Abstract

The paper discusses a pulsed high-current sliding discharge on a sapphire surface, used to excite gases (Ar, Kr) at a pressure of up to 25 atm. The space–time dynamics of the evolution of the sliding discharge is measured. The spectrotemporal dependence of its luminescence is analyzed, and the processes that affect the emission of the plasma in the VUV region are discussed. The possibilities of a sliding discharge for directly pumping gas lasers are demonstrated for XeCl and KrF excimer lasers with lasing energy 0.15 and 0.12 mJ, respectively, and a pulse repetition rate up to 1 kHz with no circulation of the gas.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Rhodes, ed., Excimer Lasers (Springer-Verlag, New York, 1979; Mir, Moscow, 1981).
  2. N. Merbahi, G. Ledru, N. Sewraj, and F. J. Marchal, “Electrical behavior and vacuum ultraviolet radiation efficiency of monofilamentary xenon dielectric barrier discharges,” Appl. Phys. 101, 123309 (2007).
  3. H. Ninomiya and K. Nakamura, “Ar2* emission from a pulsed electric discharge in a pure Ar gas,” Opt. Commun. 134, 521 (1997).
  4. S. K. Lam, D. Lo, C. E. Zheng, C. L. Yuan, C. Shangguan, T. L. Yang, and I. V. Kochetov, “Parametric study of Xe2* dimer in high-pressure electrical discharge,” Appl. Phys. B 75, 723 (2002).
  5. S. K. Hong, N. Hayashi, S. Ihara, S. Satoh, C. Yamabe, and S. B. Wee, “The discharge electrode for Ar2* excimer laser using plasma cathode,” Opt. Commun. 256, 149 (2005).
  6. A. B. Treshchalov and A. A. Lisovski?, “Spectroscopic diagnostics of a pulsed discharge in high-pressure argon,” Kvant. Elektron. (Moscow) 40, 234 (2010). [Quantum Electron. 40, 234 (2010)].
  7. A. Treshchalov and A. Lissovski, “VUV-VIS spectroscopic diagnostics of a pulsed high-pressure discharge in argon,” J. Phys. D: Appl. Phys. 42, 245203 (2009).
  8. D. Yu. Zaroslov, G. P. Kuz’min, and V. F. Tarasenko, “Sliding discharge in excimer lasers,” Radio Eng. Electr. Phys. 29, No. 7, 1 (1984).
  9. P. A. Atanasov and A. A. Serafetinides, “Tea lasers excited by a sliding discharge along the surface of a dielectric,” Opt. Commun. 72, 356 (1989).
  10. G. N. Tsikrikas, A. A. Serafetinides, and A. D. Papayannis, “Development of a sliding discharge pumped HF laser,” Opt. Commun. 132, 295 (1996).
  11. V. M. Borisov, V. A. Vodchiz, A. V. Eltsov, and O. B. Khristoforov, “Powerful highly efficient KrF lamp excited by surface and barrier discharge,” Quantum Electron. 25, 308 (1998).
  12. R. E. Beverly III, “Electrical, gasdynamic, and radiative properties of planar surface discharges,” J. Appl. Phys. 60, 104 (1986).
  13. A. Lagarkov and I. Rutkevich, Ionization Waves in Electrical Breakdown of Gases (Springer-Verlag, New York, 1993), pp. 195–207.
  14. B. Arad, Y. Gazit, and A. Ludmirsky, “A sliding discharge device for producing cylindrical shock waves,” J. Phys. D: Appl. Phys. 20, 360 (1987).
  15. A. B. Treshchalov and V. K. Bashkin, “Spectroscopic diagnostics of sliding discharge as an efficient excitation source for high-pressure gas mixtures,” in Proc. of the Int. Symposium on High-Pressure Low-Temperature Plasma Chemistry HAKONE VI, Cork, Ireland, 1998, pp. 29–34.
  16. A. Treshchalov, E. Jalviste, A. Smerechuk, G. Gerasimov, R. Hallin, and A. Arnesen, “VUV emission of Kr2 molecules under high-current sliding discharge excitation,” in Proc. of the Int. Symposium on High-Pressure Low- Temperature Plasma Chemistry HAKONE VIII (Univ. of Tartu, Estonia, 2002), pp. 291–295.
  17. A. Lissovski and A. Treshchalov, “VUV-VIS imaging of high-pressure pulsed volume discharge in argon,” IEEE Trans. Plasma Sci. 36, 958 (2008).
  18. A. Treshchalov and A. Lissovski, “VUV-VIS imaging of high-pressure pulsed discharge in argon,” Proc. SPIE 6938, 69380Y-1 (2006).
  19. A. Lissovski and A. Treshchalov, “Emission of the third continuum of argon excited by a pulsed volume discharge,” Phys. Plasmas 16, 123501 (2009).
  20. D. J. Eckstrom, H. H. Nakano, D. C. Lorents, T. Rothem, J. A. Betts, M. E. Lainhart, K. J. Triebes, and D. A. J. Dakin, “Characteristics of electron-beam-excited Kr2* at low pressures as a vacuum ultraviolet source,” Appl. Phys. 64, 1691 (1988).
  21. A. Treshchalov and A. Lissovski, “Dye laser absorption probing of high-current pulsed volume discharge in argon,” Proc. SPIE 6263, 62630L-1 (2006).
  22. W. Sasaki, T. Shirai, and S. Kubodera, “Observation of vacuum-ultraviolet Kr2* laser oscillation pumped by a compact discharge device,” Opt. Lett. 26, 503 (2001).
    [PubMed]
  23. W. M. Hughes, J. Shannon, and R. Hunter, “126.1-nm molecular argon laser,” Appl. Phys. Lett. 24, 488 (1974).
  24. W.-G. Wrobel, H. Röhr, and K.-H. Steuer, “Tunable vacuum ultraviolet laser action by argon excimers,” Appl. Phys. Lett. 36, 113 (1980).
  25. S. Neeser, M. Schumann, and H. Langhoff, “Improved gain for the Ar2* excimer laser at 126 nm,” Appl. Phys. B: Lasers Opt. 63, 103 (1997).

