Abstract

Any application of lasers in medicine is based on a compromise between the efficiency with which the laser radiation interacts with biological tissue and the concomitant collateral effects. Correspondingly, parameters minimizing undesirable damage to tissue must be determined. The development of a new generation of solid-state lasers tunable over a wide range in the mid-IR range of the spectrum with parametric generation of light and a combination of high radiation intensity and relatively low pulse energy at high repetition frequency opens up new possibilities for less-invasive, high-precision, laser surgery, first and foremost, in ophthamology and neuro- and cardiosurgery.

© 2010 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Haglund, “Applications of Free Electron Lasers in biological sciences, medicine and material science,” in: Photon-Based Nanoscience and Nanobiotechnology, edited by J.J.Dubowski and S.Tanev, Springer, NY (2006), pp. 175-203.
  2. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577 (2003).
    [CrossRef]
  3. S. R. Uhlhorn, Free Electron Laser Ablation of Soft Tissue: The Effects of Chromophore and Pulse Characteristics on Ablation Mechanics, Dissertation, Vanderbilt University, Nashville, Tennessee (2002).
  4. B. Jean, “Medical and surgical application of FELs,” IEEE Particle Accelerator Conference, Dallas, TX, USA, 1-5 May 1995, Vol. 1, pp. 75-79.
  5. J. J. Salz, Corneal Laser Surgery, Mosby, Philadelphia, PA (1995).
  6. K. K. Short, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at K=2.94μm,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 959 (2001).
    [CrossRef]
  7. I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys. A 81, 329 (2005).
    [CrossRef]
  8. J. T. Walsh and J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Lasers Surg. Med. 15, 295 (1994).
    [CrossRef]
  9. G. J. Wilmink, Using Optical Imaging Methods to Assess Laser-Tissue Interactions, Dissertation, Vanderbilt University, Nashville, Tennessee (2007).
  10. M. S. Hutson, S. A. Hanger, and G. Edwards, “Thermal diffusion and chemical kinetics in laminar biomaterial due to heating by a free electron laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, Part 1, 061906 (2002).
    [CrossRef]
  11. Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94, No. 4, 1359 (2008).
    [CrossRef]
  12. M. S. Hutson and G. S. Edwards, “Advances in the physical understanding of laser surgery at 6.45microns,” Proc. 26th International FEL Conf., Trieste, Italy (2004). pp. 648-653.
  13. M. A. Mackanos, The Effect of Pulse Structure on Soft Tissue Laser Ablation at Mid-IR Wavelengths, Dissertation, Vanderbilt University, Nashville, Tennessee (2004).
  14. D. L. Ellis, N. K. Weisberg, J. S. Chen, G. P. Stricklin, and L. Reinisch, “Free electron laser wavelength specificity for cutaneous contraction,” Lasers Surg. Med. 25, 1 (1999).
    [CrossRef]
  15. R. K. Joos, R. J. Shah, R. D. Robinson, and J. H. Shen, “Optic nerve sheath fenestration with endoscopic accessory instruments versus the free electron laser (FEL),” Lasers Surg. Med. 38, 846 (2006).
    [CrossRef]
  16. M. J. Shah, J. H. Shen, and K. M. Joos, “Endoscopic free electron laser technique development for minimally invasive optic nerve sheath fenestration,” Lasers Surg. Med. 39, 589 (2007).
    [CrossRef]
  17. G. McKenzie, C. Beck, J. Mittchll, B. Jean, and P. Bryanston-Cross, “Confined tissue ablation for vitrectomy: a study at FELIX,” Proc. SPIE 4247, 229 (2001).
    [CrossRef]
  18. G. Edwards, W. Wagner, A. Sokolow, and R. Pearlstein “Pressure (mechanical) effects in infrared tissue ablation,” Proc. SPIE 6854, 685410 (2008).
    [CrossRef]
  19. B. A. Hooper, A. Maheshwari, A. C. Curry, and T. M. Alter, “Catheter for diagnosis and therapy with infrared evanescent waves,” Appl. Opt. 42(16), 3205 (2003).
    [CrossRef]
  20. K. Ishii, H. Tsukimoto, H. Hazama, and K. Awazu, “Selective treatment of atherosclerotic plaques using nanosecond pulsed laser with a wavelength of 5.75μm for less-invasive laser angioplasty,” Proc. SPIE 7373, 73731E (2009).
    [CrossRef]
  21. J. Youn, P. Sweet, G. M. Peavy, and V. Venugopalan, “Mid-IR laser ablation of articular and fibro-cartilage: A wavelength dependence study of thermal injury and crater morphology,” Lasers Surg. Med. 38, No. 3, 218 (2006).
    [CrossRef]
  22. J. Youn, P. Sweet, and G. M. Peavy, “A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45μm,” Lasers Surg. Med. 39, No. 4, 332 (2007).
    [CrossRef]
  23. J. T. Payne, J. T. Payne, and V. Venugopalan, “Comparison of cortical bone ablations by using infrared laser wavelengths 2.9to9.2μm,” Lasers Surg. Med. 26, 421 (1999).
  24. M. Ostertag, J. T. McKinley, L. Reinisch, D. M. Harris, and N. H. Tolk, “Laser ablation as a function of the primary absorber in dentin,” Lasers Surg. Med. 21, 384 (1997).
    [CrossRef]
  25. P. Spencer, J. M. Payne, C. M. Cobb, L. Reinisch, G. M. Peavy, D. D. Drummer, D. L. Suchman, and J. R. Swafford, “Effective laser Ablation of bone based on the absorption characteristics of water and proteins,” J. Periodontol. 70, 68 (1999).
    [CrossRef]
  26. E. Swift, “Free-electron laser etching of dental enamel,” J. Dent. 29, No. 5, 347 (2001).
    [CrossRef]
  27. F. C. Kin, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 1022 (2001).
    [CrossRef]
  28. A. V. Platonov, A. N. Soldatov, and A. G. Filoonov, “Pulsed strontium-vapor laser,” Sov. J. Quantum Electron. 5, No. 1, 198 (1978).
  29. M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid-infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med. 39, 230 (2007).
    [CrossRef]
  30. K. Miyamoto and H. Ito, “Wavelength-agile mid-IR (5-10μm) generation using a galvano-controlled KTP-OPO,” Opt. Lett. 32, No. 3, 274 (2006).
    [CrossRef]
  31. M. W. Haakestad, G. Arisholm, E. Lippert, S. Nicolas, G. Rustad, and K. Stenersen, “High-pulse-energy mid-infrared laser source based on-optical parametric amplification in ZnGeP2,” Opt. Express 16(18), 14263 (2008).
    [CrossRef]
  32. P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeram, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, and E. P. Chicklis, “20mJ, 3-5μm & 2mJ, 8μmZnGeP2 optical parametric oscillators pumped by a 2.09μm Ho:YAG laser,” in 16th Solid State and Diode Laser Technology Review, Albuquerque, New Mexico (2003), p. 17.
  33. O. L. Antipov, O. N. Eremeykin, Yu. N. Frolov, G. I. Freidman, S. G. Garanin, R. I. Il'kaev, A. P. Konyushkov, V. I. Lazarenko, G. M. Mischenko, A. P. Savikin, A. M. Sergeev, S. J. Velikanov, and R. Yu. Volkov, “Mid-IR ZnGeP2 parametric oscillator with laser pumping at 2.1μm,” in Mid-Infrared Coherent Sources and Applications (MICS 2005), Barcelona, Spain (2005), No.
  34. A. Dergachev, A. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA System,” Proc. SPIE 6875, 87507 (2008).
  35. P. S. Kuo and M. M. Fejer, “Microstructured semiconductors for mid-infrared nonlinear optics,” in Mid-Infrared Coherent Sources and Applications, edited by M.Ebrahim-Zadeh and I.T.Sorokina, Springer, NY (2008), pp. 149-168.

