)

V. Tarasenko, M. Erofeev, M. Lomaev, D. Rybka, A. Panchenko, E. Sosnin, V. Skakun, and D. Schitz, “UV and VUV excilamps with high peak power,” J. Light Visual Environ. 35, No. 3, 227–233 (2011).

J. Nanopart. Res. (1)

B. Zhang, Y.-C. Liao, S. L. Girshick, and J. T. Roberts, “Growth of coatings on nanoparticles by photoinduced chemical vapor deposition,” J. Nanopart. Res. 10, No. 1, 173–178 (2008).

J. Photochem. Photobiol. C: Photochem. Rev. (1)

M. G. Gonzalez, E. Oliveros, M. Wörner, and A. M. Braun, “Vacuum-ultraviolet photolysis of aqueous reaction systems,” J. Photochem. Photobiol. C: Photochem. Rev. 5, No. 3, 225–246 (2004).

J. Phys. B: At. Mol. Opt. Phys. (3)

B. Krylov, A. Mozorov, G. Gerasimov, A. Arnesen, R. Hallin, and F. Heijkenskjöld, “Channels of energy transfer to atomic nitrogen in excited argon–nitrogen mixtures,” J. Phys. B: At. Mol. Opt. Phys. 35, No. 20, 4257–4270 (2002).

P. Kurunczi, H. Shah, and K. Becker, “Hydrogen Lyman-? and Lyman-? emissions from high-pressure microhollow cathode discharges in Ne-H2 mixtures,” J. Phys. B: At. Mol. Opt. Phys. 32, No. 22, L651–L658 (1999).

T. McCarthy, D. E. Murnick, M. Salvermoser, and A. Ulrich, “Non-thermal Doppler-broadened Lyman-? line shape in resonant dissociation of H2,” J. Phys. B: At. Mol. Opt. Phys. 38, No. 16, 3043–3054 (2005).

J. Phys. D: Appl. Phys. (15)

M. M. Guivan, A. A. Malinina, and A. Brablec, “Experimental and theoretical characterization of a multi-wavelength DBD-driven exciplex lamp operated with mercury bromide/rare gas mixtures,” J. Phys. D: Appl. Phys. 44, No. 22, 224012 (2011).

S. Beleznai, G. Mihajlik, A. Agod, I. Maros, and R. Juhasz, “High-efficiency dielectric barrier Xe discharge lamp: theoretical and experimental investigations,” J. Phys. D: Appl. Phys. 39, No. 17, 3777–3787 (2006).

S. Beleznai, G. Mihajlik, I. Maros, L. Balazs, and P. Richter, “High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp,” J. Phys. D: Appl. Phys. 43, No. 3, 015203 (2010).

A. Belasri, K. Khodja, S. Bendella, and Z. Harrache, “One-dimensional modelling of DBDs in Ne-Xe mixtures for excimer lamps,” J. Phys. D: Appl. Phys. 43, No. 44, 445202 (2010).

R. J. Carman and R. P. Mildren, “Computer modelling of a short-pulse excited dielectric barrier discharge xenon excimer lamp (??172nm),” J. Phys. D: Appl. Phys. 36, No. 1, 19–33 (2003).

E. Bogdanov, A. A. Kudryavtsev, R. R. Arslanbekov, and V. I. Kolobov, “Simulation of pulsed dielectric barrier discharge xenon excimer lamp,” J. Phys. D: Appl. Phys. 37, No. 21, 2987–2995 (2004).

E. H. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, D. V. Rybka, M. A. Shulepov, and V. F. Tarasenko, “Runaway-electron-preionized diffuse discharge at atmospheric pressure and its application,” J. Phys. D: Appl. Phys. 42, No. 18, 185201 (2009).

R. J. Carman, B. K. Ward, and D. M. Kane, “Enhanced performance of an EUV light source (?=84nm) using short-pulse excitation of a windowless dielectric barrier discharge in neon,” J. Phys. D: Appl. Phys. 43, No. 2, 025205 (2010).

M. V. Erofeev and V. F. Tarasenko, “XeCl-, KrCl-, XeBr- and KrBr-excilamps of the barrier discharge with the nanosecond pulse duration of radiation,” J. Phys. D: Appl. Phys. 39, No. 16, 3609–3614 (2006).

R. J. Carman, R. P. Mildren, B. K. Ward, and D. M. Kane, “High-pressure (>1 bar) dielectric barrier discharge lamps generating short pulses of high-peak power vacuum ultraviolet radiation,” J. Phys. D: Appl. Phys. 37, No. 17, 2399–2407 (2004).

