Abstract

In the course of analyzing the axiomatic principles that form the basis of statistical physics, the validity of the postulate that all the isoenergetic microstates of a closed system are equally probable was checked. This article reports the results of numerically modelling the interaction of thermodynamically equilibrium blackbody radiation with a reflective phase diffraction grating that possesses ideal conductivity. Cases are found in which anisotropy of the polarization parameters is guaranteed to appear inside a closed volume of initially homogeneous blackbody radiation, resulting in a formal decrease of its Boltzmann entropy as a consequence of deviation from the microcanonical Gibbs distribution. This is apparently caused by the discontinuous character of the change of the phase trajectories of the photons during diffraction, which makes the physical system under consideration nonergodic.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. V. Savukov, “Improving the precision of the axiomatic principles of statistical physics,” Deposited at the All-Union Institute of Scientific and Technical Information, No. 1249B2004 on 7/16/2004. URL: http://www.savukov.ru/viniti_1249_b2004_full_rus.pdf.
  2. V. V. Savukov and I. V. Golubenko, “Modeling the interaction of an arbitrary light field with a diffraction grating by the Monte Carlo method,” Opt. Zh. 79, No. 7, 10 (2012). [J. Opt. Technol. 79, 390 (2012)].
  3. I. V. Golubenko and V. V. Savukov, “Modeling the scattering of a diffuse photon gas at a diffraction grating by the Monte Carlo method,” Deposited at the All-Union Institute of Scientific and Technical Information, No. 392-B2011 on 8/24/2011. URL: http://www.savukov.ru/viniti_0392_b2011_full_rus.pdf.
  4. G. Granet, “Diffraction par des surfaces biperiodiques: resolution en coordonnées non orthogonales,” Pure Appl. Opt. 4, 777 (1995).
    [CrossRef]
  5. G. Granet, “Analysis of diffraction by surface-relief crossed gratings with use of the Chandezon method: application to multilayer crossed gratings,” J. Opt. Soc. Am. A 15, 1121 (1998).
    [CrossRef]
  6. S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett. 28, 1909 (2003).
    [CrossRef] [PubMed]
  7. M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J.-L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30, 2623 (2005).
    [CrossRef] [PubMed]
  8. P. Clausing, “Cosine law of reflection as a result of the second main theorem of thermodynamics,” Ann. Phys. (Leipzig) No. 4, 533 (1930).
  9. R. A. Depine and C. I. Valencia, “Reciprocity relations for s–p polarization conversion in conical diffraction,” Opt. Commun. 117, 223 (1995).
    [CrossRef]
  10. I. M. Sobol’ and R. B. Statnikov, Choosing the Optimum Parameters in Problems with Many Criteria (Nauka, Moscow, 1981).
  11. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396 (1902).
    [CrossRef]
  12. Lord Rayleigh, “On the dynamical theory of gratings,” Proc. Royal Soc. London Ser. A 79, 399 (1907).
    [CrossRef]
  13. V. V. Savukov, “Breakdown of the isotropy of diffuse radiation as a consequence of its diffraction at multidimensional regular structures,” Opt. Zh. 77, No. 1, 95 (2010). [J. Opt. Technol. 77, 74 (2010)].
  14. V. V. Savukov, “Breakdown of Lambert’s law when a diffuse photon gas is diffracted at multidimensional regular structures,” Deposited at the All-Union Institute of Scientific and Technical Information, No. 507-B2009 on 8/30/2009. URL: http://www.savukov.ru/viniti_0507_b2009_full_rus.pdf.
  15. A. A. Karabutov, I. A. Kudinov, V. T. Platonenko, and M. A. Sogoyan, “Thermal radiation of metallic periodic surfaces,” Pis’ma Zh. Eksp. Teor. Fiz. 59, 79 (1994). [JETP Lett. 59, 81 (1994)].

2012

V. V. Savukov and I. V. Golubenko, “Modeling the interaction of an arbitrary light field with a diffraction grating by the Monte Carlo method,” Opt. Zh. 79, No. 7, 10 (2012). [J. Opt. Technol. 79, 390 (2012)].

2010

V. V. Savukov, “Breakdown of the isotropy of diffuse radiation as a consequence of its diffraction at multidimensional regular structures,” Opt. Zh. 77, No. 1, 95 (2010). [J. Opt. Technol. 77, 74 (2010)].