2009

K. Ishii, H. Tsukimoto, H. Hazama, and K. Awazu, “Selective treatment of atherosclerotic plaques using nanosecond pulsed laser with a wavelength of 5.75μm for less-invasive laser angioplasty,” Proc. SPIE 7373, 73731E (2009).
[CrossRef]

2008

G. Edwards, W. Wagner, A. Sokolow, and R. Pearlstein “Pressure (mechanical) effects in infrared tissue ablation,” Proc. SPIE 6854, 685410 (2008).
[CrossRef]

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94, No. 4, 1359 (2008).
[CrossRef]

A. Dergachev, A. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA System,” Proc. SPIE 6875, 87507 (2008).

M. W. Haakestad, G. Arisholm, E. Lippert, S. Nicolas, G. Rustad, and K. Stenersen, “High-pulse-energy mid-infrared laser source based on-optical parametric amplification in ZnGeP2,” Opt. Express 16(18), 14263 (2008).
[CrossRef]

2007

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid-infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med. 39, 230 (2007).
[CrossRef]

J. Youn, P. Sweet, and G. M. Peavy, “A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45μm,” Lasers Surg. Med. 39, No. 4, 332 (2007).
[CrossRef]

M. J. Shah, J. H. Shen, and K. M. Joos, “Endoscopic free electron laser technique development for minimally invasive optic nerve sheath fenestration,” Lasers Surg. Med. 39, 589 (2007).
[CrossRef]

2006

J. Youn, P. Sweet, G. M. Peavy, and V. Venugopalan, “Mid-IR laser ablation of articular and fibro-cartilage: A wavelength dependence study of thermal injury and crater morphology,” Lasers Surg. Med. 38, No. 3, 218 (2006).
[CrossRef]

R. K. Joos, R. J. Shah, R. D. Robinson, and J. H. Shen, “Optic nerve sheath fenestration with endoscopic accessory instruments versus the free electron laser (FEL),” Lasers Surg. Med. 38, 846 (2006).
[CrossRef]

K. Miyamoto and H. Ito, “Wavelength-agile mid-IR (5-10μm) generation using a galvano-controlled KTP-OPO,” Opt. Lett. 32, No. 3, 274 (2006).
[CrossRef]

2005

I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys. A 81, 329 (2005).
[CrossRef]

2003

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577 (2003).
[CrossRef]

B. A. Hooper, A. Maheshwari, A. C. Curry, and T. M. Alter, “Catheter for diagnosis and therapy with infrared evanescent waves,” Appl. Opt. 42(16), 3205 (2003).
[CrossRef]

2002

M. S. Hutson, S. A. Hanger, and G. Edwards, “Thermal diffusion and chemical kinetics in laminar biomaterial due to heating by a free electron laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, Part 1, 061906 (2002).
[CrossRef]

2001

K. K. Short, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at K=2.94μm,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 959 (2001).
[CrossRef]

G. McKenzie, C. Beck, J. Mittchll, B. Jean, and P. Bryanston-Cross, “Confined tissue ablation for vitrectomy: a study at FELIX,” Proc. SPIE 4247, 229 (2001).
[CrossRef]

E. Swift, “Free-electron laser etching of dental enamel,” J. Dent. 29, No. 5, 347 (2001).
[CrossRef]

F. C. Kin, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 1022 (2001).
[CrossRef]

1999

J. T. Payne, J. T. Payne, and V. Venugopalan, “Comparison of cortical bone ablations by using infrared laser wavelengths 2.9to9.2μm,” Lasers Surg. Med. 26, 421 (1999).

P. Spencer, J. M. Payne, C. M. Cobb, L. Reinisch, G. M. Peavy, D. D. Drummer, D. L. Suchman, and J. R. Swafford, “Effective laser Ablation of bone based on the absorption characteristics of water and proteins,” J. Periodontol. 70, 68 (1999).
[CrossRef]

D. L. Ellis, N. K. Weisberg, J. S. Chen, G. P. Stricklin, and L. Reinisch, “Free electron laser wavelength specificity for cutaneous contraction,” Lasers Surg. Med. 25, 1 (1999).
[CrossRef]

1997

M. Ostertag, J. T. McKinley, L. Reinisch, D. M. Harris, and N. H. Tolk, “Laser ablation as a function of the primary absorber in dentin,” Lasers Surg. Med. 21, 384 (1997).
[CrossRef]

1994

J. T. Walsh and J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Lasers Surg. Med. 15, 295 (1994).
[CrossRef]

1978

A. V. Platonov, A. N. Soldatov, and A. G. Filoonov, “Pulsed strontium-vapor laser,” Sov. J. Quantum Electron. 5, No. 1, 198 (1978).

Alter, T. M.

Antipov, O. L.

O. L. Antipov, O. N. Eremeykin, Yu. N. Frolov, G. I. Freidman, S. G. Garanin, R. I. Il'kaev, A. P. Konyushkov, V. I. Lazarenko, G. M. Mischenko, A. P. Savikin, A. M. Sergeev, S. J. Velikanov, and R. Yu. Volkov, “Mid-IR ZnGeP2 parametric oscillator with laser pumping at 2.1μm,” in Mid-Infrared Coherent Sources and Applications (MICS 2005), Barcelona, Spain (2005), No.