2010 (1)

A. B. Treshchalov and A. A. Lisovski?, “Spectroscopic diagnostics of a pulsed discharge in high-pressure argon,” Kvant. Elektron. (Moscow) 40, 234 (2010). [Quantum Electron. 40, 234 (2010)].

2009 (2)

A. Treshchalov and A. Lissovski, “VUV-VIS spectroscopic diagnostics of a pulsed high-pressure discharge in argon,” J. Phys. D: Appl. Phys. 42, 245203 (2009).

A. Lissovski and A. Treshchalov, “Emission of the third continuum of argon excited by a pulsed volume discharge,” Phys. Plasmas 16, 123501 (2009).

2008 (1)

A. Lissovski and A. Treshchalov, “VUV-VIS imaging of high-pressure pulsed volume discharge in argon,” IEEE Trans. Plasma Sci. 36, 958 (2008).

2007 (1)

N. Merbahi, G. Ledru, N. Sewraj, and F. J. Marchal, “Electrical behavior and vacuum ultraviolet radiation efficiency of monofilamentary xenon dielectric barrier discharges,” Appl. Phys. 101, 123309 (2007).

2006 (2)

A. Treshchalov and A. Lissovski, “VUV-VIS imaging of high-pressure pulsed discharge in argon,” Proc. SPIE 6938, 69380Y-1 (2006).

A. Treshchalov and A. Lissovski, “Dye laser absorption probing of high-current pulsed volume discharge in argon,” Proc. SPIE 6263, 62630L-1 (2006).

2005 (1)

S. K. Hong, N. Hayashi, S. Ihara, S. Satoh, C. Yamabe, and S. B. Wee, “The discharge electrode for Ar2* excimer laser using plasma cathode,” Opt. Commun. 256, 149 (2005).

2002 (1)

S. K. Lam, D. Lo, C. E. Zheng, C. L. Yuan, C. Shangguan, T. L. Yang, and I. V. Kochetov, “Parametric study of Xe2* dimer in high-pressure electrical discharge,” Appl. Phys. B 75, 723 (2002).

2001 (1)

1998 (1)

V. M. Borisov, V. A. Vodchiz, A. V. Eltsov, and O. B. Khristoforov, “Powerful highly efficient KrF lamp excited by surface and barrier discharge,” Quantum Electron. 25, 308 (1998).

1997 (2)

H. Ninomiya and K. Nakamura, “Ar2* emission from a pulsed electric discharge in a pure Ar gas,” Opt. Commun. 134, 521 (1997).

S. Neeser, M. Schumann, and H. Langhoff, “Improved gain for the Ar2* excimer laser at 126 nm,” Appl. Phys. B: Lasers Opt. 63, 103 (1997).

1996 (1)

G. N. Tsikrikas, A. A. Serafetinides, and A. D. Papayannis, “Development of a sliding discharge pumped HF laser,” Opt. Commun. 132, 295 (1996).

