Abstract

It has been a challenge for researchers to accurately measure high temperature creep strain online without damaging the mechanical properties of the pipe surface. To this end, a noncontact method for measuring high temperature strain of a main steam pipe based on digital image correlation was proposed, and a system for monitoring of high temperature strain was designed and developed. Wavelet thresholding was used for denoising measurement data. The sub-pixel displacement search algorithm with curved surface fitting was improved to increase measurement accuracy. A field test was carried out to investigate the designed monitoring system of high temperature strain. The measuring error was less than 0.4 ppm/°C, which meets actual measurement requirements for engineering. Our findings provide a new way to monitor creep damage of the main steam pipe of a boiler of an ultra-supercritical power plant in service.

© 2016 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Anwander, B. G. Zagar, B. Weiss, and H. Weiss, “Noncontacting strain measurements at high temperatures by the digital laser speckle technique,” Exp. Mech. 40, 98-105 (2000).
    [Crossref]
  2. D. Post and J. D. Wood. “Determination of thermal strains by moiré interferometry,” Exp. Mech. 29, 318-22 (1989).
    [Crossref]
  3. B. Han, Y. Guo, B. Han, and Y. Guo, “Thermal Deformation Analysis of Various Electronic Packaging Products by Moiré and Microscopic Moiré Interferometry,” J. Electron. Packaging 117, 185-92 (1995).
    [Crossref]
  4. J. T. Malmo, O. J. Lokverg, and G. A. Slettemoen, “Interferometric Testing at Very High Temperatures by TV Holography (ESPI),” Exp. Mech. 28, 315-321 (1988).
    [Crossref]
  5. W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427-431 (1981).
  6. T.Chu, W.Ranson and M.A.Sutton, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech. 25, 232-244 (1985).
    [Crossref]
  7. Z. Jian and Z. Dong, “Investigation of Strain Measurements using Digital Image Correlation with a Finite Element Method,” J. Opt. Soc. Korea, 17, 399-404 (2013).
  8. T. L. Jin, N. S. Ha, and N. S. Goo, “A study of the thermal buckling behavior of a circular aluminum plate using the digital image correlation technique and finite element analysis,” Thin-Walled Structures, 77, 187-197 (2014).
    [Crossref]
  9. B. Pan, D. F. Wu, and Y. Xia, “High-temperature field measurement by combing transient aerodynamic heating system and reliability- guided digital image correlation,” Opt. Lasers Eng. 48, 841-848 (2010).
    [Crossref]
  10. J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurement using digital image correlation,” Exp. Mech. 36, 64-70 (1996).
    [Crossref]
  11. B. M. B. Grant, H. J. Stone, P. J. Withers, and M. Preuss, “High-temperature strain field measurement using digital image correlation,” J. Strain. Anal. Eng. Des. 44, 263-271 (2009).
    [Crossref]
  12. B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 015701-11 (2011).
    [Crossref]
  13. X. B. Yang, Z. W. Liu, and H. M. Xie, “A real time deformation evaluation method for surface and interface of thermal barrier coatings during 1100°C thermal shock,” Meas. Sci. Technol. 23, 105604-105615 (2012).
    [Crossref]
  14. J. Y. Liu and M. Iskander, “Adaptive cross correlation for imaging displacements in soils,” J. Comput. Civil Eng. 18, 46-57 (2004).
    [Crossref]
  15. D. M. Tsai and C. T. Lin, “Fast normalized cross correlation for defect detection,” Pattern Recognit. Lett. 24, 2625–2631 (2003).
  16. D. L. Donoho and J. M. Johnsotne, “Ideal spatial adaptation via wavelet shrinkage,” Biometrika, 81, 425-455 (1994).
    [Crossref]
  17. R. Thompson and K. Hemker, “Thermal expansion measurements on coating materials by digital image correlation,” In Proc 2007 SEM Annual Conference and Exposition on Experimental and Applied Mechanics (Springfield, MA, USA, Jun. 2007).
  18. W. P. Bames, “Some effects of aerospace thermal environments on high-acuity optical systems,” Appl. Opt., 5, 671-675 (1966).
    [Crossref]
  19. L. X. Zhao, “Thermal-Optical Evaluation to Optical Windows of Space Camera,” Acta Optica Sinica 18, 1440-1444 (1998).
  20. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli “Image quality assessment: from error  visibility to structural similarity,” IEEE Trans. Image Process. 13, 600-612 (2004).
    [Crossref]
  21. F. Yang, Y. L. Zhang, and Y. N. Ren, “The welding of the new type heat-resisting steel,” China Electric Power Press, 105-106 (2006).