Apitz, I.

I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys. A 81, 329 (2005).
[CrossRef]

Arisholm, G.

Armstrong, A.

A. Dergachev, A. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA System,” Proc. SPIE 6875, 87507 (2008).

Awazu, K.

K. Ishii, H. Tsukimoto, H. Hazama, and K. Awazu, “Selective treatment of atherosclerotic plaques using nanosecond pulsed laser with a wavelength of 5.75μm for less-invasive laser angioplasty,” Proc. SPIE 7373, 73731E (2009).
[CrossRef]

Beck, C.

G. McKenzie, C. Beck, J. Mittchll, B. Jean, and P. Bryanston-Cross, “Confined tissue ablation for vitrectomy: a study at FELIX,” Proc. SPIE 4247, 229 (2001).
[CrossRef]

Bryanston-Cross, P.

G. McKenzie, C. Beck, J. Mittchll, B. Jean, and P. Bryanston-Cross, “Confined tissue ablation for vitrectomy: a study at FELIX,” Proc. SPIE 4247, 229 (2001).
[CrossRef]

Budni, P. A.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeram, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, and E. P. Chicklis, “20mJ, 3-5μm & 2mJ, 8μmZnGeP2 optical parametric oscillators pumped by a 2.09μm Ho:YAG laser,” in 16th Solid State and Diode Laser Technology Review, Albuquerque, New Mexico (2003), p. 17.

Castro, R. T.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeram, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, and E. P. Chicklis, “20mJ, 3-5μm & 2mJ, 8μmZnGeP2 optical parametric oscillators pumped by a 2.09μm Ho:YAG laser,” in 16th Solid State and Diode Laser Technology Review, Albuquerque, New Mexico (2003), p. 17.

Chen, J. S.

D. L. Ellis, N. K. Weisberg, J. S. Chen, G. P. Stricklin, and L. Reinisch, “Free electron laser wavelength specificity for cutaneous contraction,” Lasers Surg. Med. 25, 1 (1999).
[CrossRef]

Chicklis, E. P.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeram, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, and E. P. Chicklis, “20mJ, 3-5μm & 2mJ, 8μmZnGeP2 optical parametric oscillators pumped by a 2.09μm Ho:YAG laser,” in 16th Solid State and Diode Laser Technology Review, Albuquerque, New Mexico (2003), p. 17.

Choi, B.

F. C. Kin, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 1022 (2001).
[CrossRef]

Cobb, C. M.

P. Spencer, J. M. Payne, C. M. Cobb, L. Reinisch, G. M. Peavy, D. D. Drummer, D. L. Suchman, and J. R. Swafford, “Effective laser Ablation of bone based on the absorption characteristics of water and proteins,” J. Periodontol. 70, 68 (1999).
[CrossRef]

Cummings, J. P.

J. T. Walsh and J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Lasers Surg. Med. 15, 295 (1994).
[CrossRef]

Curry, A. C.

Dergachev, A.

A. Dergachev, A. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA System,” Proc. SPIE 6875, 87507 (2008).

Drake, T.

A. Dergachev, A. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA System,” Proc. SPIE 6875, 87507 (2008).

Drummer, D. D.

P. Spencer, J. M. Payne, C. M. Cobb, L. Reinisch, G. M. Peavy, D. D. Drummer, D. L. Suchman, and J. R. Swafford, “Effective laser Ablation of bone based on the absorption characteristics of water and proteins,” J. Periodontol. 70, 68 (1999).
[CrossRef]

Dubois, M.

A. Dergachev, A. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA System,” Proc. SPIE 6875, 87507 (2008).

Edwards, G.

G. Edwards, W. Wagner, A. Sokolow, and R. Pearlstein “Pressure (mechanical) effects in infrared tissue ablation,” Proc. SPIE 6854, 685410 (2008).
[CrossRef]

M. S. Hutson, S. A. Hanger, and G. Edwards, “Thermal diffusion and chemical kinetics in laminar biomaterial due to heating by a free electron laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, Part 1, 061906 (2002).
[CrossRef]

Edwards, G. S.

M. S. Hutson and G. S. Edwards, “Advances in the physical understanding of laser surgery at 6.45microns,” Proc. 26th International FEL Conf., Trieste, Italy (2004). pp. 648-653.

Ellis, D. L.

D. L. Ellis, N. K. Weisberg, J. S. Chen, G. P. Stricklin, and L. Reinisch, “Free electron laser wavelength specificity for cutaneous contraction,” Lasers Surg. Med. 25, 1 (1999).
[CrossRef]

Eremeykin, O. N.

O. L. Antipov, O. N. Eremeykin, Yu. N. Frolov, G. I. Freidman, S. G. Garanin, R. I. Il'kaev, A. P. Konyushkov, V. I. Lazarenko, G. M. Mischenko, A. P. Savikin, A. M. Sergeev, S. J. Velikanov, and R. Yu. Volkov, “Mid-IR ZnGeP2 parametric oscillator with laser pumping at 2.1μm,” in Mid-Infrared Coherent Sources and Applications (MICS 2005), Barcelona, Spain (2005), No.

Fejer, M. M.

P. S. Kuo and M. M. Fejer, “Microstructured semiconductors for mid-infrared nonlinear optics,” in Mid-Infrared Coherent Sources and Applications, edited by M.Ebrahim-Zadeh and I.T.Sorokina, Springer, NY (2008), pp. 149-168.

Filoonov, A. G.

A. V. Platonov, A. N. Soldatov, and A. G. Filoonov, “Pulsed strontium-vapor laser,” Sov. J. Quantum Electron. 5, No. 1, 198 (1978).

Freidman, G. I.

O. L. Antipov, O. N. Eremeykin, Yu. N. Frolov, G. I. Freidman, S. G. Garanin, R. I. Il'kaev, A. P. Konyushkov, V. I. Lazarenko, G. M. Mischenko, A. P. Savikin, A. M. Sergeev, S. J. Velikanov, and R. Yu. Volkov, “Mid-IR ZnGeP2 parametric oscillator with laser pumping at 2.1μm,” in Mid-Infrared Coherent Sources and Applications (MICS 2005), Barcelona, Spain (2005), No.

Fried, D.

