Abstract

Metamaterials that are network-type silver–dielectric structures are currently the most promising substances for observing negative refractive index in the optical region. This paper proposes a method for forming such metamaterials on the basis of silver-containing glasses. The method is based on the procedure of poling silver-containing glasses using an electrode (an anode) with a relief picture on the contact surface. When polarized glasses are heat-treated in a hydrogen atmosphere, a metallic (silver) film that replicates the electrode relief is formed on the surface of the glass. The corresponding picture and modulation depth of the electrode relief make it possible to create regular network structures of silver nanofilms (either a system of disks or a continuous film with holes) on the glass surface, with a characteristic size of the periodic structural elements less than 500 nm. The unification of the structures thus obtained into sandwiches makes it possible to obtain two-layer metamaterials.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449 (2005).
    [CrossRef]
  2. A. A. Zhilin and M. P. Shepilov, “Metamaterials with negative refractive index,” Opt. Zh. 75, No. 4, 57 (2008). [J. Opt. Technol. 75, 255 (2008)].
  3. M. P. Shepilov and A. A. Zhilin, “Metamaterials and the problem of creating invisible objects. 2. Invisible shells that conceal the objects contained in them from an external observer,” Opt. Zh. 76, No. 6, 40 (2009). [J. Opt. Technol. 76, 350 (2009)].
  4. W. Cai and V. Shalaev, Optical Metamaterials. Fundamentals and Applications (Springer, New York, 2010).
  5. A. A. Zhilin and M. P. Shepilov, “Metamaterials—a new specialization in material science,” Fiz. Khim. Stekla 36, 657 (2010).
  6. A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials 2, 1 (2008).
    [CrossRef]
  7. A. A. Zhilin, D. K. Tagantsev, M. P. Shepilov, S. S. Zapalova, M. Yu. Alemaskin, and M. E. Sazonov, “Metamaterials with a lattice structure,” Opt. Zh. 79, No. 4, 62 (2012). [J. Opt. Technol. 79, 241 (2012)].
  8. H. Takebe, P. G. Kazansky, P. St. J. Russell, and K. Morinaga, “Effect of poling conditions on second-harmonic generation in fused silica,” Opt. Lett. 21, 468 (1996).
    [CrossRef] [PubMed]
  9. H. An and S. Fleming, “Second-order optical nonlinearity and accompanying near-surface structural modifications in thermally poled soda-lime silicate glasses,” J. Opt. Soc. Am. B 23, 2303 (2006).
    [CrossRef]
  10. A. Kameyama, A. Yokotani, and K. Kurosawa, “Second-order optical nonlinearity and change in refractive index in silica glasses by a combination of thermal poling and x-ray irradiation,” J. Appl. Phys. 95, 4000 (2004).
    [CrossRef]
  11. Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A 65, 043816 (2002).
    [CrossRef]
  12. R. H. Doremus, “Mechanism of electrical polarization of silica glass,” Appl. Phys. Lett. 87, 232904 (2005).
    [CrossRef]
  13. A. A. Lipovskii, V. V. Rusan, and D. K. Tagantsev, “Imprinting phase/amplitude patterns in glasses with thermal poling,” Solid State Ionics 181, 849 (2010).
    [CrossRef]
  14. V. V. Rusan, D. K. Tagantsev, A. A. Lipovskiĭ, and K. Paĭvasaari, “New method of recording phase optical structures in glasses,” Fiz. Khim. Stekla 36, 641 (2010).
  15. V. V. Rusan and D. K. Tagantsev, “New method of recording images in glasses,” Fiz. Khim. Stekla 35, 293 (2009).
  16. M. Qiu, T. Mizunami, R. Vilaseca, F. Pi, and G. Orriols, “Bulk and near-surface second-order nonlinearities generated in a BK7 soft glass by thermal poling,” J. Opt. Soc. Am. B 19, 37 (2002).
    [CrossRef]
  17. B. Roy, H. Jain, S. Roy, and D. Chakravorty, “The development of nanosize silver particles in an ion-exchanged silicate glass matrix,” J. Non-Cryst. Solids 222, 102 (1997).
  18. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
  19. A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melekhin, V. V. Zhurikhina, and Yu. P. Svirko, “Electric field imprinting of sub-micron patterns in glass–metal nanocomposites,” Nanotechnology 19, 415304 (2008).
    [CrossRef] [PubMed]
  20. S. Ohmi, H. Sakai, Y. Asahara, S. Nakayama, Y. Yoneda, and T. Izumitani, “Gradient-index rod lens made by a double ion-exchange process,” Appl. Opt. 27, 496 (1988).
    [CrossRef] [PubMed]
  21. Y. Kaganovskii, A. Lipovskii, M. Rosenbluh, and V. Zhurikhina, “Formation of nanoclusters through silver reduction in glasses: The model,” J. Non-Cryst. Solids 353, 2263 (2007).
    [CrossRef]
  22. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356 (2005).
    [CrossRef] [PubMed]
  23. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, No. 7066, 335 (2005).
    [CrossRef] [PubMed]
  24. M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5, 051513 (2011).
    [CrossRef]
  25. E. Ozbay, I. Bulu, K. Aydin, Y. Caglayan, K. B. Alici, and K. Guven, “Highly directive radiation and negative refraction using photonic crystals,” Laser Phys. 15, 217 (2005).
  26. R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. V. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
    [CrossRef]

