Abstract

We calculate optical properties of guided modes of a hybrid-guiding photonic crystal fiber. The design and modeling of such hybrid-guiding PCF is made by replacing air holes with inserts of high refractive index material layer by layer in order. The optical properties such as mode intensity profile, mode dispersion, optical birefringence, confinement loss, and chromatic dispersion during transition of the guiding mechanism are analyzed and discussed. The guided modes in the hybrid-guiding region are also compared with those of reference index-guiding and bandgap-guiding photonic crystal fibers.

© 2016 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic Crystal Fibers,” Science 299, 358-462 (2003).
    [Crossref]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
    [Crossref]
  3. N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, “Improved large-mode-area endlessly single-mode photonic crystal fibers,” Opt. Lett. 28, 393-395 (2003).
    [Crossref]
  4. T. A. Birks, D. Mogilevstev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674-676 (1999).
    [Crossref]
  5. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327 (2000).
    [Crossref]
  6. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12, 5082-5087 (2004).
    [Crossref]
  7. A. Ferrando, E. Silverstre, J. J. Miret, and P. Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790-792 (2000).
    [Crossref]
  8. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12, 1540-1550 (2004).
    [Crossref]
  9. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett. 27, 842-844 (2002).
    [Crossref]
  10. L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483-7496 (2005).
    [Crossref]
  11. D. Yeom, P. Steinvurzel, B. J. Eggleton, S. D. Lim, and B. Y. Kim, “Tunable acoustic gratings in solid-core photonic bandgap fiber,” Opt. Express 15, 3513-3518 (2007).
    [Crossref]
  12. S. A. Cerqueira, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14, 926-931 (2006).
    [Crossref]
  13. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589-2596 (2003).
    [Crossref]
  14. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-Filled Solid-Core Photonic Bandgap Fibers,” J. Lightwave Technol. 27, 1617-1630 (2009).
    [Crossref]
  15. A. Isomaki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14, 9238-9243 (2006).
    [Crossref]
  16. A. Wang, A. K. George, and J. C. Knight, “Three-level neodymium fiber laser incorporating photonic bandgap fiber,” Opt. Lett. 31, 1388-1390 (2006).
    [Crossref]
  17. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
  18. J. Sun and C. C. Chan, “Hybrid guiding in liquid-crystal photonic crystal fibers,” J. Opt. Soc. Am. B 24, 2640-2646 (2007).
    [Crossref]
  19. M. Perrin, Y. Quiquempois, G. Bouwmans, and M. Douay, “Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes,” Opt. Express 15, 13783-13795 (2007).
    [Crossref]
  20. S. G. Johnson and J. D. Joannopoulos, “The MIT photonic-bands (MPB) package,” http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands.
  21. S. G. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,” Opt. Express 8, 173-190 (2001).
    [Crossref]
  22. K. Saitoh and M. Koshiba, “Numerical Modeling of Photonic Crystal Fibers,” J. Lightwave Technol. 23, 3580-3590 (2005).
    [Crossref]
  23. K. Saitoh and M. Koshiba, “Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol. 19, 405-413 (2001).
    [Crossref]
  24. K. Saitoh and M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express 11, 3100-3109 (2003).
    [Crossref]
  25. M. Koshiba and K. Saitoh, “Structural dependence of effective area and mode field diameter for holey fibers,” Opt. Express 11, 1746-1756 (2003).
    [Crossref]
  26. T. Ritari, H. Ludvigsen, M. Wegmuller, M. Legré, N. Gisin, J. R. Folkenberg, and M. D. Nielsen, “Experimental study of polarization properties of highly birefringent photonic crystal fibers,” Opt. Express 12, 5931-5939 (2004).
    [Crossref]

2009 (1)

2008 (1)

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).

2007 (3)

2006 (3)

2005 (2)

2004 (3)

2003 (5)

2002 (1)

2001 (2)

2000 (2)

1999 (1)

T. A. Birks, D. Mogilevstev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674-676 (1999).
[Crossref]

1997 (1)

Alkeskjold, T.

Anawati, A.

Andrés, P.

Arriaga, J.

Asimakis, S.

Bassi, P.

Bigot, L.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).

Birks, T. A.

Bjarklev, A.

Bouwmans, G.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).