D. Lo, C. Shangguan, I. V. Kochetov, and A. P. Napartovich, “Experimental and numerical studies on Xe2? VUV emission in fast electric discharge afterglow,” J. Phys. D: Appl. Phys. 38, No. 18, 3430–3437 (2005).

A. El-Dakrouri, J. Yan, M. Laroussi, M. C. Gupta, and Y. Badr, “VUV emission from a novel DBD-based radiation source,” J. Phys. D: Appl. Phys. 35, No. 21, L109–L114 (2002).

A. V. Fedenev, A. Morozov, R. Krücken, S. Schoop, J. Wieser, and A. Ulrich, “Applications of a broadband electron-beam pumped XUV radiation source,” J. Phys. D: Appl. Phys. 37, No. 11, 1586–1591 (2004).

W. Zhu, N. Takano, K. H. Schoenbach, D. Guru, J. McLaren, J. Heberlein, R. May, and J. R. Cooper, “Direct current planar excimer source,” J. Phys. D: Appl. Phys. 40, No. 13, 3896–3906 (2007).

K. H. Becker, K. Schoenbach, and J. G. Eden, “Microplasmas and applications,” J. Phys. D: Appl. Phys. 39, No. 3, R55–R70 (2006).

J. Vac. Sci. Technol. B (3)

J. Yan, A. El-Dakrouri, M. Laroussi, and M. C. Gupta, “121.6 nm radiation source for advanced lithography,” J. Vac. Sci. Technol. B 20, No. 6, 2574–2577 (2002).

J. Yan and M. C. Gupta, “High power 121.6 nm radiation source,” J. Vac. Sci. Technol. B 21, No. 6, 2839–2842 (2003).

V. Liberman, M. Rothshield, P. G. Murphy, and S. T. Palmacci, “Prospects for photolithography at 121 nm,” J. Vac. Sci. Technol. B 20, No. 6, 2567–2573 (2002).

Laser Phys. (2)

A. V. Karelin and S. I. Yakovlenko, “Electron-beam pumping conversion into spontaneous emission at the Lyman-Alpha line (?=121.6nm) in Ne/H2 and He/H2 mixtures,” Laser Phys. 13, No. 12, 1455–1460 (2003).

A. V. Karelin, “Far-UV sources pumped by an open discharge and electron beam,” Laser Phys. 14, No. 1, 15–22 (2004).

Nanotechnology (1)

A. M. Boies, J. T. Roberts, S. L. Girshick, B. Zhang, T. Nakamura, and A. Mochizuki, “SiO2 coating of silver nano- particles by photoinduced chemical vapor deposition,” Nanotechnology 20, No. 29, 295604 (2009).
[PubMed]

Opt. Specrosc. (1)

G. N. Gerasimov, B. E. Krylov, R. Hallin, and A. Arnesen, “Parameters of VUV radiation from a dc capillary discharge in a mixture of krypton and xenon,” Opt. Specrosc. 100, No. 6, 825–829 (2006).

Photochem. Photobiol. Sci. (1)

J. S. Vicente, J. L. Gejo, S. Rothenbacher, S. Sarojiniamma, E. Gogritchiani, M. Wörner, G. Kasper, and A. M. Braun, “Oxidation of polystyrene aerosols by VUV-photolysis and/or ozone,” Photochem. Photobiol. Sci. 8, No. 7, 944–952 (2009).
[PubMed]

Photodermatol. Photoimmunol. Photomed. (1)

A. Pacifico and G. Leone, “Photo(chemo)therapy for vitiligo,” Photodermatol. Photoimmunol. Photomed. 27, No. 5, 261–277 (2011).

Phys. Plasmas (2)

A. Belasri, S. Bendella, and T. Baba-Hamed, “Study of the first pulse of Ne-Xe-HCl dielectric barrier discharge for the excimer lamp,” Phys. Plasmas 15, No. 5, 053502 (2008).

A. Belasri and Z. Harrache, “Electrical and kinetical aspects of homogeneous dielectric-barrier discharge in xenon for excimer lamps,” Phys. Plasmas 17, No. 12, 123501 (2010).

Phys. Usp. (2)

M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, D. V. Shits, and M. V. Erofeev, “Excilamps: efficient sources of spontaneous UV and VUV radiation,” Phys. Usp. 46, No. 2, 193–209 (2003).

G. N. Gerasimov, “Optical spectra of binary rare-gas mixtures,” Phys. Usp. 47, No. 2, 149–168 (2004).

Plasma Chem. Plasma Process. (2)

U. Kogelschatz, “Dielectric-barrier discharges: their history, discharge physics and industrial applications,” Plasma Chem. Plasma Process. 23, No. 1, 1–46 (2003).