2005

2003

1998

1995

G. Granet, “Diffraction par des surfaces biperiodiques: resolution en coordonnées non orthogonales,” Pure Appl. Opt. 4, 777 (1995).
[CrossRef]

R. A. Depine and C. I. Valencia, “Reciprocity relations for s–p polarization conversion in conical diffraction,” Opt. Commun. 117, 223 (1995).
[CrossRef]

1994

A. A. Karabutov, I. A. Kudinov, V. T. Platonenko, and M. A. Sogoyan, “Thermal radiation of metallic periodic surfaces,” Pis’ma Zh. Eksp. Teor. Fiz. 59, 79 (1994). [JETP Lett. 59, 81 (1994)].

1930

P. Clausing, “Cosine law of reflection as a result of the second main theorem of thermodynamics,” Ann. Phys. (Leipzig) No. 4, 533 (1930).

1907

Lord Rayleigh, “On the dynamical theory of gratings,” Proc. Royal Soc. London Ser. A 79, 399 (1907).
[CrossRef]

1902

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396 (1902).
[CrossRef]

Arnold, C.

Bardou, N.

Carminati, R.

Clausing, P.

P. Clausing, “Cosine law of reflection as a result of the second main theorem of thermodynamics,” Ann. Phys. (Leipzig) No. 4, 533 (1930).

Collin, S.

Depine, R. A.

R. A. Depine and C. I. Valencia, “Reciprocity relations for s–p polarization conversion in conical diffraction,” Opt. Commun. 117, 223 (1995).
[CrossRef]

El-Kady, I.

Fleming, J. G.

Golubenko, I. V.

V. V. Savukov and I. V. Golubenko, “Modeling the interaction of an arbitrary light field with a diffraction grating by the Monte Carlo method,” Opt. Zh. 79, No. 7, 10 (2012). [J. Opt. Technol. 79, 390 (2012)].

I. V. Golubenko and V. V. Savukov, “Modeling the scattering of a diffuse photon gas at a diffraction grating by the Monte Carlo method,” Deposited at the All-Union Institute of Scientific and Technical Information, No. 392-B2011 on 8/24/2011. URL: http://www.savukov.ru/viniti_0392_b2011_full_rus.pdf.

Granet, G.

Greffet, J.-J.

Karabutov, A. A.

A. A. Karabutov, I. A. Kudinov, V. T. Platonenko, and M. A. Sogoyan, “Thermal radiation of metallic periodic surfaces,” Pis’ma Zh. Eksp. Teor. Fiz. 59, 79 (1994). [JETP Lett. 59, 81 (1994)].

Kudinov, I. A.

A. A. Karabutov, I. A. Kudinov, V. T. Platonenko, and M. A. Sogoyan, “Thermal radiation of metallic periodic surfaces,” Pis’ma Zh. Eksp. Teor. Fiz. 59, 79 (1994). [JETP Lett. 59, 81 (1994)].

Laroche, M.

Lin, S.-Y.

Marquier, F.

Pelouard, J.-L.

Platonenko, V. T.

A. A. Karabutov, I. A. Kudinov, V. T. Platonenko, and M. A. Sogoyan, “Thermal radiation of metallic periodic surfaces,” Pis’ma Zh. Eksp. Teor. Fiz. 59, 79 (1994). [JETP Lett. 59, 81 (1994)].

Rayleigh, Lord

Lord Rayleigh, “On the dynamical theory of gratings,” Proc. Royal Soc. London Ser. A 79, 399 (1907).
[CrossRef]

Savukov, V. V.

V. V. Savukov and I. V. Golubenko, “Modeling the interaction of an arbitrary light field with a diffraction grating by the Monte Carlo method,” Opt. Zh. 79, No. 7, 10 (2012). [J. Opt. Technol. 79, 390 (2012)].

V. V. Savukov, “Breakdown of the isotropy of diffuse radiation as a consequence of its diffraction at multidimensional regular structures,” Opt. Zh. 77, No. 1, 95 (2010). [J. Opt. Technol. 77, 74 (2010)].

V. V. Savukov, “Breakdown of Lambert’s law when a diffuse photon gas is diffracted at multidimensional regular structures,” Deposited at the All-Union Institute of Scientific and Technical Information, No. 507-B2009 on 8/30/2009. URL: http://www.savukov.ru/viniti_0507_b2009_full_rus.pdf.