K. K. Short, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at K=2.94μm,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 959 (2001).
[CrossRef]

Frolov, Yu. N.

O. L. Antipov, O. N. Eremeykin, Yu. N. Frolov, G. I. Freidman, S. G. Garanin, R. I. Il'kaev, A. P. Konyushkov, V. I. Lazarenko, G. M. Mischenko, A. P. Savikin, A. M. Sergeev, S. J. Velikanov, and R. Yu. Volkov, “Mid-IR ZnGeP2 parametric oscillator with laser pumping at 2.1μm,” in Mid-Infrared Coherent Sources and Applications (MICS 2005), Barcelona, Spain (2005), No.

Garanin, S. G.

O. L. Antipov, O. N. Eremeykin, Yu. N. Frolov, G. I. Freidman, S. G. Garanin, R. I. Il'kaev, A. P. Konyushkov, V. I. Lazarenko, G. M. Mischenko, A. P. Savikin, A. M. Sergeev, S. J. Velikanov, and R. Yu. Volkov, “Mid-IR ZnGeP2 parametric oscillator with laser pumping at 2.1μm,” in Mid-Infrared Coherent Sources and Applications (MICS 2005), Barcelona, Spain (2005), No.

Guo, M.

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94, No. 4, 1359 (2008).
[CrossRef]

Gustafson, E. J.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeram, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, and E. P. Chicklis, “20mJ, 3-5μm & 2mJ, 8μmZnGeP2 optical parametric oscillators pumped by a 2.09μm Ho:YAG laser,” in 16th Solid State and Diode Laser Technology Review, Albuquerque, New Mexico (2003), p. 17.

Haakestad, M. W.

Haglund, R. J.

R. J. Haglund, “Applications of Free Electron Lasers in biological sciences, medicine and material science,” in: Photon-Based Nanoscience and Nanobiotechnology, edited by J.J.Dubowski and S.Tanev, Springer, NY (2006), pp. 175-203.

Hammer, D. X.

F. C. Kin, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 1022 (2001).
[CrossRef]

Hanger, S. A.

M. S. Hutson, S. A. Hanger, and G. Edwards, “Thermal diffusion and chemical kinetics in laminar biomaterial due to heating by a free electron laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, Part 1, 061906 (2002).
[CrossRef]

Harris, D. M.

M. Ostertag, J. T. McKinley, L. Reinisch, D. M. Harris, and N. H. Tolk, “Laser ablation as a function of the primary absorber in dentin,” Lasers Surg. Med. 21, 384 (1997).
[CrossRef]

Hazama, H.

K. Ishii, H. Tsukimoto, H. Hazama, and K. Awazu, “Selective treatment of atherosclerotic plaques using nanosecond pulsed laser with a wavelength of 5.75μm for less-invasive laser angioplasty,” Proc. SPIE 7373, 73731E (2009).
[CrossRef]

Hooper, B. A.

Hutson, M. S.

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94, No. 4, 1359 (2008).
[CrossRef]

M. S. Hutson, S. A. Hanger, and G. Edwards, “Thermal diffusion and chemical kinetics in laminar biomaterial due to heating by a free electron laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, Part 1, 061906 (2002).
[CrossRef]

M. S. Hutson and G. S. Edwards, “Advances in the physical understanding of laser surgery at 6.45microns,” Proc. 26th International FEL Conf., Trieste, Italy (2004). pp. 648-653.

Ibach, C. R.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeram, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, and E. P. Chicklis, “20mJ, 3-5μm & 2mJ, 8μmZnGeP2 optical parametric oscillators pumped by a 2.09μm Ho:YAG laser,” in 16th Solid State and Diode Laser Technology Review, Albuquerque, New Mexico (2003), p. 17.

Il'kaev, R. I.

O. L. Antipov, O. N. Eremeykin, Yu. N. Frolov, G. I. Freidman, S. G. Garanin, R. I. Il'kaev, A. P. Konyushkov, V. I. Lazarenko, G. M. Mischenko, A. P. Savikin, A. M. Sergeev, S. J. Velikanov, and R. Yu. Volkov, “Mid-IR ZnGeP2 parametric oscillator with laser pumping at 2.1μm,” in Mid-Infrared Coherent Sources and Applications (MICS 2005), Barcelona, Spain (2005), No.

Ishii, K.

K. Ishii, H. Tsukimoto, H. Hazama, and K. Awazu, “Selective treatment of atherosclerotic plaques using nanosecond pulsed laser with a wavelength of 5.75μm for less-invasive laser angioplasty,” Proc. SPIE 7373, 73731E (2009).
[CrossRef]

Ito, H.

Jansen, E. D.

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid-infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med. 39, 230 (2007).
[CrossRef]

F. C. Kin, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 1022 (2001).
[CrossRef]

Jean, B.

G. McKenzie, C. Beck, J. Mittchll, B. Jean, and P. Bryanston-Cross, “Confined tissue ablation for vitrectomy: a study at FELIX,” Proc. SPIE 4247, 229 (2001).
[CrossRef]

B. Jean, “Medical and surgical application of FELs,” IEEE Particle Accelerator Conference, Dallas, TX, USA, 1-5 May 1995, Vol. 1, pp. 75-79.

Joos, K. M.

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid-infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med. 39, 230 (2007).
[CrossRef]

M. J. Shah, J. H. Shen, and K. M. Joos, “Endoscopic free electron laser technique development for minimally invasive optic nerve sheath fenestration,” Lasers Surg. Med. 39, 589 (2007).
[CrossRef]

Joos, R. K.

R. K. Joos, R. J. Shah, R. D. Robinson, and J. H. Shen, “Optic nerve sheath fenestration with endoscopic accessory instruments versus the free electron laser (FEL),” Lasers Surg. Med. 38, 846 (2006).
[CrossRef]

Ketteridge, P. A.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeram, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, and E. P. Chicklis, “20mJ, 3-5μm & 2mJ, 8μmZnGeP2 optical parametric oscillators pumped by a 2.09μm Ho:YAG laser,” in 16th Solid State and Diode Laser Technology Review, Albuquerque, New Mexico (2003), p. 17.

Kin, F. C.

F. C. Kin, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 1022 (2001).
[CrossRef]

Konyushkov, A. P.