2014 (1)

T. L. Jin, N. S. Ha, and N. S. Goo, “A study of the thermal buckling behavior of a circular aluminum plate using the digital image correlation technique and finite element analysis,” Thin-Walled Structures, 77, 187-197 (2014).
[Crossref]

2013 (1)

2012 (1)

X. B. Yang, Z. W. Liu, and H. M. Xie, “A real time deformation evaluation method for surface and interface of thermal barrier coatings during 1100°C thermal shock,” Meas. Sci. Technol. 23, 105604-105615 (2012).
[Crossref]

2011 (1)

B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 015701-11 (2011).
[Crossref]

2010 (1)

B. Pan, D. F. Wu, and Y. Xia, “High-temperature field measurement by combing transient aerodynamic heating system and reliability- guided digital image correlation,” Opt. Lasers Eng. 48, 841-848 (2010).
[Crossref]

2009 (1)

B. M. B. Grant, H. J. Stone, P. J. Withers, and M. Preuss, “High-temperature strain field measurement using digital image correlation,” J. Strain. Anal. Eng. Des. 44, 263-271 (2009).
[Crossref]

2004 (2)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli “Image quality assessment: from error  visibility to structural similarity,” IEEE Trans. Image Process. 13, 600-612 (2004).
[Crossref]

J. Y. Liu and M. Iskander, “Adaptive cross correlation for imaging displacements in soils,” J. Comput. Civil Eng. 18, 46-57 (2004).
[Crossref]

2003 (1)

D. M. Tsai and C. T. Lin, “Fast normalized cross correlation for defect detection,” Pattern Recognit. Lett. 24, 2625–2631 (2003).

2000 (1)

M. Anwander, B. G. Zagar, B. Weiss, and H. Weiss, “Noncontacting strain measurements at high temperatures by the digital laser speckle technique,” Exp. Mech. 40, 98-105 (2000).
[Crossref]

1998 (1)

L. X. Zhao, “Thermal-Optical Evaluation to Optical Windows of Space Camera,” Acta Optica Sinica 18, 1440-1444 (1998).

1996 (1)

J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurement using digital image correlation,” Exp. Mech. 36, 64-70 (1996).
[Crossref]

1995 (1)

B. Han, Y. Guo, B. Han, and Y. Guo, “Thermal Deformation Analysis of Various Electronic Packaging Products by Moiré and Microscopic Moiré Interferometry,” J. Electron. Packaging 117, 185-92 (1995).
[Crossref]

1994 (1)

D. L. Donoho and J. M. Johnsotne, “Ideal spatial adaptation via wavelet shrinkage,” Biometrika, 81, 425-455 (1994).
[Crossref]

1989 (1)

D. Post and J. D. Wood. “Determination of thermal strains by moiré interferometry,” Exp. Mech. 29, 318-22 (1989).
[Crossref]

1988 (1)

J. T. Malmo, O. J. Lokverg, and G. A. Slettemoen, “Interferometric Testing at Very High Temperatures by TV Holography (ESPI),” Exp. Mech. 28, 315-321 (1988).
[Crossref]

1985 (1)

T.Chu, W.Ranson and M.A.Sutton, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech. 25, 232-244 (1985).
[Crossref]

1981 (1)

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427-431 (1981).

1966 (1)

Anwander, M.

M. Anwander, B. G. Zagar, B. Weiss, and H. Weiss, “Noncontacting strain measurements at high temperatures by the digital laser speckle technique,” Exp. Mech. 40, 98-105 (2000).
[Crossref]

Bames, W. P.

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli “Image quality assessment: from error  visibility to structural similarity,” IEEE Trans. Image Process. 13, 600-612 (2004).
[Crossref]

Chu, T.

T.Chu, W.Ranson and M.A.Sutton, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech. 25, 232-244 (1985).
[Crossref]

Dong, Z.

Donoho, D. L.

D. L. Donoho and J. M. Johnsotne, “Ideal spatial adaptation via wavelet shrinkage,” Biometrika, 81, 425-455 (1994).
[Crossref]

Goo, N. S.

T. L. Jin, N. S. Ha, and N. S. Goo, “A study of the thermal buckling behavior of a circular aluminum plate using the digital image correlation technique and finite element analysis,” Thin-Walled Structures, 77, 187-197 (2014).
[Crossref]

Grant, B. M. B.