A. Belasri and Z. Harrache, “Electrical approach of homogenous high pressure Ne/Xe/HCl dielectric barrier discharge for XeCl (308 nm) lamp,” Plasma Chem. Plasma Process. 31, No. 5, 787–798 (2010).

Plasma Devices Oper. (1)

S. Bendella and A. Belasri, “Xe-Ne-HCl excimer lamp excited by a phototriggered discharge,” Plasma Devices Oper. 15, No. 2, 77–85 (2007).

Plasma Phys. Controlled Fusion (1)

J. G. Eden and S.-J. Park, “Microcavity plasma devices and arrays: a new realm of plasma physics and photonic applications,” Plasma Phys. Controlled Fusion 47, No. 12B, B83–B92 (2005).

Plasma Phys. Rep. (2)

S. V. Avtaeva and E. B. Kulumbaev, “Effect of the scheme of plasmachemical processes on the calculated characteristics of a barrier discharge in Xenon,” Plasma Phys. Rep. 34, No. 6, 452–470 (2008).

S. V. Avtaeva and A. V. Skornyakov, “Effect of nonlocal electron kinetics on the characteristics of a dielectric barrier discharge in xenon,” Plasma Phys. Rep. 35, No. 7, 593–602 (2009).

Plasma Processes Polym. (1)

A. Sobottka, L. Drossler, M. Lenk, L. Prager, and R. Buchmeiser, “An open Argon dielectric barrier discharge VUV- source,” Plasma Processes Polym. 7, No. 8, 650–656 (2010).

Plasma Sources Sci. Technol. (1)

M. Guivan and A. Guivan, “Characterization of a white-colour DBD-driven Cadmium Bromide exciplex lamp,” Plasma Sources Sci. Technol. 19, No. 5, 055014 (2010).

Proc. SPIE (5)

J. Wieser, A. Ulrich, M. Salvermoser, H. Shaw, D. E. Murnick, and H. Dahi, “Light sources using energy transfer from excimer to line radiation,” Proc. SPIE 3403, 314–320 (1998).

T. M. Bloomstein, V. Liberman, M. Rothschild, D. E. Hardy, and N. N. Efremow, “UV cleaning of contaminated 157-nm reticles,” Proc. SPIE 4346, 669–675 (2001).

Z. Falkenstein, “Surface cleaning mechanisms utilizing VUV radiation in oxygen-containing gaseous environments,” Proc. SPIE 4440, 246–255 (2001).

D. M. Kane, D. B. Hirschausen, B. K. Ward, R. J. Carman, and R. P. Mildren, “Pulsed VUV sources and their application to surface cleaning of optical materials,” Proc. SPIE 5399, 100–106 (2004).

V. S. Dmitruck, E. A. Sosnin, and I. A. Obgol’tz, “The first attempt of XeCl-excilamp application in complex psoriasis curing,” Proc. SPIE 6263, 316–321 (2006).

Proc. SPIE. (1)

U. Kogelschatz, “Excimer lamps: history, discharge physics, and industrial applications,” Proc. SPIE. 5483, 272–286 (2004).

Prog. Org. Coat. (1)

F. Bauer, R. Flyunt, K. Czihal, H. Langguth, R. Mehnert, R. Schubert, and M. R. Buchmeiser, “UV curing and matting of acrylate coatings reinforced by nano-silica and microcorundum particles,” Prog. Org. Coat. 60, No. 2, 121–126 (2007).

Pure Appl. Chem. (1)

H. J. Kuhn, S. E. Braslavsky, and R. Schmidt, “Chemical actinometry,” Pure Appl. Chem. 76, No. 12, 2105–2146 (2004).

Quantum Electron. (1)

G. A. Volkova and G. N. Gerasimov, “Amplification of ?=147nm radiation from a barrier discharge in a mixture of krypton with xenon,” Quantum Electron. 27, No. 3, 213–216 (1997).

Rev. Sci. Instrum. (1)

J. Wieser, D. E. Murnick, A. Ulrich, H. A. Huggins, A. Liddle, and W. L. Brown, “Vacuum ultraviolet rare gas excimer light source,” Rev. Sci. Instrum. 68, No. 3, 1360–1364 (1997).

Russ. Phys. J. (1)

S. V. Avtaeva and A. V. Skornyakov, “Calculation of the characteristics of xenon excilamps using a one-dimensional hydrodynamic model,” Russ. Phys. J. 53, No. 3, 257–262 (2010).