O. L. Antipov, O. N. Eremeykin, Yu. N. Frolov, G. I. Freidman, S. G. Garanin, R. I. Il'kaev, A. P. Konyushkov, V. I. Lazarenko, G. M. Mischenko, A. P. Savikin, A. M. Sergeev, S. J. Velikanov, and R. Yu. Volkov, “Mid-IR ZnGeP2 parametric oscillator with laser pumping at 2.1μm,” in Mid-Infrared Coherent Sources and Applications (MICS 2005), Barcelona, Spain (2005), No.

Kuo, P. S.

P. S. Kuo and M. M. Fejer, “Microstructured semiconductors for mid-infrared nonlinear optics,” in Mid-Infrared Coherent Sources and Applications, edited by M.Ebrahim-Zadeh and I.T.Sorokina, Springer, NY (2008), pp. 149-168.

Lazarenko, V. I.

O. L. Antipov, O. N. Eremeykin, Yu. N. Frolov, G. I. Freidman, S. G. Garanin, R. I. Il'kaev, A. P. Konyushkov, V. I. Lazarenko, G. M. Mischenko, A. P. Savikin, A. M. Sergeev, S. J. Velikanov, and R. Yu. Volkov, “Mid-IR ZnGeP2 parametric oscillator with laser pumping at 2.1μm,” in Mid-Infrared Coherent Sources and Applications (MICS 2005), Barcelona, Spain (2005), No.

Lemons, M. L.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeram, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, and E. P. Chicklis, “20mJ, 3-5μm & 2mJ, 8μmZnGeP2 optical parametric oscillators pumped by a 2.09μm Ho:YAG laser,” in 16th Solid State and Diode Laser Technology Review, Albuquerque, New Mexico (2003), p. 17.

Lippert, E.

Mackanos, M. A.

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid-infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med. 39, 230 (2007).
[CrossRef]

M. A. Mackanos, The Effect of Pulse Structure on Soft Tissue Laser Ablation at Mid-IR Wavelengths, Dissertation, Vanderbilt University, Nashville, Tennessee (2004).

Maheshwari, A.

McKenzie, G.

G. McKenzie, C. Beck, J. Mittchll, B. Jean, and P. Bryanston-Cross, “Confined tissue ablation for vitrectomy: a study at FELIX,” Proc. SPIE 4247, 229 (2001).
[CrossRef]

McKinley, J. T.

M. Ostertag, J. T. McKinley, L. Reinisch, D. M. Harris, and N. H. Tolk, “Laser ablation as a function of the primary absorber in dentin,” Lasers Surg. Med. 21, 384 (1997).
[CrossRef]

Mischenko, G. M.

O. L. Antipov, O. N. Eremeykin, Yu. N. Frolov, G. I. Freidman, S. G. Garanin, R. I. Il'kaev, A. P. Konyushkov, V. I. Lazarenko, G. M. Mischenko, A. P. Savikin, A. M. Sergeev, S. J. Velikanov, and R. Yu. Volkov, “Mid-IR ZnGeP2 parametric oscillator with laser pumping at 2.1μm,” in Mid-Infrared Coherent Sources and Applications (MICS 2005), Barcelona, Spain (2005), No.

Mittchll, J.

G. McKenzie, C. Beck, J. Mittchll, B. Jean, and P. Bryanston-Cross, “Confined tissue ablation for vitrectomy: a study at FELIX,” Proc. SPIE 4247, 229 (2001).
[CrossRef]

Miyamoto, K.

Nicolas, S.

Ostertag, M.

M. Ostertag, J. T. McKinley, L. Reinisch, D. M. Harris, and N. H. Tolk, “Laser ablation as a function of the primary absorber in dentin,” Lasers Surg. Med. 21, 384 (1997).
[CrossRef]

Payne, J. M.

P. Spencer, J. M. Payne, C. M. Cobb, L. Reinisch, G. M. Peavy, D. D. Drummer, D. L. Suchman, and J. R. Swafford, “Effective laser Ablation of bone based on the absorption characteristics of water and proteins,” J. Periodontol. 70, 68 (1999).
[CrossRef]

Payne, J. T.

J. T. Payne, J. T. Payne, and V. Venugopalan, “Comparison of cortical bone ablations by using infrared laser wavelengths 2.9to9.2μm,” Lasers Surg. Med. 26, 421 (1999).

J. T. Payne, J. T. Payne, and V. Venugopalan, “Comparison of cortical bone ablations by using infrared laser wavelengths 2.9to9.2μm,” Lasers Surg. Med. 26, 421 (1999).

Pearlstein, R.

G. Edwards, W. Wagner, A. Sokolow, and R. Pearlstein “Pressure (mechanical) effects in infrared tissue ablation,” Proc. SPIE 6854, 685410 (2008).
[CrossRef]

Peavy, G. M.

J. Youn, P. Sweet, and G. M. Peavy, “A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45μm,” Lasers Surg. Med. 39, No. 4, 332 (2007).
[CrossRef]

J. Youn, P. Sweet, G. M. Peavy, and V. Venugopalan, “Mid-IR laser ablation of articular and fibro-cartilage: A wavelength dependence study of thermal injury and crater morphology,” Lasers Surg. Med. 38, No. 3, 218 (2006).
[CrossRef]

P. Spencer, J. M. Payne, C. M. Cobb, L. Reinisch, G. M. Peavy, D. D. Drummer, D. L. Suchman, and J. R. Swafford, “Effective laser Ablation of bone based on the absorption characteristics of water and proteins,” J. Periodontol. 70, 68 (1999).
[CrossRef]

Pfefer, T. J.

F. C. Kin, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 1022 (2001).
[CrossRef]

Platonov, A. V.

A. V. Platonov, A. N. Soldatov, and A. G. Filoonov, “Pulsed strontium-vapor laser,” Sov. J. Quantum Electron. 5, No. 1, 198 (1978).

Polavarapu, P. L.

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94, No. 4, 1359 (2008).
[CrossRef]

Pollak, T. M.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeram, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, and E. P. Chicklis, “20mJ, 3-5μm & 2mJ, 8μmZnGeP2 optical parametric oscillators pumped by a 2.09μm Ho:YAG laser,” in 16th Solid State and Diode Laser Technology Review, Albuquerque, New Mexico (2003), p. 17.

Pomeram, L. A.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeram, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, and E. P. Chicklis, “20mJ, 3-5μm & 2mJ, 8μmZnGeP2 optical parametric oscillators pumped by a 2.09μm Ho:YAG laser,” in 16th Solid State and Diode Laser Technology Review, Albuquerque, New Mexico (2003), p. 17.

Reinisch, L.