1989 (1)

P. A. Atanasov and A. A. Serafetinides, “Tea lasers excited by a sliding discharge along the surface of a dielectric,” Opt. Commun. 72, 356 (1989).

1988 (1)

D. J. Eckstrom, H. H. Nakano, D. C. Lorents, T. Rothem, J. A. Betts, M. E. Lainhart, K. J. Triebes, and D. A. J. Dakin, “Characteristics of electron-beam-excited Kr2* at low pressures as a vacuum ultraviolet source,” Appl. Phys. 64, 1691 (1988).

1987 (1)

B. Arad, Y. Gazit, and A. Ludmirsky, “A sliding discharge device for producing cylindrical shock waves,” J. Phys. D: Appl. Phys. 20, 360 (1987).

1986 (1)

R. E. Beverly III, “Electrical, gasdynamic, and radiative properties of planar surface discharges,” J. Appl. Phys. 60, 104 (1986).

1984 (1)

D. Yu. Zaroslov, G. P. Kuz’min, and V. F. Tarasenko, “Sliding discharge in excimer lasers,” Radio Eng. Electr. Phys. 29, No. 7, 1 (1984).

1980 (1)

W.-G. Wrobel, H. Röhr, and K.-H. Steuer, “Tunable vacuum ultraviolet laser action by argon excimers,” Appl. Phys. Lett. 36, 113 (1980).

1974 (1)

W. M. Hughes, J. Shannon, and R. Hunter, “126.1-nm molecular argon laser,” Appl. Phys. Lett. 24, 488 (1974).

Arad, B.

B. Arad, Y. Gazit, and A. Ludmirsky, “A sliding discharge device for producing cylindrical shock waves,” J. Phys. D: Appl. Phys. 20, 360 (1987).

Arnesen, A.

A. Treshchalov, E. Jalviste, A. Smerechuk, G. Gerasimov, R. Hallin, and A. Arnesen, “VUV emission of Kr2 molecules under high-current sliding discharge excitation,” in Proc. of the Int. Symposium on High-Pressure Low- Temperature Plasma Chemistry HAKONE VIII (Univ. of Tartu, Estonia, 2002), pp. 291–295.

Atanasov, P. A.

P. A. Atanasov and A. A. Serafetinides, “Tea lasers excited by a sliding discharge along the surface of a dielectric,” Opt. Commun. 72, 356 (1989).

Bashkin, V. K.

A. B. Treshchalov and V. K. Bashkin, “Spectroscopic diagnostics of sliding discharge as an efficient excitation source for high-pressure gas mixtures,” in Proc. of the Int. Symposium on High-Pressure Low-Temperature Plasma Chemistry HAKONE VI, Cork, Ireland, 1998, pp. 29–34.

Betts, J. A.

D. J. Eckstrom, H. H. Nakano, D. C. Lorents, T. Rothem, J. A. Betts, M. E. Lainhart, K. J. Triebes, and D. A. J. Dakin, “Characteristics of electron-beam-excited Kr2* at low pressures as a vacuum ultraviolet source,” Appl. Phys. 64, 1691 (1988).

Beverly III, R. E.

R. E. Beverly III, “Electrical, gasdynamic, and radiative properties of planar surface discharges,” J. Appl. Phys. 60, 104 (1986).

Borisov, V. M.

V. M. Borisov, V. A. Vodchiz, A. V. Eltsov, and O. B. Khristoforov, “Powerful highly efficient KrF lamp excited by surface and barrier discharge,” Quantum Electron. 25, 308 (1998).

Dakin, D. A. J.

D. J. Eckstrom, H. H. Nakano, D. C. Lorents, T. Rothem, J. A. Betts, M. E. Lainhart, K. J. Triebes, and D. A. J. Dakin, “Characteristics of electron-beam-excited Kr2* at low pressures as a vacuum ultraviolet source,” Appl. Phys. 64, 1691 (1988).

Eckstrom, D. J.

D. J. Eckstrom, H. H. Nakano, D. C. Lorents, T. Rothem, J. A. Betts, M. E. Lainhart, K. J. Triebes, and D. A. J. Dakin, “Characteristics of electron-beam-excited Kr2* at low pressures as a vacuum ultraviolet source,” Appl. Phys. 64, 1691 (1988).

Eltsov, A. V.