2012 (1)

A. A. Zhilin, D. K. Tagantsev, M. P. Shepilov, S. S. Zapalova, M. Yu. Alemaskin, and M. E. Sazonov, “Metamaterials with a lattice structure,” Opt. Zh. 79, No. 4, 62 (2012). [J. Opt. Technol. 79, 241 (2012)].

2011 (1)

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5, 051513 (2011).
[CrossRef]

2010 (3)

A. A. Lipovskii, V. V. Rusan, and D. K. Tagantsev, “Imprinting phase/amplitude patterns in glasses with thermal poling,” Solid State Ionics 181, 849 (2010).
[CrossRef]

V. V. Rusan, D. K. Tagantsev, A. A. Lipovskiĭ, and K. Paĭvasaari, “New method of recording phase optical structures in glasses,” Fiz. Khim. Stekla 36, 641 (2010).

A. A. Zhilin and M. P. Shepilov, “Metamaterials—a new specialization in material science,” Fiz. Khim. Stekla 36, 657 (2010).

2009 (2)

M. P. Shepilov and A. A. Zhilin, “Metamaterials and the problem of creating invisible objects. 2. Invisible shells that conceal the objects contained in them from an external observer,” Opt. Zh. 76, No. 6, 40 (2009). [J. Opt. Technol. 76, 350 (2009)].

V. V. Rusan and D. K. Tagantsev, “New method of recording images in glasses,” Fiz. Khim. Stekla 35, 293 (2009).

2008 (3)

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials 2, 1 (2008).
[CrossRef]

A. A. Zhilin and M. P. Shepilov, “Metamaterials with negative refractive index,” Opt. Zh. 75, No. 4, 57 (2008). [J. Opt. Technol. 75, 255 (2008)].

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melekhin, V. V. Zhurikhina, and Yu. P. Svirko, “Electric field imprinting of sub-micron patterns in glass–metal nanocomposites,” Nanotechnology 19, 415304 (2008).
[CrossRef] [PubMed]

2007 (1)

Y. Kaganovskii, A. Lipovskii, M. Rosenbluh, and V. Zhurikhina, “Formation of nanoclusters through silver reduction in glasses: The model,” J. Non-Cryst. Solids 353, 2263 (2007).
[CrossRef]

2006 (1)

2005 (6)

V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356 (2005).
[CrossRef] [PubMed]

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, No. 7066, 335 (2005).
[CrossRef] [PubMed]

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449 (2005).
[CrossRef]

R. H. Doremus, “Mechanism of electrical polarization of silica glass,” Appl. Phys. Lett. 87, 232904 (2005).
[CrossRef]

E. Ozbay, I. Bulu, K. Aydin, Y. Caglayan, K. B. Alici, and K. Guven, “Highly directive radiation and negative refraction using photonic crystals,” Laser Phys. 15, 217 (2005).