M. Perrin, Y. Quiquempois, G. Bouwmans, and M. Douay, “Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes,” Opt. Express 15, 13783-13795 (2007).
[Crossref]

Broeng, J.

Cerqueira, S. A.

Chan, C. C.

Cordeiro, C. M. B.

de Sterke, C. M.

Douay, M.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).

M. Perrin, Y. Quiquempois, G. Bouwmans, and M. Douay, “Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes,” Opt. Express 15, 13783-13795 (2007).
[Crossref]

Dunn, S. C.

Ebendorff-Heidepriem, H.

Eggleton, B. J.

Ferrando, A.

Finazzi, V.

Folkenberg, J. R.

Frampton, K.

George, A. K.

Gisin, N.

Hale, A.

Hermann, D.

Hermann, D. S.

Isomaki, A.

Jaouen, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).

Joannopoulos, J.

Johnson, S. G.

Kerbage, C.

Kim, B. Y.

Knight, J. C.

Koizumi, F.

Koshiba, M.

Kuhlmey, B. T.

Larsen, T. T.

Legré, M.

Lim, S. D.

Litchinitser, N. M.

Luan, F.

Ludvigsen, H.

Mangan, B. J.

McPhedran, R. C.

Miret, J. J.

Mogilevstev, D.

T. A. Birks, D. Mogilevstev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674-676 (1999).
[Crossref]

Monro, T. M.

Moore, R. C.

Mortensen, N. A.

Nielsen, M.

Nielsen, M. D.

Okhotnikov, O. G.

Ortigosa-Blanch, A.

Perrin, M.

Petersson, A.

Petropoulos, P.

Pureur, V.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).

Quiquempois, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).

M. Perrin, Y. Quiquempois, G. Bouwmans, and M. Douay, “Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes,” Opt. Express 15, 13783-13795 (2007).
[Crossref]

Reyes, P.

Richardson, D. J.

Riishede, J.

Ritari, T.

Russell, P.

P. Russell, “Photonic Crystal Fibers,” Science 299, 358-462 (2003).
[Crossref]

Russell, P. St. J.

Saitoh, K.

Scolari, L.

Silverstre, E.

Simonsen, H. R.

Steinvurzel, P.

Steinvurzel, P. E.

Sun, J.

Wadsworth, W. J.

Wang, A.

Wegmuller, M.

Westbrook, P. S.

White, T. P.

Windeler, R. S.

Wu, D. K. C.

Yeom, D.

Appl. Phys. Lett. (1)

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).

IEEE Photon. Technol. Lett. (1)

T. A. Birks, D. Mogilevstev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. 11, 674-676 (1999).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Opt. Express (12)

M. Perrin, Y. Quiquempois, G. Bouwmans, and M. Douay, “Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes,” Opt. Express 15, 13783-13795 (2007).
[Crossref]

S. G. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,” Opt. Express 8, 173-190 (2001).
[Crossref]

A. Isomaki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14, 9238-9243 (2006).
[Crossref]

D. Yeom, P. Steinvurzel, B. J. Eggleton, S. D. Lim, and B. Y. Kim, “Tunable acoustic gratings in solid-core photonic bandgap fiber,” Opt. Express 15, 3513-3518 (2007).
[Crossref]

M. Koshiba and K. Saitoh, “Structural dependence of effective area and mode field diameter for holey fibers,” Opt. Express 11, 1746-1756 (2003).
[Crossref]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589-2596 (2003).
[Crossref]

K. Saitoh and M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express 11, 3100-3109 (2003).
[Crossref]

N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12, 1540-1550 (2004).
[Crossref]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12, 5082-5087 (2004).
[Crossref]

T. Ritari, H. Ludvigsen, M. Wegmuller, M. Legré, N. Gisin, J. R. Folkenberg, and M. D. Nielsen, “Experimental study of polarization properties of highly birefringent photonic crystal fibers,” Opt. Express 12, 5931-5939 (2004).
[Crossref]

L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483-7496 (2005).
[Crossref]

S. A. Cerqueira, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14, 926-931 (2006).
[Crossref]

Opt. Lett. (6)

Science (1)

P. Russell, “Photonic Crystal Fibers,” Science 299, 358-462 (2003).
[Crossref]

Other (1)

S. G. Johnson and J. D. Joannopoulos, “The MIT photonic-bands (MPB) package,” http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.