V. M. Borisov, V. A. Vodchiz, A. V. Eltsov, and O. B. Khristoforov, “Powerful highly efficient KrF lamp excited by surface and barrier discharge,” Quantum Electron. 25, 308 (1998).

Gazit, Y.

B. Arad, Y. Gazit, and A. Ludmirsky, “A sliding discharge device for producing cylindrical shock waves,” J. Phys. D: Appl. Phys. 20, 360 (1987).

Gerasimov, G.

A. Treshchalov, E. Jalviste, A. Smerechuk, G. Gerasimov, R. Hallin, and A. Arnesen, “VUV emission of Kr2 molecules under high-current sliding discharge excitation,” in Proc. of the Int. Symposium on High-Pressure Low- Temperature Plasma Chemistry HAKONE VIII (Univ. of Tartu, Estonia, 2002), pp. 291–295.

Hallin, R.

A. Treshchalov, E. Jalviste, A. Smerechuk, G. Gerasimov, R. Hallin, and A. Arnesen, “VUV emission of Kr2 molecules under high-current sliding discharge excitation,” in Proc. of the Int. Symposium on High-Pressure Low- Temperature Plasma Chemistry HAKONE VIII (Univ. of Tartu, Estonia, 2002), pp. 291–295.

Hayashi, N.

S. K. Hong, N. Hayashi, S. Ihara, S. Satoh, C. Yamabe, and S. B. Wee, “The discharge electrode for Ar2* excimer laser using plasma cathode,” Opt. Commun. 256, 149 (2005).

Hong, S. K.

S. K. Hong, N. Hayashi, S. Ihara, S. Satoh, C. Yamabe, and S. B. Wee, “The discharge electrode for Ar2* excimer laser using plasma cathode,” Opt. Commun. 256, 149 (2005).

Hughes, W. M.

W. M. Hughes, J. Shannon, and R. Hunter, “126.1-nm molecular argon laser,” Appl. Phys. Lett. 24, 488 (1974).

Hunter, R.

W. M. Hughes, J. Shannon, and R. Hunter, “126.1-nm molecular argon laser,” Appl. Phys. Lett. 24, 488 (1974).

Ihara, S.

S. K. Hong, N. Hayashi, S. Ihara, S. Satoh, C. Yamabe, and S. B. Wee, “The discharge electrode for Ar2* excimer laser using plasma cathode,” Opt. Commun. 256, 149 (2005).

Jalviste, E.

A. Treshchalov, E. Jalviste, A. Smerechuk, G. Gerasimov, R. Hallin, and A. Arnesen, “VUV emission of Kr2 molecules under high-current sliding discharge excitation,” in Proc. of the Int. Symposium on High-Pressure Low- Temperature Plasma Chemistry HAKONE VIII (Univ. of Tartu, Estonia, 2002), pp. 291–295.

Khristoforov, O. B.

V. M. Borisov, V. A. Vodchiz, A. V. Eltsov, and O. B. Khristoforov, “Powerful highly efficient KrF lamp excited by surface and barrier discharge,” Quantum Electron. 25, 308 (1998).

Kochetov, I. V.

S. K. Lam, D. Lo, C. E. Zheng, C. L. Yuan, C. Shangguan, T. L. Yang, and I. V. Kochetov, “Parametric study of Xe2* dimer in high-pressure electrical discharge,” Appl. Phys. B 75, 723 (2002).

Kubodera, S.

Kuz’min, G. P.

D. Yu. Zaroslov, G. P. Kuz’min, and V. F. Tarasenko, “Sliding discharge in excimer lasers,” Radio Eng. Electr. Phys. 29, No. 7, 1 (1984).

Lagarkov, A.

A. Lagarkov and I. Rutkevich, Ionization Waves in Electrical Breakdown of Gases (Springer-Verlag, New York, 1993), pp. 195–207.

Lainhart, M. E.

D. J. Eckstrom, H. H. Nakano, D. C. Lorents, T. Rothem, J. A. Betts, M. E. Lainhart, K. J. Triebes, and D. A. J. Dakin, “Characteristics of electron-beam-excited Kr2* at low pressures as a vacuum ultraviolet source,” Appl. Phys. 64, 1691 (1988).

Lam, S. K.

S. K. Lam, D. Lo, C. E. Zheng, C. L. Yuan, C. Shangguan, T. L. Yang, and I. V. Kochetov, “Parametric study of Xe2* dimer in high-pressure electrical discharge,” Appl. Phys. B 75, 723 (2002).

Langhoff, H.