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. V. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

2004 (1)

A. Kameyama, A. Yokotani, and K. Kurosawa, “Second-order optical nonlinearity and change in refractive index in silica glasses by a combination of thermal poling and x-ray irradiation,” J. Appl. Phys. 95, 4000 (2004).
[CrossRef]

2002 (2)

Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A 65, 043816 (2002).
[CrossRef]

M. Qiu, T. Mizunami, R. Vilaseca, F. Pi, and G. Orriols, “Bulk and near-surface second-order nonlinearities generated in a BK7 soft glass by thermal poling,” J. Opt. Soc. Am. B 19, 37 (2002).
[CrossRef]

1997 (1)

B. Roy, H. Jain, S. Roy, and D. Chakravorty, “The development of nanosize silver particles in an ion-exchanged silicate glass matrix,” J. Non-Cryst. Solids 222, 102 (1997).

1996 (1)

1988 (1)

Alemaskin, M. Yu.

A. A. Zhilin, D. K. Tagantsev, M. P. Shepilov, S. S. Zapalova, M. Yu. Alemaskin, and M. E. Sazonov, “Metamaterials with a lattice structure,” Opt. Zh. 79, No. 4, 62 (2012). [J. Opt. Technol. 79, 241 (2012)].

Alici, K. B.

E. Ozbay, I. Bulu, K. Aydin, Y. Caglayan, K. B. Alici, and K. Guven, “Highly directive radiation and negative refraction using photonic crystals,” Laser Phys. 15, 217 (2005).

An, H.

Asahara, Y.

Aydin, K.

E. Ozbay, I. Bulu, K. Aydin, Y. Caglayan, K. B. Alici, and K. Guven, “Highly directive radiation and negative refraction using photonic crystals,” Laser Phys. 15, 217 (2005).

Boltasseva, A.

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials 2, 1 (2008).
[CrossRef]

Bulu, I.

E. Ozbay, I. Bulu, K. Aydin, Y. Caglayan, K. B. Alici, and K. Guven, “Highly directive radiation and negative refraction using photonic crystals,” Laser Phys. 15, 217 (2005).

Caglayan, Y.

E. Ozbay, I. Bulu, K. Aydin, Y. Caglayan, K. B. Alici, and K. Guven, “Highly directive radiation and negative refraction using photonic crystals,” Laser Phys. 15, 217 (2005).

Cai, W.

Chakravorty, D.

B. Roy, H. Jain, S. Roy, and D. Chakravorty, “The development of nanosize silver particles in an ion-exchanged silicate glass matrix,” J. Non-Cryst. Solids 222, 102 (1997).

Chettiar, U. K.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5, 051513 (2011).
[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356 (2005).
[CrossRef] [PubMed]

Doremus, R. H.

R. H. Doremus, “Mechanism of electrical polarization of silica glass,” Appl. Phys. Lett. 87, 232904 (2005).
[CrossRef]

Drachev, V. P.

Drachev, V. P.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5, 051513 (2011).
[CrossRef]

Fang, J.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5, 051513 (2011).
[CrossRef]

Firsov, A. A.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, No. 7066, 335 (2005).
[CrossRef] [PubMed]

Fleming, S.

Foteinopoulou, S.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. V. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Geim, A. K.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, No. 7066, 335 (2005).
[CrossRef] [PubMed]

Gleeson, H. F.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, No. 7066, 335 (2005).
[CrossRef] [PubMed]

Godbout, N.

Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A 65, 043816 (2002).
[CrossRef]

Grigorenko, A. N.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, No. 7066, 335 (2005).
[CrossRef] [PubMed]

Guven, K.

E. Ozbay, I. Bulu, K. Aydin, Y. Caglayan, K. B. Alici, and K. Guven, “Highly directive radiation and negative refraction using photonic crystals,” Laser Phys. 15, 217 (2005).

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. V. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Izumitani, T.

Jain, H.

B. Roy, H. Jain, S. Roy, and D. Chakravorty, “The development of nanosize silver particles in an ion-exchanged silicate glass matrix,” J. Non-Cryst. Solids 222, 102 (1997).

Kaganovskii, Y.

Y. Kaganovskii, A. Lipovskii, M. Rosenbluh, and V. Zhurikhina, “Formation of nanoclusters through silver reduction in glasses: The model,” J. Non-Cryst. Solids 353, 2263 (2007).
[CrossRef]

Kameyama, A.

A. Kameyama, A. Yokotani, and K. Kurosawa, “Second-order optical nonlinearity and change in refractive index in silica glasses by a combination of thermal poling and x-ray irradiation,” J. Appl. Phys. 95, 4000 (2004).
[CrossRef]

Karvinen, P.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melekhin, V. V. Zhurikhina, and Yu. P. Svirko, “Electric field imprinting of sub-micron patterns in glass–metal nanocomposites,” Nanotechnology 19, 415304 (2008).
[CrossRef] [PubMed]

Kazansky, P. G.

Khrushchev, I. Y.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, No. 7066, 335 (2005).
[CrossRef] [PubMed]

Kildishev, A. V.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5, 051513 (2011).
[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356 (2005).
[CrossRef] [PubMed]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

Kuittinen, M.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melekhin, V. V. Zhurikhina, and Yu. P. Svirko, “Electric field imprinting of sub-micron patterns in glass–metal nanocomposites,” Nanotechnology 19, 415304 (2008).
[CrossRef] [PubMed]

Kurosawa, K.

A. Kameyama, A. Yokotani, and K. Kurosawa, “Second-order optical nonlinearity and change in refractive index in silica glasses by a combination of thermal poling and x-ray irradiation,” J. Appl. Phys. 95, 4000 (2004).
[CrossRef]

Lacroix, S.

Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A 65, 043816 (2002).
[CrossRef]

Leinonen, K.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melekhin, V. V. Zhurikhina, and Yu. P. Svirko, “Electric field imprinting of sub-micron patterns in glass–metal nanocomposites,” Nanotechnology 19, 415304 (2008).
[CrossRef] [PubMed]

Lipovskii, A.

Y. Kaganovskii, A. Lipovskii, M. Rosenbluh, and V. Zhurikhina, “Formation of nanoclusters through silver reduction in glasses: The model,” J. Non-Cryst. Solids 353, 2263 (2007).
[CrossRef]

Lipovskii, A. A.

A. A. Lipovskii, V. V. Rusan, and D. K. Tagantsev, “Imprinting phase/amplitude patterns in glasses with thermal poling,” Solid State Ionics 181, 849 (2010).
[CrossRef]

V. V. Rusan, D. K. Tagantsev, A. A. Lipovskiĭ, and K. Paĭvasaari, “New method of recording phase optical structures in glasses,” Fiz. Khim. Stekla 36, 641 (2010).

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melekhin, V. V. Zhurikhina, and Yu. P. Svirko, “Electric field imprinting of sub-micron patterns in glass–metal nanocomposites,” Nanotechnology 19, 415304 (2008).
[CrossRef] [PubMed]

Melekhin, V. G.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melekhin, V. V. Zhurikhina, and Yu. P. Svirko, “Electric field imprinting of sub-micron patterns in glass–metal nanocomposites,” Nanotechnology 19, 415304 (2008).
[CrossRef] [PubMed]

Mizunami, T.