P. Spencer, J. M. Payne, C. M. Cobb, L. Reinisch, G. M. Peavy, D. D. Drummer, D. L. Suchman, and J. R. Swafford, “Effective laser Ablation of bone based on the absorption characteristics of water and proteins,” J. Periodontol. 70, 68 (1999).
[CrossRef]

D. L. Ellis, N. K. Weisberg, J. S. Chen, G. P. Stricklin, and L. Reinisch, “Free electron laser wavelength specificity for cutaneous contraction,” Lasers Surg. Med. 25, 1 (1999).
[CrossRef]

M. Ostertag, J. T. McKinley, L. Reinisch, D. M. Harris, and N. H. Tolk, “Laser ablation as a function of the primary absorber in dentin,” Lasers Surg. Med. 21, 384 (1997).
[CrossRef]

Robinson, R. D.

R. K. Joos, R. J. Shah, R. D. Robinson, and J. H. Shen, “Optic nerve sheath fenestration with endoscopic accessory instruments versus the free electron laser (FEL),” Lasers Surg. Med. 38, 846 (2006).
[CrossRef]

Rustad, G.

Salz, J. J.

J. J. Salz, Corneal Laser Surgery, Mosby, Philadelphia, PA (1995).

Savikin, A. P.

O. L. Antipov, O. N. Eremeykin, Yu. N. Frolov, G. I. Freidman, S. G. Garanin, R. I. Il'kaev, A. P. Konyushkov, V. I. Lazarenko, G. M. Mischenko, A. P. Savikin, A. M. Sergeev, S. J. Velikanov, and R. Yu. Volkov, “Mid-IR ZnGeP2 parametric oscillator with laser pumping at 2.1μm,” in Mid-Infrared Coherent Sources and Applications (MICS 2005), Barcelona, Spain (2005), No.

Schunemann, P. G.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeram, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, and E. P. Chicklis, “20mJ, 3-5μm & 2mJ, 8μmZnGeP2 optical parametric oscillators pumped by a 2.09μm Ho:YAG laser,” in 16th Solid State and Diode Laser Technology Review, Albuquerque, New Mexico (2003), p. 17.

Schwettman, H. A.

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid-infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med. 39, 230 (2007).
[CrossRef]

Sergeev, A. M.

O. L. Antipov, O. N. Eremeykin, Yu. N. Frolov, G. I. Freidman, S. G. Garanin, R. I. Il'kaev, A. P. Konyushkov, V. I. Lazarenko, G. M. Mischenko, A. P. Savikin, A. M. Sergeev, S. J. Velikanov, and R. Yu. Volkov, “Mid-IR ZnGeP2 parametric oscillator with laser pumping at 2.1μm,” in Mid-Infrared Coherent Sources and Applications (MICS 2005), Barcelona, Spain (2005), No.

Setzler, S. D.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeram, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, and E. P. Chicklis, “20mJ, 3-5μm & 2mJ, 8μmZnGeP2 optical parametric oscillators pumped by a 2.09μm Ho:YAG laser,” in 16th Solid State and Diode Laser Technology Review, Albuquerque, New Mexico (2003), p. 17.

Shah, M. J.

M. J. Shah, J. H. Shen, and K. M. Joos, “Endoscopic free electron laser technique development for minimally invasive optic nerve sheath fenestration,” Lasers Surg. Med. 39, 589 (2007).
[CrossRef]

Shah, R. J.

R. K. Joos, R. J. Shah, R. D. Robinson, and J. H. Shen, “Optic nerve sheath fenestration with endoscopic accessory instruments versus the free electron laser (FEL),” Lasers Surg. Med. 38, 846 (2006).
[CrossRef]

Shanmugam, G.

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94, No. 4, 1359 (2008).
[CrossRef]

Shen, J. H.

M. J. Shah, J. H. Shen, and K. M. Joos, “Endoscopic free electron laser technique development for minimally invasive optic nerve sheath fenestration,” Lasers Surg. Med. 39, 589 (2007).
[CrossRef]

R. K. Joos, R. J. Shah, R. D. Robinson, and J. H. Shen, “Optic nerve sheath fenestration with endoscopic accessory instruments versus the free electron laser (FEL),” Lasers Surg. Med. 38, 846 (2006).
[CrossRef]

Short, K. K.

K. K. Short, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at K=2.94μm,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 959 (2001).
[CrossRef]

Simanovskii, D.

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid-infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med. 39, 230 (2007).
[CrossRef]

Smith, A.

A. Dergachev, A. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA System,” Proc. SPIE 6875, 87507 (2008).

Sokolow, A.

G. Edwards, W. Wagner, A. Sokolow, and R. Pearlstein “Pressure (mechanical) effects in infrared tissue ablation,” Proc. SPIE 6854, 685410 (2008).
[CrossRef]

Soldatov, A. N.

A. V. Platonov, A. N. Soldatov, and A. G. Filoonov, “Pulsed strontium-vapor laser,” Sov. J. Quantum Electron. 5, No. 1, 198 (1978).

Sorg, B.

F. C. Kin, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 1022 (2001).
[CrossRef]

Spencer, P.

P. Spencer, J. M. Payne, C. M. Cobb, L. Reinisch, G. M. Peavy, D. D. Drummer, D. L. Suchman, and J. R. Swafford, “Effective laser Ablation of bone based on the absorption characteristics of water and proteins,” J. Periodontol. 70, 68 (1999).
[CrossRef]

Stafsudd, O. M.

K. K. Short, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at K=2.94μm,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 959 (2001).
[CrossRef]

Stenersen, K.

Stricklin, G. P.

D. L. Ellis, N. K. Weisberg, J. S. Chen, G. P. Stricklin, and L. Reinisch, “Free electron laser wavelength specificity for cutaneous contraction,” Lasers Surg. Med. 25, 1 (1999).
[CrossRef]

Suchman, D. L.

P. Spencer, J. M. Payne, C. M. Cobb, L. Reinisch, G. M. Peavy, D. D. Drummer, D. L. Suchman, and J. R. Swafford, “Effective laser Ablation of bone based on the absorption characteristics of water and proteins,” J. Periodontol. 70, 68 (1999).
[CrossRef]

Swafford, J. R.

P. Spencer, J. M. Payne, C. M. Cobb, L. Reinisch, G. M. Peavy, D. D. Drummer, D. L. Suchman, and J. R. Swafford, “Effective laser Ablation of bone based on the absorption characteristics of water and proteins,” J. Periodontol. 70, 68 (1999).
[CrossRef]

Sweet, P.