B. M. B. Grant, H. J. Stone, P. J. Withers, and M. Preuss, “High-temperature strain field measurement using digital image correlation,” J. Strain. Anal. Eng. Des. 44, 263-271 (2009).
[Crossref]

Guo, Y.

B. Han, Y. Guo, B. Han, and Y. Guo, “Thermal Deformation Analysis of Various Electronic Packaging Products by Moiré and Microscopic Moiré Interferometry,” J. Electron. Packaging 117, 185-92 (1995).
[Crossref]

B. Han, Y. Guo, B. Han, and Y. Guo, “Thermal Deformation Analysis of Various Electronic Packaging Products by Moiré and Microscopic Moiré Interferometry,” J. Electron. Packaging 117, 185-92 (1995).
[Crossref]

Ha, N. S.

T. L. Jin, N. S. Ha, and N. S. Goo, “A study of the thermal buckling behavior of a circular aluminum plate using the digital image correlation technique and finite element analysis,” Thin-Walled Structures, 77, 187-197 (2014).
[Crossref]

Han, B.

B. Han, Y. Guo, B. Han, and Y. Guo, “Thermal Deformation Analysis of Various Electronic Packaging Products by Moiré and Microscopic Moiré Interferometry,” J. Electron. Packaging 117, 185-92 (1995).
[Crossref]

B. Han, Y. Guo, B. Han, and Y. Guo, “Thermal Deformation Analysis of Various Electronic Packaging Products by Moiré and Microscopic Moiré Interferometry,” J. Electron. Packaging 117, 185-92 (1995).
[Crossref]

Hemker, K.

R. Thompson and K. Hemker, “Thermal expansion measurements on coating materials by digital image correlation,” In Proc 2007 SEM Annual Conference and Exposition on Experimental and Applied Mechanics (Springfield, MA, USA, Jun. 2007).

Iskander, M.

J. Y. Liu and M. Iskander, “Adaptive cross correlation for imaging displacements in soils,” J. Comput. Civil Eng. 18, 46-57 (2004).
[Crossref]

Jian, Z.

Jin, T. L.

T. L. Jin, N. S. Ha, and N. S. Goo, “A study of the thermal buckling behavior of a circular aluminum plate using the digital image correlation technique and finite element analysis,” Thin-Walled Structures, 77, 187-197 (2014).
[Crossref]

Johnsotne, J. M.

D. L. Donoho and J. M. Johnsotne, “Ideal spatial adaptation via wavelet shrinkage,” Biometrika, 81, 425-455 (1994).
[Crossref]

Lin, C. T.

D. M. Tsai and C. T. Lin, “Fast normalized cross correlation for defect detection,” Pattern Recognit. Lett. 24, 2625–2631 (2003).

Liu, J.

J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurement using digital image correlation,” Exp. Mech. 36, 64-70 (1996).
[Crossref]

Liu, J. Y.

J. Y. Liu and M. Iskander, “Adaptive cross correlation for imaging displacements in soils,” J. Comput. Civil Eng. 18, 46-57 (2004).
[Crossref]

Liu, Z. W.

X. B. Yang, Z. W. Liu, and H. M. Xie, “A real time deformation evaluation method for surface and interface of thermal barrier coatings during 1100°C thermal shock,” Meas. Sci. Technol. 23, 105604-105615 (2012).
[Crossref]

Lokverg, O. J.

J. T. Malmo, O. J. Lokverg, and G. A. Slettemoen, “Interferometric Testing at Very High Temperatures by TV Holography (ESPI),” Exp. Mech. 28, 315-321 (1988).
[Crossref]

Lyons, J. S.

J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurement using digital image correlation,” Exp. Mech. 36, 64-70 (1996).
[Crossref]

Malmo, J. T.

J. T. Malmo, O. J. Lokverg, and G. A. Slettemoen, “Interferometric Testing at Very High Temperatures by TV Holography (ESPI),” Exp. Mech. 28, 315-321 (1988).
[Crossref]

Pan, B.

B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 015701-11 (2011).
[Crossref]

B. Pan, D. F. Wu, and Y. Xia, “High-temperature field measurement by combing transient aerodynamic heating system and reliability- guided digital image correlation,” Opt. Lasers Eng. 48, 841-848 (2010).
[Crossref]

Peters, W. H.

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427-431 (1981).

Post, D.

D. Post and J. D. Wood. “Determination of thermal strains by moiré interferometry,” Exp. Mech. 29, 318-22 (1989).
[Crossref]

Preuss, M.