S. Neeser, M. Schumann, and H. Langhoff, “Improved gain for the Ar2* excimer laser at 126 nm,” Appl. Phys. B: Lasers Opt. 63, 103 (1997).

Ledru, G.

N. Merbahi, G. Ledru, N. Sewraj, and F. J. Marchal, “Electrical behavior and vacuum ultraviolet radiation efficiency of monofilamentary xenon dielectric barrier discharges,” Appl. Phys. 101, 123309 (2007).

Lisovskii, A. A.

A. B. Treshchalov and A. A. Lisovski?, “Spectroscopic diagnostics of a pulsed discharge in high-pressure argon,” Kvant. Elektron. (Moscow) 40, 234 (2010). [Quantum Electron. 40, 234 (2010)].

Lissovski, A.

A. Treshchalov and A. Lissovski, “VUV-VIS spectroscopic diagnostics of a pulsed high-pressure discharge in argon,” J. Phys. D: Appl. Phys. 42, 245203 (2009).

A. Lissovski and A. Treshchalov, “Emission of the third continuum of argon excited by a pulsed volume discharge,” Phys. Plasmas 16, 123501 (2009).

A. Lissovski and A. Treshchalov, “VUV-VIS imaging of high-pressure pulsed volume discharge in argon,” IEEE Trans. Plasma Sci. 36, 958 (2008).

A. Treshchalov and A. Lissovski, “VUV-VIS imaging of high-pressure pulsed discharge in argon,” Proc. SPIE 6938, 69380Y-1 (2006).

A. Treshchalov and A. Lissovski, “Dye laser absorption probing of high-current pulsed volume discharge in argon,” Proc. SPIE 6263, 62630L-1 (2006).

Lo, D.

S. K. Lam, D. Lo, C. E. Zheng, C. L. Yuan, C. Shangguan, T. L. Yang, and I. V. Kochetov, “Parametric study of Xe2* dimer in high-pressure electrical discharge,” Appl. Phys. B 75, 723 (2002).

Lorents, D. C.

D. J. Eckstrom, H. H. Nakano, D. C. Lorents, T. Rothem, J. A. Betts, M. E. Lainhart, K. J. Triebes, and D. A. J. Dakin, “Characteristics of electron-beam-excited Kr2* at low pressures as a vacuum ultraviolet source,” Appl. Phys. 64, 1691 (1988).

Ludmirsky, A.

B. Arad, Y. Gazit, and A. Ludmirsky, “A sliding discharge device for producing cylindrical shock waves,” J. Phys. D: Appl. Phys. 20, 360 (1987).

Marchal, F. J.

N. Merbahi, G. Ledru, N. Sewraj, and F. J. Marchal, “Electrical behavior and vacuum ultraviolet radiation efficiency of monofilamentary xenon dielectric barrier discharges,” Appl. Phys. 101, 123309 (2007).

Merbahi, N.

N. Merbahi, G. Ledru, N. Sewraj, and F. J. Marchal, “Electrical behavior and vacuum ultraviolet radiation efficiency of monofilamentary xenon dielectric barrier discharges,” Appl. Phys. 101, 123309 (2007).

Nakamura, K.

H. Ninomiya and K. Nakamura, “Ar2* emission from a pulsed electric discharge in a pure Ar gas,” Opt. Commun. 134, 521 (1997).

Nakano, H. H.

D. J. Eckstrom, H. H. Nakano, D. C. Lorents, T. Rothem, J. A. Betts, M. E. Lainhart, K. J. Triebes, and D. A. J. Dakin, “Characteristics of electron-beam-excited Kr2* at low pressures as a vacuum ultraviolet source,” Appl. Phys. 64, 1691 (1988).

Neeser, S.

S. Neeser, M. Schumann, and H. Langhoff, “Improved gain for the Ar2* excimer laser at 126 nm,” Appl. Phys. B: Lasers Opt. 63, 103 (1997).

Ninomiya, H.

H. Ninomiya and K. Nakamura, “Ar2* emission from a pulsed electric discharge in a pure Ar gas,” Opt. Commun. 134, 521 (1997).

Papayannis, A. D.

G. N. Tsikrikas, A. A. Serafetinides, and A. D. Papayannis, “Development of a sliding discharge pumped HF laser,” Opt. Commun. 132, 295 (1996).

Röhr, H.

W.-G. Wrobel, H. Röhr, and K.-H. Steuer, “Tunable vacuum ultraviolet laser action by argon excimers,” Appl. Phys. Lett. 36, 113 (1980).

Rothem, T.