Morinaga, K.

Moussa, R.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. V. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Nakayama, S.

Nyga, P.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5, 051513 (2011).
[CrossRef]

Ohmi, S.

Orriols, G.

Ozbay, E.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. V. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

E. Ozbay, I. Bulu, K. Aydin, Y. Caglayan, K. B. Alici, and K. Guven, “Highly directive radiation and negative refraction using photonic crystals,” Laser Phys. 15, 217 (2005).

Paivasaari, K.

V. V. Rusan, D. K. Tagantsev, A. A. Lipovskiĭ, and K. Paĭvasaari, “New method of recording phase optical structures in glasses,” Fiz. Khim. Stekla 36, 641 (2010).

Petrovic, J.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, No. 7066, 335 (2005).
[CrossRef] [PubMed]

Pi, F.

Prokopeva, L. J.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5, 051513 (2011).
[CrossRef]

Qiu, M.

Quiquempois, Y.

Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A 65, 043816 (2002).
[CrossRef]

Ramakrishna, S. A.

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449 (2005).
[CrossRef]

Rosenbluh, M.

Y. Kaganovskii, A. Lipovskii, M. Rosenbluh, and V. Zhurikhina, “Formation of nanoclusters through silver reduction in glasses: The model,” J. Non-Cryst. Solids 353, 2263 (2007).
[CrossRef]

Roy, B.

B. Roy, H. Jain, S. Roy, and D. Chakravorty, “The development of nanosize silver particles in an ion-exchanged silicate glass matrix,” J. Non-Cryst. Solids 222, 102 (1997).

Roy, S.

B. Roy, H. Jain, S. Roy, and D. Chakravorty, “The development of nanosize silver particles in an ion-exchanged silicate glass matrix,” J. Non-Cryst. Solids 222, 102 (1997).

Rusan, V. V.

A. A. Lipovskii, V. V. Rusan, and D. K. Tagantsev, “Imprinting phase/amplitude patterns in glasses with thermal poling,” Solid State Ionics 181, 849 (2010).
[CrossRef]

V. V. Rusan, D. K. Tagantsev, A. A. Lipovskiĭ, and K. Paĭvasaari, “New method of recording phase optical structures in glasses,” Fiz. Khim. Stekla 36, 641 (2010).

V. V. Rusan and D. K. Tagantsev, “New method of recording images in glasses,” Fiz. Khim. Stekla 35, 293 (2009).

Russell, P. St. J.

Sakai, H.

Sarychev, A. K.

Sazonov, M. E.

A. A. Zhilin, D. K. Tagantsev, M. P. Shepilov, S. S. Zapalova, M. Yu. Alemaskin, and M. E. Sazonov, “Metamaterials with a lattice structure,” Opt. Zh. 79, No. 4, 62 (2012). [J. Opt. Technol. 79, 241 (2012)].

Shalaev, V.

W. Cai and V. Shalaev, Optical Metamaterials. Fundamentals and Applications (Springer, New York, 2010).

Shalaev, V. M.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5, 051513 (2011).
[CrossRef]

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials 2, 1 (2008).
[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356 (2005).
[CrossRef] [PubMed]

Shepilov, M. P.

A. A. Zhilin, D. K. Tagantsev, M. P. Shepilov, S. S. Zapalova, M. Yu. Alemaskin, and M. E. Sazonov, “Metamaterials with a lattice structure,” Opt. Zh. 79, No. 4, 62 (2012). [J. Opt. Technol. 79, 241 (2012)].

A. A. Zhilin and M. P. Shepilov, “Metamaterials—a new specialization in material science,” Fiz. Khim. Stekla 36, 657 (2010).

M. P. Shepilov and A. A. Zhilin, “Metamaterials and the problem of creating invisible objects. 2. Invisible shells that conceal the objects contained in them from an external observer,” Opt. Zh. 76, No. 6, 40 (2009). [J. Opt. Technol. 76, 350 (2009)].