I. V. Golubenko and V. V. Savukov, “Modeling the scattering of a diffuse photon gas at a diffraction grating by the Monte Carlo method,” Deposited at the All-Union Institute of Scientific and Technical Information, No. 392-B2011 on 8/24/2011. URL: http://www.savukov.ru/viniti_0392_b2011_full_rus.pdf.

V. V. Savukov, “Improving the precision of the axiomatic principles of statistical physics,” Deposited at the All-Union Institute of Scientific and Technical Information, No. 1249B2004 on 7/16/2004. URL: http://www.savukov.ru/viniti_1249_b2004_full_rus.pdf.

Sobol’, I. M.

I. M. Sobol’ and R. B. Statnikov, Choosing the Optimum Parameters in Problems with Many Criteria (Nauka, Moscow, 1981).

Sogoyan, M. A.

A. A. Karabutov, I. A. Kudinov, V. T. Platonenko, and M. A. Sogoyan, “Thermal radiation of metallic periodic surfaces,” Pis’ma Zh. Eksp. Teor. Fiz. 59, 79 (1994). [JETP Lett. 59, 81 (1994)].

Statnikov, R. B.

I. M. Sobol’ and R. B. Statnikov, Choosing the Optimum Parameters in Problems with Many Criteria (Nauka, Moscow, 1981).

Valencia, C. I.

R. A. Depine and C. I. Valencia, “Reciprocity relations for s–p polarization conversion in conical diffraction,” Opt. Commun. 117, 223 (1995).
[CrossRef]

Wood, R. W.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396 (1902).
[CrossRef]

Ann. Phys. (Leipzig)

P. Clausing, “Cosine law of reflection as a result of the second main theorem of thermodynamics,” Ann. Phys. (Leipzig) No. 4, 533 (1930).

J. Opt. Soc. Am. A

Opt. Commun.

R. A. Depine and C. I. Valencia, “Reciprocity relations for s–p polarization conversion in conical diffraction,” Opt. Commun. 117, 223 (1995).
[CrossRef]

Opt. Lett.

Opt. Zh.

V. V. Savukov and I. V. Golubenko, “Modeling the interaction of an arbitrary light field with a diffraction grating by the Monte Carlo method,” Opt. Zh. 79, No. 7, 10 (2012). [J. Opt. Technol. 79, 390 (2012)].

V. V. Savukov, “Breakdown of the isotropy of diffuse radiation as a consequence of its diffraction at multidimensional regular structures,” Opt. Zh. 77, No. 1, 95 (2010). [J. Opt. Technol. 77, 74 (2010)].

Philos. Mag.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396 (1902).
[CrossRef]

Pis’ma Zh. Eksp. Teor. Fiz.

A. A. Karabutov, I. A. Kudinov, V. T. Platonenko, and M. A. Sogoyan, “Thermal radiation of metallic periodic surfaces,” Pis’ma Zh. Eksp. Teor. Fiz. 59, 79 (1994). [JETP Lett. 59, 81 (1994)].

Proc. Royal Soc. London Ser. A

Lord Rayleigh, “On the dynamical theory of gratings,” Proc. Royal Soc. London Ser. A 79, 399 (1907).
[CrossRef]

Pure Appl. Opt.

G. Granet, “Diffraction par des surfaces biperiodiques: resolution en coordonnées non orthogonales,” Pure Appl. Opt. 4, 777 (1995).
[CrossRef]

Other

I. V. Golubenko and V. V. Savukov, “Modeling the scattering of a diffuse photon gas at a diffraction grating by the Monte Carlo method,” Deposited at the All-Union Institute of Scientific and Technical Information, No. 392-B2011 on 8/24/2011. URL: http://www.savukov.ru/viniti_0392_b2011_full_rus.pdf.

I. M. Sobol’ and R. B. Statnikov, Choosing the Optimum Parameters in Problems with Many Criteria (Nauka, Moscow, 1981).

V. V. Savukov, “Improving the precision of the axiomatic principles of statistical physics,” Deposited at the All-Union Institute of Scientific and Technical Information, No. 1249B2004 on 7/16/2004. URL: http://www.savukov.ru/viniti_1249_b2004_full_rus.pdf.

V. V. Savukov, “Breakdown of Lambert’s law when a diffuse photon gas is diffracted at multidimensional regular structures,” Deposited at the All-Union Institute of Scientific and Technical Information, No. 507-B2009 on 8/30/2009. URL: http://www.savukov.ru/viniti_0507_b2009_full_rus.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.