B. M. B. Grant, H. J. Stone, P. J. Withers, and M. Preuss, “High-temperature strain field measurement using digital image correlation,” J. Strain. Anal. Eng. Des. 44, 263-271 (2009).
[Crossref]

Ranson, W.

T.Chu, W.Ranson and M.A.Sutton, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech. 25, 232-244 (1985).
[Crossref]

Ranson, W. F.

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427-431 (1981).

Ren, Y. N.

F. Yang, Y. L. Zhang, and Y. N. Ren, “The welding of the new type heat-resisting steel,” China Electric Power Press, 105-106 (2006).

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli “Image quality assessment: from error  visibility to structural similarity,” IEEE Trans. Image Process. 13, 600-612 (2004).
[Crossref]

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli “Image quality assessment: from error  visibility to structural similarity,” IEEE Trans. Image Process. 13, 600-612 (2004).
[Crossref]

Slettemoen, G. A.

J. T. Malmo, O. J. Lokverg, and G. A. Slettemoen, “Interferometric Testing at Very High Temperatures by TV Holography (ESPI),” Exp. Mech. 28, 315-321 (1988).
[Crossref]

Stone, H. J.

B. M. B. Grant, H. J. Stone, P. J. Withers, and M. Preuss, “High-temperature strain field measurement using digital image correlation,” J. Strain. Anal. Eng. Des. 44, 263-271 (2009).
[Crossref]

Sutton, M. A.

J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurement using digital image correlation,” Exp. Mech. 36, 64-70 (1996).
[Crossref]

Sutton, M.A.

T.Chu, W.Ranson and M.A.Sutton, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech. 25, 232-244 (1985).
[Crossref]

Thompson, R.

R. Thompson and K. Hemker, “Thermal expansion measurements on coating materials by digital image correlation,” In Proc 2007 SEM Annual Conference and Exposition on Experimental and Applied Mechanics (Springfield, MA, USA, Jun. 2007).

Tsai, D. M.

D. M. Tsai and C. T. Lin, “Fast normalized cross correlation for defect detection,” Pattern Recognit. Lett. 24, 2625–2631 (2003).

Wang, Z.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli “Image quality assessment: from error  visibility to structural similarity,” IEEE Trans. Image Process. 13, 600-612 (2004).
[Crossref]

Wang, Z. Y.

B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 015701-11 (2011).
[Crossref]

Weiss, B.

M. Anwander, B. G. Zagar, B. Weiss, and H. Weiss, “Noncontacting strain measurements at high temperatures by the digital laser speckle technique,” Exp. Mech. 40, 98-105 (2000).
[Crossref]

Weiss, H.

M. Anwander, B. G. Zagar, B. Weiss, and H. Weiss, “Noncontacting strain measurements at high temperatures by the digital laser speckle technique,” Exp. Mech. 40, 98-105 (2000).
[Crossref]

Withers, P. J.

B. M. B. Grant, H. J. Stone, P. J. Withers, and M. Preuss, “High-temperature strain field measurement using digital image correlation,” J. Strain. Anal. Eng. Des. 44, 263-271 (2009).
[Crossref]

Wood, J. D.

D. Post and J. D. Wood. “Determination of thermal strains by moiré interferometry,” Exp. Mech. 29, 318-22 (1989).
[Crossref]

Wu, D. F.

B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 015701-11 (2011).
[Crossref]

B. Pan, D. F. Wu, and Y. Xia, “High-temperature field measurement by combing transient aerodynamic heating system and reliability- guided digital image correlation,” Opt. Lasers Eng. 48, 841-848 (2010).
[Crossref]

Xia, Y.

B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 015701-11 (2011).
[Crossref]

B. Pan, D. F. Wu, and Y. Xia, “High-temperature field measurement by combing transient aerodynamic heating system and reliability- guided digital image correlation,” Opt. Lasers Eng. 48, 841-848 (2010).
[Crossref]

Xie, H. M.

X. B. Yang, Z. W. Liu, and H. M. Xie, “A real time deformation evaluation method for surface and interface of thermal barrier coatings during 1100°C thermal shock,” Meas. Sci. Technol. 23, 105604-105615 (2012).
[Crossref]

Yang, F.

F. Yang, Y. L. Zhang, and Y. N. Ren, “The welding of the new type heat-resisting steel,” China Electric Power Press, 105-106 (2006).

Yang, X. B.

X. B. Yang, Z. W. Liu, and H. M. Xie, “A real time deformation evaluation method for surface and interface of thermal barrier coatings during 1100°C thermal shock,” Meas. Sci. Technol. 23, 105604-105615 (2012).
[Crossref]

Zagar, B. G.