A. A. Zhilin and M. P. Shepilov, “Metamaterials with negative refractive index,” Opt. Zh. 75, No. 4, 57 (2008). [J. Opt. Technol. 75, 255 (2008)].

Soukoulis, C. V.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. V. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Svirko, Yu. P.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melekhin, V. V. Zhurikhina, and Yu. P. Svirko, “Electric field imprinting of sub-micron patterns in glass–metal nanocomposites,” Nanotechnology 19, 415304 (2008).
[CrossRef] [PubMed]

Tagantsev, D. K.

A. A. Zhilin, D. K. Tagantsev, M. P. Shepilov, S. S. Zapalova, M. Yu. Alemaskin, and M. E. Sazonov, “Metamaterials with a lattice structure,” Opt. Zh. 79, No. 4, 62 (2012). [J. Opt. Technol. 79, 241 (2012)].

V. V. Rusan, D. K. Tagantsev, A. A. Lipovskiĭ, and K. Paĭvasaari, “New method of recording phase optical structures in glasses,” Fiz. Khim. Stekla 36, 641 (2010).

A. A. Lipovskii, V. V. Rusan, and D. K. Tagantsev, “Imprinting phase/amplitude patterns in glasses with thermal poling,” Solid State Ionics 181, 849 (2010).
[CrossRef]

V. V. Rusan and D. K. Tagantsev, “New method of recording images in glasses,” Fiz. Khim. Stekla 35, 293 (2009).

Takebe, H.

Thoreson, M. D.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5, 051513 (2011).
[CrossRef]

Tuttle, G.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. V. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Vilaseca, R.

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

Yokotani, A.

A. Kameyama, A. Yokotani, and K. Kurosawa, “Second-order optical nonlinearity and change in refractive index in silica glasses by a combination of thermal poling and x-ray irradiation,” J. Appl. Phys. 95, 4000 (2004).
[CrossRef]

Yoneda, Y.

Yuan, H. K.

Zapalova, S. S.

A. A. Zhilin, D. K. Tagantsev, M. P. Shepilov, S. S. Zapalova, M. Yu. Alemaskin, and M. E. Sazonov, “Metamaterials with a lattice structure,” Opt. Zh. 79, No. 4, 62 (2012). [J. Opt. Technol. 79, 241 (2012)].

Zhang, L.

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. V. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Zhang, Y.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, No. 7066, 335 (2005).
[CrossRef] [PubMed]

Zhilin, A. A.

A. A. Zhilin, D. K. Tagantsev, M. P. Shepilov, S. S. Zapalova, M. Yu. Alemaskin, and M. E. Sazonov, “Metamaterials with a lattice structure,” Opt. Zh. 79, No. 4, 62 (2012). [J. Opt. Technol. 79, 241 (2012)].

A. A. Zhilin and M. P. Shepilov, “Metamaterials—a new specialization in material science,” Fiz. Khim. Stekla 36, 657 (2010).

M. P. Shepilov and A. A. Zhilin, “Metamaterials and the problem of creating invisible objects. 2. Invisible shells that conceal the objects contained in them from an external observer,” Opt. Zh. 76, No. 6, 40 (2009). [J. Opt. Technol. 76, 350 (2009)].

A. A. Zhilin and M. P. Shepilov, “Metamaterials with negative refractive index,” Opt. Zh. 75, No. 4, 57 (2008). [J. Opt. Technol. 75, 255 (2008)].

Zhurikhina, V.

Y. Kaganovskii, A. Lipovskii, M. Rosenbluh, and V. Zhurikhina, “Formation of nanoclusters through silver reduction in glasses: The model,” J. Non-Cryst. Solids 353, 2263 (2007).
[CrossRef]

Zhurikhina, V. V.