J. Youn, P. Sweet, and G. M. Peavy, “A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45μm,” Lasers Surg. Med. 39, No. 4, 332 (2007).
[CrossRef]

J. Youn, P. Sweet, G. M. Peavy, and V. Venugopalan, “Mid-IR laser ablation of articular and fibro-cartilage: A wavelength dependence study of thermal injury and crater morphology,” Lasers Surg. Med. 38, No. 3, 218 (2006).
[CrossRef]

Swift, E.

E. Swift, “Free-electron laser etching of dental enamel,” J. Dent. 29, No. 5, 347 (2001).
[CrossRef]

Teichman, J. M. H.

F. C. Kin, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 1022 (2001).
[CrossRef]

Tolk, N. H.

M. Ostertag, J. T. McKinley, L. Reinisch, D. M. Harris, and N. H. Tolk, “Laser ablation as a function of the primary absorber in dentin,” Lasers Surg. Med. 21, 384 (1997).
[CrossRef]

Tsukimoto, H.

K. Ishii, H. Tsukimoto, H. Hazama, and K. Awazu, “Selective treatment of atherosclerotic plaques using nanosecond pulsed laser with a wavelength of 5.75μm for less-invasive laser angioplasty,” Proc. SPIE 7373, 73731E (2009).
[CrossRef]

Uhlhorn, S. R.

S. R. Uhlhorn, Free Electron Laser Ablation of Soft Tissue: The Effects of Chromophore and Pulse Characteristics on Ablation Mechanics, Dissertation, Vanderbilt University, Nashville, Tennessee (2002).

Vargas, G.

F. C. Kin, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 1022 (2001).
[CrossRef]

Velikanov, S. J.

O. L. Antipov, O. N. Eremeykin, Yu. N. Frolov, G. I. Freidman, S. G. Garanin, R. I. Il'kaev, A. P. Konyushkov, V. I. Lazarenko, G. M. Mischenko, A. P. Savikin, A. M. Sergeev, S. J. Velikanov, and R. Yu. Volkov, “Mid-IR ZnGeP2 parametric oscillator with laser pumping at 2.1μm,” in Mid-Infrared Coherent Sources and Applications (MICS 2005), Barcelona, Spain (2005), No.

Venugopalan, V.

J. Youn, P. Sweet, G. M. Peavy, and V. Venugopalan, “Mid-IR laser ablation of articular and fibro-cartilage: A wavelength dependence study of thermal injury and crater morphology,” Lasers Surg. Med. 38, No. 3, 218 (2006).
[CrossRef]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577 (2003).
[CrossRef]

J. T. Payne, J. T. Payne, and V. Venugopalan, “Comparison of cortical bone ablations by using infrared laser wavelengths 2.9to9.2μm,” Lasers Surg. Med. 26, 421 (1999).

Vogel, A.

I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys. A 81, 329 (2005).
[CrossRef]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577 (2003).
[CrossRef]

Volkov, R. Yu.

O. L. Antipov, O. N. Eremeykin, Yu. N. Frolov, G. I. Freidman, S. G. Garanin, R. I. Il'kaev, A. P. Konyushkov, V. I. Lazarenko, G. M. Mischenko, A. P. Savikin, A. M. Sergeev, S. J. Velikanov, and R. Yu. Volkov, “Mid-IR ZnGeP2 parametric oscillator with laser pumping at 2.1μm,” in Mid-Infrared Coherent Sources and Applications (MICS 2005), Barcelona, Spain (2005), No.

Wagner, W.

G. Edwards, W. Wagner, A. Sokolow, and R. Pearlstein “Pressure (mechanical) effects in infrared tissue ablation,” Proc. SPIE 6854, 685410 (2008).
[CrossRef]

Walsh, J. T.

K. K. Short, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at K=2.94μm,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 959 (2001).
[CrossRef]

J. T. Walsh and J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Lasers Surg. Med. 15, 295 (1994).
[CrossRef]

Walston, A. A.

K. K. Short, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at K=2.94μm,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 959 (2001).
[CrossRef]

Weisberg, N. K.

D. L. Ellis, N. K. Weisberg, J. S. Chen, G. P. Stricklin, and L. Reinisch, “Free electron laser wavelength specificity for cutaneous contraction,” Lasers Surg. Med. 25, 1 (1999).
[CrossRef]

Welch, A. J.

F. C. Kin, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 1022 (2001).
[CrossRef]

Wilmink, G. J.

G. J. Wilmink, Using Optical Imaging Methods to Assess Laser-Tissue Interactions, Dissertation, Vanderbilt University, Nashville, Tennessee (2007).

Xiao, Y.

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94, No. 4, 1359 (2008).
[CrossRef]

Youn, J.

J. Youn, P. Sweet, and G. M. Peavy, “A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45μm,” Lasers Surg. Med. 39, No. 4, 332 (2007).
[CrossRef]

J. Youn, P. Sweet, G. M. Peavy, and V. Venugopalan, “Mid-IR laser ablation of articular and fibro-cartilage: A wavelength dependence study of thermal injury and crater morphology,” Lasers Surg. Med. 38, No. 3, 218 (2006).
[CrossRef]

Young, Y. E.

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeram, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, and E. P. Chicklis, “20mJ, 3-5μm & 2mJ, 8μmZnGeP2 optical parametric oscillators pumped by a 2.09μm Ho:YAG laser,” in 16th Solid State and Diode Laser Technology Review, Albuquerque, New Mexico (2003), p. 17.

Zhang, P.

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94, No. 4, 1359 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. A

I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin,” Appl. Phys. A 81, 329 (2005).
[CrossRef]

Biophys. J.

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94, No. 4, 1359 (2008).
[CrossRef]

Chem. Rev.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. K. Short, A. A. Walston, O. M. Stafsudd, D. Fried, and J. T. Walsh, “Quantification and modeling of the dynamic changes in the absorption coefficient of water at K=2.94μm,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 959 (2001).
[CrossRef]

F. C. Kin, B. Choi, G. Vargas, D. X. Hammer, B. Sorg, T. J. Pfefer, J. M. H. Teichman, A. J. Welch, and E. D. Jansen, “Free electron laser ablation of urinary calculi: an experimental study,” IEEE J. Sel. Top. Quantum Electron. 7, No. 6, 1022 (2001).
[CrossRef]

J. Dent.

E. Swift, “Free-electron laser etching of dental enamel,” J. Dent. 29, No. 5, 347 (2001).
[CrossRef]

J. Periodontol.

P. Spencer, J. M. Payne, C. M. Cobb, L. Reinisch, G. M. Peavy, D. D. Drummer, D. L. Suchman, and J. R. Swafford, “Effective laser Ablation of bone based on the absorption characteristics of water and proteins,” J. Periodontol. 70, 68 (1999).
[CrossRef]

Lasers Surg. Med.