D. J. Eckstrom, H. H. Nakano, D. C. Lorents, T. Rothem, J. A. Betts, M. E. Lainhart, K. J. Triebes, and D. A. J. Dakin, “Characteristics of electron-beam-excited Kr2* at low pressures as a vacuum ultraviolet source,” Appl. Phys. 64, 1691 (1988).

Rutkevich, I.

A. Lagarkov and I. Rutkevich, Ionization Waves in Electrical Breakdown of Gases (Springer-Verlag, New York, 1993), pp. 195–207.

Sasaki, W.

Satoh, S.

S. K. Hong, N. Hayashi, S. Ihara, S. Satoh, C. Yamabe, and S. B. Wee, “The discharge electrode for Ar2* excimer laser using plasma cathode,” Opt. Commun. 256, 149 (2005).

Schumann, M.

S. Neeser, M. Schumann, and H. Langhoff, “Improved gain for the Ar2* excimer laser at 126 nm,” Appl. Phys. B: Lasers Opt. 63, 103 (1997).

Serafetinides, A. A.

G. N. Tsikrikas, A. A. Serafetinides, and A. D. Papayannis, “Development of a sliding discharge pumped HF laser,” Opt. Commun. 132, 295 (1996).

P. A. Atanasov and A. A. Serafetinides, “Tea lasers excited by a sliding discharge along the surface of a dielectric,” Opt. Commun. 72, 356 (1989).

Sewraj, N.

N. Merbahi, G. Ledru, N. Sewraj, and F. J. Marchal, “Electrical behavior and vacuum ultraviolet radiation efficiency of monofilamentary xenon dielectric barrier discharges,” Appl. Phys. 101, 123309 (2007).

Shangguan, C.

S. K. Lam, D. Lo, C. E. Zheng, C. L. Yuan, C. Shangguan, T. L. Yang, and I. V. Kochetov, “Parametric study of Xe2* dimer in high-pressure electrical discharge,” Appl. Phys. B 75, 723 (2002).

Shannon, J.

W. M. Hughes, J. Shannon, and R. Hunter, “126.1-nm molecular argon laser,” Appl. Phys. Lett. 24, 488 (1974).

Shirai, T.

Smerechuk, A.

A. Treshchalov, E. Jalviste, A. Smerechuk, G. Gerasimov, R. Hallin, and A. Arnesen, “VUV emission of Kr2 molecules under high-current sliding discharge excitation,” in Proc. of the Int. Symposium on High-Pressure Low- Temperature Plasma Chemistry HAKONE VIII (Univ. of Tartu, Estonia, 2002), pp. 291–295.

Steuer, K.-H.

W.-G. Wrobel, H. Röhr, and K.-H. Steuer, “Tunable vacuum ultraviolet laser action by argon excimers,” Appl. Phys. Lett. 36, 113 (1980).

Tarasenko, V. F.

D. Yu. Zaroslov, G. P. Kuz’min, and V. F. Tarasenko, “Sliding discharge in excimer lasers,” Radio Eng. Electr. Phys. 29, No. 7, 1 (1984).

Treshchalov, A.

A. Treshchalov and A. Lissovski, “VUV-VIS spectroscopic diagnostics of a pulsed high-pressure discharge in argon,” J. Phys. D: Appl. Phys. 42, 245203 (2009).

A. Lissovski and A. Treshchalov, “Emission of the third continuum of argon excited by a pulsed volume discharge,” Phys. Plasmas 16, 123501 (2009).

A. Lissovski and A. Treshchalov, “VUV-VIS imaging of high-pressure pulsed volume discharge in argon,” IEEE Trans. Plasma Sci. 36, 958 (2008).

A. Treshchalov and A. Lissovski, “VUV-VIS imaging of high-pressure pulsed discharge in argon,” Proc. SPIE 6938, 69380Y-1 (2006).

A. Treshchalov and A. Lissovski, “Dye laser absorption probing of high-current pulsed volume discharge in argon,” Proc. SPIE 6263, 62630L-1 (2006).

A. Treshchalov, E. Jalviste, A. Smerechuk, G. Gerasimov, R. Hallin, and A. Arnesen, “VUV emission of Kr2 molecules under high-current sliding discharge excitation,” in Proc. of the Int. Symposium on High-Pressure Low- Temperature Plasma Chemistry HAKONE VIII (Univ. of Tartu, Estonia, 2002), pp. 291–295.

Treshchalov, A. B.