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melekhin, V. V. Zhurikhina, and Yu. P. Svirko, “Electric field imprinting of sub-micron patterns in glass–metal nanocomposites,” Nanotechnology 19, 415304 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. H. Doremus, “Mechanism of electrical polarization of silica glass,” Appl. Phys. Lett. 87, 232904 (2005).
[CrossRef]

Fiz. Khim. Stekla (3)

A. A. Zhilin and M. P. Shepilov, “Metamaterials—a new specialization in material science,” Fiz. Khim. Stekla 36, 657 (2010).

V. V. Rusan, D. K. Tagantsev, A. A. Lipovskiĭ, and K. Paĭvasaari, “New method of recording phase optical structures in glasses,” Fiz. Khim. Stekla 36, 641 (2010).

V. V. Rusan and D. K. Tagantsev, “New method of recording images in glasses,” Fiz. Khim. Stekla 35, 293 (2009).

J. Appl. Phys. (1)

A. Kameyama, A. Yokotani, and K. Kurosawa, “Second-order optical nonlinearity and change in refractive index in silica glasses by a combination of thermal poling and x-ray irradiation,” J. Appl. Phys. 95, 4000 (2004).
[CrossRef]

J. Nanophotonics (1)

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5, 051513 (2011).
[CrossRef]

J. Non-Cryst. Solids (2)

B. Roy, H. Jain, S. Roy, and D. Chakravorty, “The development of nanosize silver particles in an ion-exchanged silicate glass matrix,” J. Non-Cryst. Solids 222, 102 (1997).

Y. Kaganovskii, A. Lipovskii, M. Rosenbluh, and V. Zhurikhina, “Formation of nanoclusters through silver reduction in glasses: The model,” J. Non-Cryst. Solids 353, 2263 (2007).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

E. Ozbay, I. Bulu, K. Aydin, Y. Caglayan, K. B. Alici, and K. Guven, “Highly directive radiation and negative refraction using photonic crystals,” Laser Phys. 15, 217 (2005).

Metamaterials (1)

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials 2, 1 (2008).
[CrossRef]

Nanotechnology (1)

A. A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V. G. Melekhin, V. V. Zhurikhina, and Yu. P. Svirko, “Electric field imprinting of sub-micron patterns in glass–metal nanocomposites,” Nanotechnology 19, 415304 (2008).
[CrossRef] [PubMed]

Nature (1)

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, No. 7066, 335 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

Opt. Zh. (3)

A. A. Zhilin, D. K. Tagantsev, M. P. Shepilov, S. S. Zapalova, M. Yu. Alemaskin, and M. E. Sazonov, “Metamaterials with a lattice structure,” Opt. Zh. 79, No. 4, 62 (2012). [J. Opt. Technol. 79, 241 (2012)].

A. A. Zhilin and M. P. Shepilov, “Metamaterials with negative refractive index,” Opt. Zh. 75, No. 4, 57 (2008). [J. Opt. Technol. 75, 255 (2008)].

M. P. Shepilov and A. A. Zhilin, “Metamaterials and the problem of creating invisible objects. 2. Invisible shells that conceal the objects contained in them from an external observer,” Opt. Zh. 76, No. 6, 40 (2009). [J. Opt. Technol. 76, 350 (2009)].

Phys. Rev. A (1)

Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A 65, 043816 (2002).
[CrossRef]

Phys. Rev. B (1)

R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. V. Soukoulis, “Negative refraction and superlens behavior in a two-dimensional photonic crystal,” Phys. Rev. B 71, 085106 (2005).
[CrossRef]

Rep. Prog. Phys. (1)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449 (2005).
[CrossRef]

Solid State Ionics (1)

A. A. Lipovskii, V. V. Rusan, and D. K. Tagantsev, “Imprinting phase/amplitude patterns in glasses with thermal poling,” Solid State Ionics 181, 849 (2010).
[CrossRef]

Other (2)

W. Cai and V. Shalaev, Optical Metamaterials. Fundamentals and Applications (Springer, New York, 2010).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.