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid-infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med. 39, 230 (2007).
[CrossRef]

J. T. Walsh and J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Lasers Surg. Med. 15, 295 (1994).
[CrossRef]

D. L. Ellis, N. K. Weisberg, J. S. Chen, G. P. Stricklin, and L. Reinisch, “Free electron laser wavelength specificity for cutaneous contraction,” Lasers Surg. Med. 25, 1 (1999).
[CrossRef]

R. K. Joos, R. J. Shah, R. D. Robinson, and J. H. Shen, “Optic nerve sheath fenestration with endoscopic accessory instruments versus the free electron laser (FEL),” Lasers Surg. Med. 38, 846 (2006).
[CrossRef]

M. J. Shah, J. H. Shen, and K. M. Joos, “Endoscopic free electron laser technique development for minimally invasive optic nerve sheath fenestration,” Lasers Surg. Med. 39, 589 (2007).
[CrossRef]

J. Youn, P. Sweet, G. M. Peavy, and V. Venugopalan, “Mid-IR laser ablation of articular and fibro-cartilage: A wavelength dependence study of thermal injury and crater morphology,” Lasers Surg. Med. 38, No. 3, 218 (2006).
[CrossRef]

J. Youn, P. Sweet, and G. M. Peavy, “A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45μm,” Lasers Surg. Med. 39, No. 4, 332 (2007).
[CrossRef]

J. T. Payne, J. T. Payne, and V. Venugopalan, “Comparison of cortical bone ablations by using infrared laser wavelengths 2.9to9.2μm,” Lasers Surg. Med. 26, 421 (1999).

M. Ostertag, J. T. McKinley, L. Reinisch, D. M. Harris, and N. H. Tolk, “Laser ablation as a function of the primary absorber in dentin,” Lasers Surg. Med. 21, 384 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

M. S. Hutson, S. A. Hanger, and G. Edwards, “Thermal diffusion and chemical kinetics in laminar biomaterial due to heating by a free electron laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, Part 1, 061906 (2002).
[CrossRef]

Proc. SPIE

A. Dergachev, A. Armstrong, A. Smith, T. Drake, and M. Dubois, “High-power, high-energy ZGP OPA pumped by a 2.05-μm Ho:YLF MOPA System,” Proc. SPIE 6875, 87507 (2008).

G. McKenzie, C. Beck, J. Mittchll, B. Jean, and P. Bryanston-Cross, “Confined tissue ablation for vitrectomy: a study at FELIX,” Proc. SPIE 4247, 229 (2001).
[CrossRef]

G. Edwards, W. Wagner, A. Sokolow, and R. Pearlstein “Pressure (mechanical) effects in infrared tissue ablation,” Proc. SPIE 6854, 685410 (2008).
[CrossRef]

K. Ishii, H. Tsukimoto, H. Hazama, and K. Awazu, “Selective treatment of atherosclerotic plaques using nanosecond pulsed laser with a wavelength of 5.75μm for less-invasive laser angioplasty,” Proc. SPIE 7373, 73731E (2009).
[CrossRef]

Sov. J. Quantum Electron.

A. V. Platonov, A. N. Soldatov, and A. G. Filoonov, “Pulsed strontium-vapor laser,” Sov. J. Quantum Electron. 5, No. 1, 198 (1978).

Other

P. A. Budni, C. R. Ibach, S. D. Setzler, L. A. Pomeram, M. L. Lemons, P. A. Ketteridge, E. J. Gustafson, Y. E. Young, P. G. Schunemann, T. M. Pollak, R. T. Castro, and E. P. Chicklis, “20mJ, 3-5μm & 2mJ, 8μmZnGeP2 optical parametric oscillators pumped by a 2.09μm Ho:YAG laser,” in 16th Solid State and Diode Laser Technology Review, Albuquerque, New Mexico (2003), p. 17.

O. L. Antipov, O. N. Eremeykin, Yu. N. Frolov, G. I. Freidman, S. G. Garanin, R. I. Il'kaev, A. P. Konyushkov, V. I. Lazarenko, G. M. Mischenko, A. P. Savikin, A. M. Sergeev, S. J. Velikanov, and R. Yu. Volkov, “Mid-IR ZnGeP2 parametric oscillator with laser pumping at 2.1μm,” in Mid-Infrared Coherent Sources and Applications (MICS 2005), Barcelona, Spain (2005), No.

M. S. Hutson and G. S. Edwards, “Advances in the physical understanding of laser surgery at 6.45microns,” Proc. 26th International FEL Conf., Trieste, Italy (2004). pp. 648-653.

M. A. Mackanos, The Effect of Pulse Structure on Soft Tissue Laser Ablation at Mid-IR Wavelengths, Dissertation, Vanderbilt University, Nashville, Tennessee (2004).

P. S. Kuo and M. M. Fejer, “Microstructured semiconductors for mid-infrared nonlinear optics,” in Mid-Infrared Coherent Sources and Applications, edited by M.Ebrahim-Zadeh and I.T.Sorokina, Springer, NY (2008), pp. 149-168.

G. J. Wilmink, Using Optical Imaging Methods to Assess Laser-Tissue Interactions, Dissertation, Vanderbilt University, Nashville, Tennessee (2007).

R. J. Haglund, “Applications of Free Electron Lasers in biological sciences, medicine and material science,” in: Photon-Based Nanoscience and Nanobiotechnology, edited by J.J.Dubowski and S.Tanev, Springer, NY (2006), pp. 175-203.

S. R. Uhlhorn, Free Electron Laser Ablation of Soft Tissue: The Effects of Chromophore and Pulse Characteristics on Ablation Mechanics, Dissertation, Vanderbilt University, Nashville, Tennessee (2002).

B. Jean, “Medical and surgical application of FELs,” IEEE Particle Accelerator Conference, Dallas, TX, USA, 1-5 May 1995, Vol. 1, pp. 75-79.

J. J. Salz, Corneal Laser Surgery, Mosby, Philadelphia, PA (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.