M. Anwander, B. G. Zagar, B. Weiss, and H. Weiss, “Noncontacting strain measurements at high temperatures by the digital laser speckle technique,” Exp. Mech. 40, 98-105 (2000).
[Crossref]

Zhang, Y. L.

F. Yang, Y. L. Zhang, and Y. N. Ren, “The welding of the new type heat-resisting steel,” China Electric Power Press, 105-106 (2006).

Zhao, L. X.

L. X. Zhao, “Thermal-Optical Evaluation to Optical Windows of Space Camera,” Acta Optica Sinica 18, 1440-1444 (1998).

Acta Optica Sinica (1)

L. X. Zhao, “Thermal-Optical Evaluation to Optical Windows of Space Camera,” Acta Optica Sinica 18, 1440-1444 (1998).

Appl. Opt. (1)

Biometrika (1)

D. L. Donoho and J. M. Johnsotne, “Ideal spatial adaptation via wavelet shrinkage,” Biometrika, 81, 425-455 (1994).
[Crossref]

Exp. Mech. (5)

T.Chu, W.Ranson and M.A.Sutton, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp. Mech. 25, 232-244 (1985).
[Crossref]

M. Anwander, B. G. Zagar, B. Weiss, and H. Weiss, “Noncontacting strain measurements at high temperatures by the digital laser speckle technique,” Exp. Mech. 40, 98-105 (2000).
[Crossref]

D. Post and J. D. Wood. “Determination of thermal strains by moiré interferometry,” Exp. Mech. 29, 318-22 (1989).
[Crossref]

J. T. Malmo, O. J. Lokverg, and G. A. Slettemoen, “Interferometric Testing at Very High Temperatures by TV Holography (ESPI),” Exp. Mech. 28, 315-321 (1988).
[Crossref]

J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurement using digital image correlation,” Exp. Mech. 36, 64-70 (1996).
[Crossref]

IEEE Trans. Image Process. (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli “Image quality assessment: from error  visibility to structural similarity,” IEEE Trans. Image Process. 13, 600-612 (2004).
[Crossref]

J. Comput. Civil Eng. (1)

J. Y. Liu and M. Iskander, “Adaptive cross correlation for imaging displacements in soils,” J. Comput. Civil Eng. 18, 46-57 (2004).
[Crossref]

J. Electron. Packaging (1)

B. Han, Y. Guo, B. Han, and Y. Guo, “Thermal Deformation Analysis of Various Electronic Packaging Products by Moiré and Microscopic Moiré Interferometry,” J. Electron. Packaging 117, 185-92 (1995).
[Crossref]

J. Opt. Soc. Korea (1)

J. Strain. Anal. Eng. Des. (1)

B. M. B. Grant, H. J. Stone, P. J. Withers, and M. Preuss, “High-temperature strain field measurement using digital image correlation,” J. Strain. Anal. Eng. Des. 44, 263-271 (2009).
[Crossref]

Meas. Sci. Technol. (2)

B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 015701-11 (2011).
[Crossref]

X. B. Yang, Z. W. Liu, and H. M. Xie, “A real time deformation evaluation method for surface and interface of thermal barrier coatings during 1100°C thermal shock,” Meas. Sci. Technol. 23, 105604-105615 (2012).
[Crossref]

Opt. Eng. (1)

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427-431 (1981).

Opt. Lasers Eng. (1)

B. Pan, D. F. Wu, and Y. Xia, “High-temperature field measurement by combing transient aerodynamic heating system and reliability- guided digital image correlation,” Opt. Lasers Eng. 48, 841-848 (2010).
[Crossref]

Pattern Recognit. Lett. (1)

D. M. Tsai and C. T. Lin, “Fast normalized cross correlation for defect detection,” Pattern Recognit. Lett. 24, 2625–2631 (2003).

Thin-Walled Structures (1)

T. L. Jin, N. S. Ha, and N. S. Goo, “A study of the thermal buckling behavior of a circular aluminum plate using the digital image correlation technique and finite element analysis,” Thin-Walled Structures, 77, 187-197 (2014).
[Crossref]

Other (2)

R. Thompson and K. Hemker, “Thermal expansion measurements on coating materials by digital image correlation,” In Proc 2007 SEM Annual Conference and Exposition on Experimental and Applied Mechanics (Springfield, MA, USA, Jun. 2007).

F. Yang, Y. L. Zhang, and Y. N. Ren, “The welding of the new type heat-resisting steel,” China Electric Power Press, 105-106 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.