A. B. Treshchalov and A. A. Lisovski?, “Spectroscopic diagnostics of a pulsed discharge in high-pressure argon,” Kvant. Elektron. (Moscow) 40, 234 (2010). [Quantum Electron. 40, 234 (2010)].

A. B. Treshchalov and V. K. Bashkin, “Spectroscopic diagnostics of sliding discharge as an efficient excitation source for high-pressure gas mixtures,” in Proc. of the Int. Symposium on High-Pressure Low-Temperature Plasma Chemistry HAKONE VI, Cork, Ireland, 1998, pp. 29–34.

Triebes, K. J.

D. J. Eckstrom, H. H. Nakano, D. C. Lorents, T. Rothem, J. A. Betts, M. E. Lainhart, K. J. Triebes, and D. A. J. Dakin, “Characteristics of electron-beam-excited Kr2* at low pressures as a vacuum ultraviolet source,” Appl. Phys. 64, 1691 (1988).

Tsikrikas, G. N.

G. N. Tsikrikas, A. A. Serafetinides, and A. D. Papayannis, “Development of a sliding discharge pumped HF laser,” Opt. Commun. 132, 295 (1996).

Vodchiz, V. A.

V. M. Borisov, V. A. Vodchiz, A. V. Eltsov, and O. B. Khristoforov, “Powerful highly efficient KrF lamp excited by surface and barrier discharge,” Quantum Electron. 25, 308 (1998).

Wee, S. B.

S. K. Hong, N. Hayashi, S. Ihara, S. Satoh, C. Yamabe, and S. B. Wee, “The discharge electrode for Ar2* excimer laser using plasma cathode,” Opt. Commun. 256, 149 (2005).

Wrobel, W.-G.

W.-G. Wrobel, H. Röhr, and K.-H. Steuer, “Tunable vacuum ultraviolet laser action by argon excimers,” Appl. Phys. Lett. 36, 113 (1980).

Yamabe, C.

S. K. Hong, N. Hayashi, S. Ihara, S. Satoh, C. Yamabe, and S. B. Wee, “The discharge electrode for Ar2* excimer laser using plasma cathode,” Opt. Commun. 256, 149 (2005).

Yang, T. L.

S. K. Lam, D. Lo, C. E. Zheng, C. L. Yuan, C. Shangguan, T. L. Yang, and I. V. Kochetov, “Parametric study of Xe2* dimer in high-pressure electrical discharge,” Appl. Phys. B 75, 723 (2002).

Yuan, C. L.

S. K. Lam, D. Lo, C. E. Zheng, C. L. Yuan, C. Shangguan, T. L. Yang, and I. V. Kochetov, “Parametric study of Xe2* dimer in high-pressure electrical discharge,” Appl. Phys. B 75, 723 (2002).

Zaroslov, D. Yu.

D. Yu. Zaroslov, G. P. Kuz’min, and V. F. Tarasenko, “Sliding discharge in excimer lasers,” Radio Eng. Electr. Phys. 29, No. 7, 1 (1984).

Zheng, C. E.

S. K. Lam, D. Lo, C. E. Zheng, C. L. Yuan, C. Shangguan, T. L. Yang, and I. V. Kochetov, “Parametric study of Xe2* dimer in high-pressure electrical discharge,” Appl. Phys. B 75, 723 (2002).

Appl. Phys. (2)

N. Merbahi, G. Ledru, N. Sewraj, and F. J. Marchal, “Electrical behavior and vacuum ultraviolet radiation efficiency of monofilamentary xenon dielectric barrier discharges,” Appl. Phys. 101, 123309 (2007).

D. J. Eckstrom, H. H. Nakano, D. C. Lorents, T. Rothem, J. A. Betts, M. E. Lainhart, K. J. Triebes, and D. A. J. Dakin, “Characteristics of electron-beam-excited Kr2* at low pressures as a vacuum ultraviolet source,” Appl. Phys. 64, 1691 (1988).

Appl. Phys. B (1)

S. K. Lam, D. Lo, C. E. Zheng, C. L. Yuan, C. Shangguan, T. L. Yang, and I. V. Kochetov, “Parametric study of Xe2* dimer in high-pressure electrical discharge,” Appl. Phys. B 75, 723 (2002).

Appl. Phys. B: Lasers Opt. (1)

S. Neeser, M. Schumann, and H. Langhoff, “Improved gain for the Ar2* excimer laser at 126 nm,” Appl. Phys. B: Lasers Opt. 63, 103 (1997).