Surf. Coat. Technol. (2)

R. Schubert, T. Scherzer, M. Hinkefuss, B. Marquardt, J. Vogel, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 1. Real-time methods for the determination of the micro-folding kinetics,” Surf. Coat. Technol. 203, No. 13, 1844–1849 (2009).

R. Schubert, F. Frost, M. Hinhefuß, R. Konieczny, B. Marquardt, R. Mehnert, and M. R. Buchmeiser, “VUV-induced micro-folding of acrylate-based coatings: 2. Characterization of surface properties,” Surf. Coat. Technol. 203, No. 24, 3734–3740 (2009).

Tech. Phys. (2)

S. M. Avdeev, I. D. Kostyrya, E. A. Sosnin, and V. F. Tarasenko, “Generation of nanosecond pulses in a barrier-discharge in XeBr excimer lamp,” Tech. Phys. 51, No. 7, 878–881 (2006).

E. A. Sosnin, A. A. Pikulev, and V. F. Tarasenko, “Optical characteristics of cylindrical exciplex and excimer lamps excited by microwave radiation,” Tech. Phys. 56, No. 4, 526–530 (2011).

Tech. Phys. Lett. (1)

M. I. Lomaev, V. S. Skakun, V. F. Tarasenko, D. V. Shitts, and A. A. Lisenko, “A windowless VUV excilamp,” Tech. Phys. Lett. 32, No. 7, 590–592 (2006).

Thin Solid Films (2)

C. Elsner, S. Naumov, J. Zajadacz, and M. R. Buchmeiser, “172 nm excimer VUV-triggered photodegradation and micropatterning of aminosilane films,” Thin Solid Films 517, No. 24, 6772–6776 (2009).

J. J. Yu and I. W. Boyd, “Low temperature Si and SiGe oxidation through dielectric barrier discharges,” Thin Solid Films 453–454, 63–66 (2004).

Other (13)

http://www.ecochem.biz/PAH/PAS2000.htm.

T. Oppenländer, Photochemical Purification of Water and Air, Advanced Oxidation Processes (AOPs): Principles, Reaction Mechanisms, Reactor Concepts (Wiley-VCH, Weinheim (Germany), 2003).

E. A. Sosnin, I. V. Sokolova, and V. F. Tarasenko, “Development and applications of novel UV and VUV excilamps in photochemistry,” in Photochemistry Research Progress, A. Sanchez and S. J. Gutierrez, eds. (Nova Science Publishers, Inc., Hauppauge, USA, 2008), pp. 225–269.

J. Yan, “High power 121.6 nm radiation source for advanced lithography,” in Ph.D. Thesis, Norfolk, Va (Old Dominium University, 2005), 146 pages, AAT 3191393.

http://www.uvsns.com.

T. Oppenländer, “Excilamp photochemistry,” in CRC Handbook of Organic Photochemistry and Photobiology, 3rd. V. 1. 7th ed., A. G. Griesbeck, M. Oelgemöller, and F. Ghetti, eds. (CRC Press, Boca Raton, 2012).

I. I. Liaw and I. W. Boyd, “The development and application of UV excimer lamps in nanofabrication,” in Functionalized Nanoscale Materials, Devices and Systems, A. Vaseashta and I. N. Mihailescu, eds. (Springer, 2008), pp. 61–76.

D. M. Kane, D. Hirschausen, B. K. Ward, R. P. Mildren, and R. J. Carman, “Surface cleaning of optical materials using novel VUV sources,” in Laser Cleaning II, D. M. Kane, ed. (World Scientific Publishing Co., Singapore, 2006), pp. 243–256. Chapter 13.

V. F. Tarasenko, E. A. Sosnin, O. S. Zhdanova, and E. P. Krasnozhenov, “Applications of excilamps in microbiological and medical investigations,” in Plasma for Bio-Decontamination, Medicine and Food Security, Z. Machala, K. Hensel, and Yu. Akishev, eds. (Springer, 2012), pp. 251–263.

M. Lenk and R. Mehnert, “Design and characteristics of a windowless argon excimer source,” in Proc. RadTech, Europe, Basle, 2001, pp. 153–158.

I. W. Boyd, J.-Y. Zhang, and U. Kogelschatz, “Development and applications of excimer UV lamps,” in Photo-Excited Processes, Diagnostics and Applications (PEPDA), A. Peled, ed. (Kluwer Academic Publishers, Dordrecht, 2003), pp. 161–199.

A. M. Boichenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, The Ultraviolet Excilamps: Physics, Technology and Applications (Tomsk: STT Publishing, 2011), p. 510 (in Russian), ISBN: 978-5-93629-433-4.

http://www.coherent.com/Downloads/SD_EL2-03_tui-bavpho_k1_2.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.