Appl. Phys. Lett. (2)

W. M. Hughes, J. Shannon, and R. Hunter, “126.1-nm molecular argon laser,” Appl. Phys. Lett. 24, 488 (1974).

W.-G. Wrobel, H. Röhr, and K.-H. Steuer, “Tunable vacuum ultraviolet laser action by argon excimers,” Appl. Phys. Lett. 36, 113 (1980).

IEEE Trans. Plasma Sci. (1)

A. Lissovski and A. Treshchalov, “VUV-VIS imaging of high-pressure pulsed volume discharge in argon,” IEEE Trans. Plasma Sci. 36, 958 (2008).

J. Appl. Phys. (1)

R. E. Beverly III, “Electrical, gasdynamic, and radiative properties of planar surface discharges,” J. Appl. Phys. 60, 104 (1986).

J. Phys. D: Appl. Phys. (2)

B. Arad, Y. Gazit, and A. Ludmirsky, “A sliding discharge device for producing cylindrical shock waves,” J. Phys. D: Appl. Phys. 20, 360 (1987).

A. Treshchalov and A. Lissovski, “VUV-VIS spectroscopic diagnostics of a pulsed high-pressure discharge in argon,” J. Phys. D: Appl. Phys. 42, 245203 (2009).

Kvant. Elektron. (Moscow) (1)

A. B. Treshchalov and A. A. Lisovski?, “Spectroscopic diagnostics of a pulsed discharge in high-pressure argon,” Kvant. Elektron. (Moscow) 40, 234 (2010). [Quantum Electron. 40, 234 (2010)].

Opt. Commun. (4)

S. K. Hong, N. Hayashi, S. Ihara, S. Satoh, C. Yamabe, and S. B. Wee, “The discharge electrode for Ar2* excimer laser using plasma cathode,” Opt. Commun. 256, 149 (2005).

H. Ninomiya and K. Nakamura, “Ar2* emission from a pulsed electric discharge in a pure Ar gas,” Opt. Commun. 134, 521 (1997).

P. A. Atanasov and A. A. Serafetinides, “Tea lasers excited by a sliding discharge along the surface of a dielectric,” Opt. Commun. 72, 356 (1989).

G. N. Tsikrikas, A. A. Serafetinides, and A. D. Papayannis, “Development of a sliding discharge pumped HF laser,” Opt. Commun. 132, 295 (1996).

Opt. Lett. (1)

Phys. Plasmas (1)

A. Lissovski and A. Treshchalov, “Emission of the third continuum of argon excited by a pulsed volume discharge,” Phys. Plasmas 16, 123501 (2009).

Proc. SPIE (2)

A. Treshchalov and A. Lissovski, “Dye laser absorption probing of high-current pulsed volume discharge in argon,” Proc. SPIE 6263, 62630L-1 (2006).

A. Treshchalov and A. Lissovski, “VUV-VIS imaging of high-pressure pulsed discharge in argon,” Proc. SPIE 6938, 69380Y-1 (2006).

Quantum Electron. (1)

V. M. Borisov, V. A. Vodchiz, A. V. Eltsov, and O. B. Khristoforov, “Powerful highly efficient KrF lamp excited by surface and barrier discharge,” Quantum Electron. 25, 308 (1998).

Radio Eng. Electr. Phys. (1)

D. Yu. Zaroslov, G. P. Kuz’min, and V. F. Tarasenko, “Sliding discharge in excimer lasers,” Radio Eng. Electr. Phys. 29, No. 7, 1 (1984).

Other (4)

C. K. Rhodes, ed., Excimer Lasers (Springer-Verlag, New York, 1979; Mir, Moscow, 1981).

A. Lagarkov and I. Rutkevich, Ionization Waves in Electrical Breakdown of Gases (Springer-Verlag, New York, 1993), pp. 195–207.

A. B. Treshchalov and V. K. Bashkin, “Spectroscopic diagnostics of sliding discharge as an efficient excitation source for high-pressure gas mixtures,” in Proc. of the Int. Symposium on High-Pressure Low-Temperature Plasma Chemistry HAKONE VI, Cork, Ireland, 1998, pp. 29–34.

A. Treshchalov, E. Jalviste, A. Smerechuk, G. Gerasimov, R. Hallin, and A. Arnesen, “VUV emission of Kr2 molecules under high-current sliding discharge excitation,” in Proc. of the Int. Symposium on High-Pressure Low- Temperature Plasma Chemistry HAKONE VIII (Univ. of Tartu, Estonia, 2002), pp. 291–295.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.